- overview of the steps involved in data mining
- goal definition and ending with model deployment. -
- The general steps are
- data collection,
- cleaning, and
- preprocessing.
2024-03-14
The following is the structure of the data
## 'data.frame': 5802 obs. of 14 variables: ## $ TOTAL.VALUE: num 344 413 330 499 332 ... ## $ TAX : int 4330 5190 4152 6272 4170 4244 4521 4030 4195 5150 ... ## $ LOT.SQFT : int 9965 6590 7500 13773 5000 5142 5000 10000 6835 5093 ... ## $ YR.BUILT : int 1880 1945 1890 1957 1910 1950 1954 1950 1958 1900 ... ## $ GROSS.AREA : int 2436 3108 2294 5032 2370 2124 3220 2208 2582 4818 ... ## $ LIVING.AREA: int 1352 1976 1371 2608 1438 1060 1916 1200 1092 2992 ... ## $ FLOORS : num 2 2 2 1 2 1 2 1 1 2 ... ## $ ROOMS : int 6 10 8 9 7 6 7 6 5 8 ... ## $ BEDROOMS : int 3 4 4 5 3 3 3 3 3 4 ... ## $ FULL.BATH : int 1 2 1 1 2 1 1 1 1 2 ... ## $ HALF.BATH : int 1 1 1 1 0 0 1 0 0 0 ... ## $ KITCHEN : int 1 1 1 1 1 1 1 1 1 1 ... ## $ FIREPLACE : int 0 0 0 1 0 1 0 0 1 0 ... ## $ REMODEL : chr "None" "Recent" "None" "None" ...
This data contain 5802 observation and 14 variables
## [1] 5802 14
head(data) tail(data) ```