Teams Study

Load Data

library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.1
## Warning: package 'dplyr' was built under R version 4.3.1
## ── Attaching core tidyverse packages ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
multi_team_raw <- read.csv("1. In Paper/Team Ratings/t2_raw.csv")%>%
  mutate(pid = row_number())%>%
  mutate(
    gender_text = case_when(
      gender == 1 ~ "Man",
      gender == 2 ~ "Woman",
      gender == 3 ~ "NonBinary",
      gender == 4 ~ "Other"),
    t1_hiermut_6 = case_when(
      t1_hiermut_6_r == 1 ~ 7,
      t1_hiermut_6_r == 2 ~ 6,
      t1_hiermut_6_r == 3 ~ 5,
      t1_hiermut_6_r == 4 ~ 4,
      t1_hiermut_6_r == 5 ~ 3,
      t1_hiermut_6_r == 6 ~ 2,
      t1_hiermut_6_r == 7 ~ 1),
    t2_hiermut_6 = case_when(
      t2_hiermut_6_r == 1 ~ 7,
      t2_hiermut_6_r == 2 ~ 6,
      t2_hiermut_6_r == 3 ~ 5,
      t2_hiermut_6_r == 4 ~ 4,
      t2_hiermut_6_r == 5 ~ 3,
      t2_hiermut_6_r == 6 ~ 2,
      t2_hiermut_6_r == 7 ~ 1),
    t3_hiermut_6 = case_when(
      t3_hiermut_6_r == 1 ~ 7,
      t3_hiermut_6_r == 2 ~ 6,
      t3_hiermut_6_r == 3 ~ 5,
      t3_hiermut_6_r == 4 ~ 4,
      t3_hiermut_6_r == 5 ~ 3,
      t3_hiermut_6_r == 6 ~ 2,
      t3_hiermut_6_r == 7 ~ 1),
    t4_hiermut_6 = case_when(
      t4_hiermut_6_r == 1 ~ 7,
      t4_hiermut_6_r == 2 ~ 6,
      t4_hiermut_6_r == 3 ~ 5,
      t4_hiermut_6_r == 4 ~ 4,
      t4_hiermut_6_r == 5 ~ 3,
      t4_hiermut_6_r == 6 ~ 2,
      t4_hiermut_6_r == 7 ~ 1),
    t5_hiermut_6 = case_when(
      t5_hiermut_6_r == 1 ~ 7,
      t5_hiermut_6_r == 2 ~ 6,
      t5_hiermut_6_r == 3 ~ 5,
      t5_hiermut_6_r == 4 ~ 4,
      t5_hiermut_6_r == 5 ~ 3,
      t5_hiermut_6_r == 6 ~ 2,
      t5_hiermut_6_r == 7 ~ 1),
    t6_hiermut_6 = case_when(
      t6_hiermut_6_r == 1 ~ 7,
      t6_hiermut_6_r == 2 ~ 6,
      t6_hiermut_6_r == 3 ~ 5,
      t6_hiermut_6_r == 4 ~ 4,
      t6_hiermut_6_r == 5 ~ 3,
      t6_hiermut_6_r == 6 ~ 2,
      t6_hiermut_6_r == 7 ~ 1),
    t1_conf_3 = case_when(
      t1_conf_3_r == 1 ~ 7,
      t1_conf_3_r == 2 ~ 6,
      t1_conf_3_r == 3 ~ 5,
      t1_conf_3_r == 4 ~ 4,
      t1_conf_3_r == 5 ~ 3,
      t1_conf_3_r == 6 ~ 2,
      t1_conf_3_r == 7 ~ 1),
    t2_conf_3 = case_when(
      t2_conf_3_r == 1 ~ 7,
      t2_conf_3_r == 2 ~ 6,
      t2_conf_3_r == 3 ~ 5,
      t2_conf_3_r == 4 ~ 4,
      t2_conf_3_r == 5 ~ 3,
      t2_conf_3_r == 6 ~ 2,
      t2_conf_3_r == 7 ~ 1),
    t3_conf_3 = case_when(
      t3_conf_3_r == 1 ~ 7,
      t3_conf_3_r == 2 ~ 6,
      t3_conf_3_r == 3 ~ 5,
      t3_conf_3_r == 4 ~ 4,
      t3_conf_3_r == 5 ~ 3,
      t3_conf_3_r == 6 ~ 2,
      t3_conf_3_r == 7 ~ 1),
    t4_conf_3 = case_when(
      t4_conf_3_r == 1 ~ 7,
      t4_conf_3_r == 2 ~ 6,
      t4_conf_3_r == 3 ~ 5,
      t4_conf_3_r == 4 ~ 4,
      t4_conf_3_r == 5 ~ 3,
      t4_conf_3_r == 6 ~ 2,
      t4_conf_3_r == 7 ~ 1),
    t5_conf_3 = case_when(
      t5_conf_3_r == 1 ~ 7,
      t5_conf_3_r == 2 ~ 6,
      t5_conf_3_r == 3 ~ 5,
      t5_conf_3_r == 4 ~ 4,
