k <- 1
value <- 1 / (k*k)
value
## [1] 1
k <- 2
value <- 1 / (k*k)
value
## [1] 0.25
k <- 3
value <- 1 / (k*k)
value
## [1] 0.1111111
k <- 4
value <- 1 / (k*k)
value
## [1] 0.0625
To find the exact values, I used a table of Z-scores. I found the area in between the values Z = \(\pm\) 1.00, Z = \(\pm\) 2.00, Z = \(\pm\) 3.00, and Z = \(\pm\) 4.00 for the appropriate question. For example, I found the area in between Z = \(\pm\) 1.00 for part a.
\(P(Z \leq \sigma)\) = 0.8413
\(P(Z \leq -\sigma)\) = 0.1587
1 - (0.8413 - 0.1587)
## [1] 0.3174
\(P(Z \leq 2 \sigma)\) = 0.9772
\(P(Z \leq -2 \sigma)\) = 0.0228
1 - (0.9772 - 0.0228)
## [1] 0.0456
\(P(Z \leq 3 \sigma)\) = 0.9987
\(P(Z \leq -3 \sigma)\) = 0.0013
1 - (0.9987 - 0.0013)
## [1] 0.0026
\(P(Z \leq 4 \sigma)\) = 0.9999
\(P(Z \leq -4 \sigma)\) = 0.0000
1 - (0.9999 - 0.0000)
## [1] 1e-04