library(WDI)
library(wooldridge)
library(rmarkdown)
işsizlik<-WDI(country = "all", indicator = c("SL.UEM.TOTL.FE.ZS","SL.UEM.TOTL.MA.ZS" ))
str(işsizlik)
## 'data.frame':    16758 obs. of  6 variables:
##  $ country          : chr  "Afghanistan" "Afghanistan" "Afghanistan" "Afghanistan" ...
##  $ iso2c            : chr  "AF" "AF" "AF" "AF" ...
##  $ iso3c            : chr  "AFG" "AFG" "AFG" "AFG" ...
##  $ year             : int  1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 ...
##  $ SL.UEM.TOTL.FE.ZS: num  NA NA NA NA NA NA NA NA NA NA ...
##   ..- attr(*, "label")= chr "Unemployment, female (% of female labor force) (modeled ILO estimate)"
##  $ SL.UEM.TOTL.MA.ZS: num  NA NA NA NA NA NA NA NA NA NA ...
##   ..- attr(*, "label")= chr "Unemployment, male (% of male labor force) (modeled ILO estimate)"
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.0     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyr)
library(dplyr)
library(explore)
countries <- unique(işsizlik$country)
işsizlik %>% describe_all()
## # A tibble: 6 × 8
##   variable          type     na na_pct unique     min    mean    max
##   <chr>             <chr> <int>  <dbl>  <int>   <dbl>   <dbl>  <dbl>
## 1 country           chr       0    0      266   NA      NA      NA  
## 2 iso2c             chr       0    0      266   NA      NA      NA  
## 3 iso3c             chr       0    0      262   NA      NA      NA  
## 4 year              int       0    0       63 1960    1991    2022  
## 5 SL.UEM.TOTL.FE.ZS dbl    9239   55.1   6544    0.15    9.19   44.6
## 6 SL.UEM.TOTL.MA.ZS dbl    9239   55.1   6371    0.04    7.39   37.0
işsizlik2 <- WDI_data$country
işsizlik <- left_join(işsizlik, işsizlik2)
## Joining with `by = join_by(country, iso2c, iso3c)`
işsizlik3 <- işsizlik%>%filter(region!="aggregates")
işsizlik3 %>% describe_all()
## # A tibble: 12 × 8
##    variable          type     na na_pct unique     min    mean    max
##    <chr>             <chr> <int>  <dbl>  <int>   <dbl>   <dbl>  <dbl>
##  1 country           chr       0    0      257   NA      NA      NA  
##  2 iso2c             chr       0    0      257   NA      NA      NA  
##  3 iso3c             chr       0    0      257   NA      NA      NA  
##  4 year              int       0    0       63 1960    1991    2022  
##  5 SL.UEM.TOTL.FE.ZS dbl    8928   55.1   6342    0.15    9.3    44.6
##  6 SL.UEM.TOTL.MA.ZS dbl    8928   55.1   6166    0.04    7.46   37.0
##  7 region            chr       0    0        8   NA      NA      NA  
##  8 capital           chr       0    0      210   NA      NA      NA  
##  9 longitude         chr       0    0      210   NA      NA      NA  
## 10 latitude          chr       0    0      210   NA      NA      NA  
## 11 income            chr       0    0        6   NA      NA      NA  
## 12 lending           chr       0    0        5   NA      NA      NA
işsizlik3 <- işsizlik3 %>% filter(year >= 2000)
işsizlik3 %>% describe_all()
## # A tibble: 12 × 8
##    variable          type     na na_pct unique     min    mean    max
##    <chr>             <chr> <int>  <dbl>  <int>   <dbl>   <dbl>  <dbl>
##  1 country           chr       0    0      257   NA      NA      NA  
##  2 iso2c             chr       0    0      257   NA      NA      NA  
##  3 iso3c             chr       0    0      257   NA      NA      NA  
##  4 year              int       0    0       23 2000    2011    2022  
##  5 SL.UEM.TOTL.FE.ZS dbl     691   11.7   4720    0.15    9.26   42.6
##  6 SL.UEM.TOTL.MA.ZS dbl     691   11.7   4621    0.04    7.37   37.0
##  7 region            chr       0    0        8   NA      NA      NA  
##  8 capital           chr       0    0      210   NA      NA      NA  
##  9 longitude         chr       0    0      210   NA      NA      NA  
## 10 latitude          chr       0    0      210   NA      NA      NA  
## 11 income            chr       0    0        6   NA      NA      NA  
## 12 lending           chr       0    0        5   NA      NA      NA
boşsayi <- işsizlik3 %>% group_by(country) %>% summarise(sayi=sum(is.na(SL.UEM.TOTL.FE.ZS)))
işsizlik3 <-left_join(işsizlik3, boşsayi)
## Joining with `by = join_by(country)`
işsizlik3 <- işsizlik3 %>% filter(sayi <= 0)
işsizlik3 %>% describe_all()
## # A tibble: 13 × 8
##    variable          type     na na_pct unique     min    mean    max
##    <chr>             <chr> <int>  <dbl>  <int>   <dbl>   <dbl>  <dbl>
##  1 country           chr       0      0    226   NA      NA      NA  
##  2 iso2c             chr       0      0    226   NA      NA      NA  
##  3 iso3c             chr       0      0    226   NA      NA      NA  
##  4 year              int       0      0     23 2000    2011    2022  
##  5 SL.UEM.TOTL.FE.ZS dbl       0      0   4700    0.15    9.27   42.6
##  6 SL.UEM.TOTL.MA.ZS dbl       0      0   4603    0.04    7.37   37.0
##  7 region            chr       0      0      8   NA      NA      NA  
##  8 capital           chr       0      0    180   NA      NA      NA  
##  9 longitude         chr       0      0    183   NA      NA      NA  
## 10 latitude          chr       0      0    183   NA      NA      NA  
## 11 income            chr       0      0      6   NA      NA      NA  
## 12 lending           chr       0      0      5   NA      NA      NA  
## 13 sayi              int       0      0      1    0       0       0