      t5_conf_3_r == 5 ~ 3,
      t5_conf_3_r == 6 ~ 2,
      t5_conf_3_r == 7 ~ 1),
    t6_conf_3 = case_when(
      t6_conf_3_r == 1 ~ 7,
      t6_conf_3_r == 2 ~ 6,
      t6_conf_3_r == 3 ~ 5,
      t6_conf_3_r == 4 ~ 4,
      t6_conf_3_r == 5 ~ 3,
      t6_conf_3_r == 6 ~ 2,
      t6_conf_3_r == 7 ~ 1))

multi_team_clean <- multi_team_raw %>%
  rowwise() %>%
  mutate(
    t1_hiermut = mean(c(t1_hiermut_1, t1_hiermut_2, t1_hiermut_3, t1_hiermut_4, t1_hiermut_5, t1_hiermut_6)),
    t1_futvoice = mean(c(t1_futvoice_1, t1_futvoice_2, t1_futvoice_3)),
    t1_conf = mean(c(t1_conf_1, t1_conf_2, t1_conf_3)),
    t1_voice = mean(c(t1_voice_1, t1_voice_2, t1_voice_3)),
    t2_hiermut = mean(c(t2_hiermut_1, t2_hiermut_2, t2_hiermut_3, t2_hiermut_4, t2_hiermut_5, t2_hiermut_6)),
    t2_futvoice = mean(c(t2_futvoice_1, t2_futvoice_2, t2_futvoice_3)),
    t2_conf = mean(c(t2_conf_1, t2_conf_2, t2_conf_3)),
    t2_voice = mean(c(t2_voice_1, t2_voice_2, t2_voice_3)),
    t3_hiermut = mean(c(t3_hiermut_1, t3_hiermut_2, t3_hiermut_3, t3_hiermut_4, t3_hiermut_5, t3_hiermut_6)),
    t3_futvoice = mean(c(t3_futvoice_1, t3_futvoice_2, t3_futvoice_3)),
    t3_conf = mean(c(t3_conf_1, t3_conf_2, t3_conf_3)),
    t3_voice = mean(c(t3_voice_1, t3_voice_2, t3_voice_3)),
    t4_hiermut = mean(c(t4_hiermut_1, t4_hiermut_2, t4_hiermut_3, t4_hiermut_4, t4_hiermut_5, t4_hiermut_6)),
    t4_futvoice = mean(c(t4_futvoice_1, t4_futvoice_2, t4_futvoice_3)),
    t4_conf = mean(c(t4_conf_1, t4_conf_2, t4_conf_3)),
    t4_voice = mean(c(t4_voice_1, t4_voice_2, t4_voice_3)),
    t5_hiermut = mean(c(t5_hiermut_1, t5_hiermut_2, t5_hiermut_3, t5_hiermut_4, t5_hiermut_5, t5_hiermut_6)),
    t5_futvoice = mean(c(t5_futvoice_1, t5_futvoice_2, t5_futvoice_3)),
    t5_conf = mean(c(t5_conf_1, t5_conf_2, t5_conf_3)),
    t5_voice = mean(c(t5_voice_1, t5_voice_2, t5_voice_3)),
    t6_hiermut = mean(c(t6_hiermut_1, t6_hiermut_2, t6_hiermut_3, t6_hiermut_4, t6_hiermut_5, t6_hiermut_6)),
    t6_futvoice = mean(c(t6_futvoice_1, t6_futvoice_2, t6_futvoice_3)),
    t6_conf = mean(c(t6_conf_1, t6_conf_2, t6_conf_3)),
    t6_voice = mean(c(t6_voice_1, t6_voice_2, t6_voice_3)),
    t1_status_asc = mean(c(t1_status_ascrip_1, t1_status_ascrip_2, t1_status_ascrip_3, t1_status_ascrip_4, t1_status_ascrip_5)),
    t2_status_asc = mean(c(t2_status_ascrip_1, t2_status_ascrip_2, t2_status_ascrip_3, t2_status_ascrip_4, t2_status_ascrip_5)),
    t3_status_asc = mean(c(t3_status_ascrip_1, t3_status_ascrip_2, t3_status_ascrip_3, t3_status_ascrip_4, t3_status_ascrip_5)),
    t4_status_asc = mean(c(t4_status_ascrip_1, t4_status_ascrip_2, t4_status_ascrip_3, t4_status_ascrip_4, t4_status_ascrip_5)),
    t5_status_asc = mean(c(t5_status_ascrip_1, t5_status_ascrip_2, t5_status_ascrip_3, t5_status_ascrip_4, t5_status_ascrip_5)),
    t6_status_asc = mean(c(t6_status_ascrip_1, t6_status_ascrip_2, t6_status_ascrip_3, t6_status_ascrip_4, t6_status_ascrip_5)),
    pass = case_when(
      attn_chk == 6 ~ 1,
      attn_chk != 6 ~ 0))

multi_team_clean_wide <- multi_team_clean%>%
  filter(attn_chk == 6)%>%
  select(c(pid, t1_hiermut:t6_status_asc, gender_text, employment:attn_chk, pass)) %>%
  pivot_longer(
    cols = t1_hiermut:t6_status_asc,
    names_to = "item",
    values_to = "value"
  )%>%
    separate(item, into = c("team", "scale"), sep = "_")%>%
  drop_na("value")%>%
  select(-c(race_7_TEXT:pass))%>%
    pivot_wider(
      names_from = "scale")
## Warning: Expected 2 pieces. Additional pieces discarded in 1920 rows [25, 26, 27, 28, 29, 30, 55, 56, 57, 58, 59, 60, 85, 86, 87, 88, 89, 90, 115, 116, ...].

Participant Info

Gender info

table(multi_team_raw$gender_text)/nrow(multi_team_raw)
## 
##        Man  NonBinary      Woman 
## 0.54131054 0.01139601 0.44729345
mean(multi_team_raw$age, na.rm = TRUE);sd(multi_team_raw$age, na.rm = TRUE)
## [1] 38.39886
## [1] 11.63838
table(multi_team_clean$gender_text)/nrow(multi_team_clean)
## 
##        Man  NonBinary      Woman 
## 0.54131054 0.01139601 0.44729345
mean(multi_team_clean$age, na.rm = TRUE);sd(multi_team_clean$age, na.rm = TRUE)
## [1] 38.39886
## [1] 11.63838
print(paste("# that passed attn_chk:", table(multi_team_clean$pass)[2]))
## [1] "# that passed attn_chk: 320"

Reliabilities

with(multi_team_clean, psych::alpha(data.frame(cbind(t1_hiermut_1, t1_hiermut_2, t1_hiermut_3, t1_hiermut_4, t1_hiermut_5, t1_hiermut_6))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t1_hiermut_1, t1_hiermut_2, 
##     t1_hiermut_3, t1_hiermut_4, t1_hiermut_5, t1_hiermut_6)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.94      0.94    0.94      0.73  16 0.0051  4.1 1.6     0.76
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.93  0.94  0.95
## Duhachek  0.93  0.94  0.95
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## t1_hiermut_1      0.93      0.93    0.92      0.72  13   0.0064 0.0146  0.77
## t1_hiermut_2      0.92      0.93    0.92      0.71  12   0.0066 0.0121  0.76
## t1_hiermut_3      0.93      0.93    0.92      0.72  13   0.0063 0.0140  0.78
## t1_hiermut_4      0.92      0.92    0.91      0.70  12   0.0069 0.0117  0.75
## t1_hiermut_5      0.92      0.92    0.92      0.71  12   0.0068 0.0141  0.75
## t1_hiermut_6      0.95      0.95    0.94      0.80  20   0.0041 0.0013  0.80
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean  sd
## t1_hiermut_1 348  0.89  0.89  0.87   0.84  4.2 1.8
## t1_hiermut_2 348  0.90  0.90  0.89   0.86  3.9 1.9
## t1_hiermut_3 348  0.88  0.88  0.86   0.83  4.4 1.8
## t1_hiermut_4 348  0.93  0.93  0.93   0.90  3.9 1.8
## t1_hiermut_5 348  0.92  0.92  0.91   0.88  4.0 1.9
## t1_hiermut_6 348  0.75  0.74  0.66   0.64  4.1 2.0
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## t1_hiermut_1 0.09 0.11 0.14 0.20 0.19 0.16 0.11 0.01
## t1_hiermut_2 0.14 0.12 0.15 0.17 0.17 0.15 0.09 0.01
## t1_hiermut_3 0.08 0.11 0.11 0.21 0.17 0.18 0.14 0.01
## t1_hiermut_4 0.13 0.14 0.11 0.21 0.19 0.13 0.09 0.01
## t1_hiermut_5 0.14 0.13 0.13 0.19 0.15 0.17 0.09 0.01
## t1_hiermut_6 0.12 0.17 0.11 0.13 0.17 0.17 0.13 0.01
with(multi_team_clean, psych::alpha(data.frame(cbind(t1_futvoice_1, t1_futvoice_2, t1_futvoice_3))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t1_futvoice_1, t1_futvoice_2, 
##     t1_futvoice_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.94      0.94    0.91      0.83  15 0.0061  2.7 1.6     0.83
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.92  0.94  0.95
## Duhachek  0.92  0.94  0.95
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## t1_futvoice_1      0.88      0.88    0.78      0.78  7.1   0.0132    NA  0.78
## t1_futvoice_2      0.91      0.91    0.83      0.83  9.9   0.0098    NA  0.83
## t1_futvoice_3      0.93      0.93    0.87      0.87 13.8   0.0072    NA  0.87
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean  sd
## t1_futvoice_1 348  0.96  0.96  0.94   0.90  2.6 1.7
## t1_futvoice_2 348  0.94  0.94  0.90   0.86  2.7 1.7
## t1_futvoice_3 348  0.93  0.93  0.86   0.83  2.7 1.8
## 
## Non missing response frequency for each item
##                  1    2    3    4    5    6    7 miss
## t1_futvoice_1 0.37 0.21 0.15 0.11 0.07 0.05 0.03 0.01
## t1_futvoice_2 0.35 0.22 0.15 0.12 0.08 0.05 0.04 0.01
## t1_futvoice_3 0.34 0.21 0.15 0.12 0.08 0.05 0.05 0.01
with(multi_team_clean, psych::alpha(data.frame(cbind(t1_conf_1, t1_conf_2, t1_conf_3))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t1_conf_1, t1_conf_2, t1_conf_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##        0.6      0.62    0.66      0.35 1.6 0.039  4.9 1.3     0.15
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.53   0.6  0.67
## Duhachek  0.53   0.6  0.68
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## t1_conf_1      0.26      0.26    0.15      0.15 0.35    0.079    NA  0.15
## t1_conf_2      0.22      0.22    0.12      0.12 0.28    0.083    NA  0.12
## t1_conf_3      0.88      0.88    0.79      0.79 7.41    0.013    NA  0.79
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean  sd
## t1_conf_1 348  0.83  0.84  0.83   0.57  4.7 1.7
## t1_conf_2 348  0.84  0.86  0.85   0.61  4.8 1.7
## t1_conf_3 348  0.59  0.56  0.16   0.14  5.1 1.9
## 
## Non missing response frequency for each item
##              1    2    3    4    5    6    7 miss
## t1_conf_1 0.05 0.07 0.11 0.19 0.20 0.20 0.17 0.01
## t1_conf_2 0.04 0.06 0.09 0.19 0.21 0.22 0.18 0.01
## t1_conf_3 0.07 0.06 0.09 0.11 0.14 0.23 0.31 0.01
with(multi_team_clean, psych::alpha(data.frame(cbind(t1_voice_1, t1_voice_2, t1_voice_3))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t1_voice_1, t1_voice_2, t1_voice_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.92      0.92    0.89      0.79  12 0.0074  5.1 1.5     0.79
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.90  0.92  0.93
## Duhachek  0.91  0.92  0.93
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## t1_voice_1      0.86      0.86    0.76      0.76 6.3   0.0146    NA  0.76
## t1_voice_2      0.91      0.91    0.83      0.83 9.9   0.0098    NA  0.83
## t1_voice_3      0.88      0.88    0.79      0.79 7.6   0.0124    NA  0.79
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean  sd
## t1_voice_1 348  0.94  0.94  0.90   0.86  5.2 1.6
## t1_voice_2 348  0.92  0.92  0.84   0.81  4.9 1.6
## t1_voice_3 348  0.93  0.93  0.88   0.84  5.2 1.5
## 
## Non missing response frequency for each item
##               1    2    3    4    5    6    7 miss
## t1_voice_1 0.04 0.03 0.06 0.19 0.19 0.26 0.24 0.01
## t1_voice_2 0.05 0.04 0.07 0.22 0.20 0.23 0.20 0.01
## t1_voice_3 0.03 0.02 0.08 0.17 0.22 0.26 0.22 0.01
with(multi_team_clean, psych::alpha(data.frame(cbind(t2_hiermut_1, t2_hiermut_2, t2_hiermut_3, t2_hiermut_4, t2_hiermut_5, t2_hiermut_6))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t2_hiermut_1, t2_hiermut_2, 
##     t2_hiermut_3, t2_hiermut_4, t2_hiermut_5, t2_hiermut_6)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.93      0.94    0.93      0.71  14 0.0057  3.9 1.6     0.75
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.92  0.93  0.94
## Duhachek  0.92  0.93  0.94
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## t2_hiermut_1      0.92      0.92    0.91      0.69  11   0.0074 0.0212  0.75
## t2_hiermut_2      0.91      0.92    0.91      0.68  11   0.0076 0.0179  0.75
## t2_hiermut_3      0.92      0.92    0.92      0.70  12   0.0071 0.0225  0.79
## t2_hiermut_4      0.91      0.91    0.91      0.68  11   0.0077 0.0188  0.75
## t2_hiermut_5      0.91      0.91    0.91      0.68  11   0.0078 0.0202  0.75
## t2_hiermut_6      0.95      0.95    0.94      0.80  20   0.0041 0.0015  0.80
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean  sd
## t2_hiermut_1 347  0.89  0.90  0.88   0.85  3.9 1.8
## t2_hiermut_2 347  0.91  0.91  0.90   0.87  3.9 1.8
## t2_hiermut_3 347  0.87  0.87  0.84   0.81  4.2 1.8
## t2_hiermut_4 347  0.91  0.92  0.91   0.87  3.8 1.8
## t2_hiermut_5 347  0.92  0.92  0.91   0.88  3.9 1.8
## t2_hiermut_6 347  0.71  0.70  0.59   0.58  4.0 2.0
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## t2_hiermut_1 0.11 0.16 0.11 0.25 0.18 0.11 0.09 0.01
## t2_hiermut_2 0.14 0.15 0.11 0.21 0.18 0.12 0.09 0.01
## t2_hiermut_3 0.11 0.09 0.12 0.23 0.18 0.16 0.11 0.01
## t2_hiermut_4 0.14 0.14 0.14 0.22 0.18 0.09 0.09 0.01
## t2_hiermut_5 0.13 0.13 0.12 0.23 0.18 0.11 0.10 0.01
## t2_hiermut_6 0.13 0.18 0.13 0.14 0.14 0.14 0.14 0.01
with(multi_team_clean, psych::alpha(data.frame(cbind(t2_futvoice_1, t2_futvoice_2, t2_futvoice_3))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t2_futvoice_1, t2_futvoice_2, 
##     t2_futvoice_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.95      0.95    0.93      0.87  21 0.0042  2.8 1.8     0.88
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.95  0.95  0.96
## Duhachek  0.95  0.95  0.96
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## t2_futvoice_1      0.92      0.92    0.85      0.85  12   0.0084    NA  0.85
## t2_futvoice_2      0.94      0.94    0.88      0.88  15   0.0067    NA  0.88
## t2_futvoice_3      0.94      0.94    0.89      0.89  16   0.0063    NA  0.89
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean  sd
## t2_futvoice_1 347  0.96  0.96  0.94   0.92  2.7 1.9
## t2_futvoice_2 347  0.96  0.96  0.92   0.90  2.8 1.9
## t2_futvoice_3 347  0.95  0.95  0.91   0.89  2.8 1.9
## 
## Non missing response frequency for each item
##                  1   2    3    4    5    6    7 miss
## t2_futvoice_1 0.41 0.2 0.10 0.09 0.07 0.08 0.05 0.01
## t2_futvoice_2 0.38 0.2 0.09 0.12 0.09 0.07 0.05 0.01
## t2_futvoice_3 0.35 0.2 0.13 0.10 0.07 0.09 0.05 0.01
with(multi_team_clean, psych::alpha(data.frame(cbind(t2_conf_1, t2_conf_2, t2_conf_3))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t2_conf_1, t2_conf_2, t2_conf_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean  sd median_r
##       0.79       0.8    0.79      0.57   4 0.02  4.8 1.4     0.47
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.75  0.79  0.83
## Duhachek  0.75  0.79  0.83
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## t2_conf_1      0.64      0.64    0.47      0.47  1.8    0.038    NA  0.47
## t2_conf_2      0.57      0.57    0.40      0.40  1.3    0.046    NA  0.40
## t2_conf_3      0.92      0.92    0.84      0.84 10.8    0.009    NA  0.84
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean  sd
## t2_conf_1 347  0.88  0.88  0.87   0.71  4.6 1.7
## t2_conf_2 347  0.91  0.91  0.91   0.78  4.8 1.6
## t2_conf_3 347  0.75  0.74  0.48   0.45  5.1 1.8
## 
## Non missing response frequency for each item
##              1    2    3    4    5    6    7 miss
## t2_conf_1 0.06 0.07 0.12 0.20 0.21 0.17 0.16 0.01
## t2_conf_2 0.03 0.07 0.10 0.22 0.19 0.22 0.17 0.01
## t2_conf_3 0.03 0.08 0.11 0.12 0.14 0.22 0.30 0.01
with(multi_team_clean, psych::alpha(data.frame(cbind(t2_voice_1, t2_voice_2, t2_voice_3))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t2_voice_1, t2_voice_2, t2_voice_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.92      0.92    0.89      0.79  12 0.0074  4.9 1.5      0.8
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.90  0.92  0.93
## Duhachek  0.91  0.92  0.93
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## t2_voice_1      0.89      0.89    0.80      0.80 8.1    0.012    NA  0.80
## t2_voice_2      0.89      0.89    0.80      0.80 8.0    0.012    NA  0.80
## t2_voice_3      0.87      0.87    0.78      0.78 7.0    0.013    NA  0.78
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean  sd
## t2_voice_1 347  0.93  0.93  0.87   0.83  4.9 1.7
## t2_voice_2 347  0.93  0.93  0.87   0.83  4.8 1.6
## t2_voice_3 347  0.93  0.93  0.89   0.85  5.0 1.6
## 
## Non missing response frequency for each item
##               1    2    3    4    5    6    7 miss
## t2_voice_1 0.04 0.07 0.07 0.19 0.22 0.18 0.23 0.01
## t2_voice_2 0.04 0.05 0.10 0.20 0.24 0.18 0.19 0.01
## t2_voice_3 0.03 0.05 0.07 0.21 0.23 0.19 0.21 0.01
with(multi_team_clean, psych::alpha(data.frame(cbind(t3_hiermut_1, t3_hiermut_2, t3_hiermut_3, t3_hiermut_4, t3_hiermut_5, t3_hiermut_6))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t3_hiermut_1, t3_hiermut_2, 
##     t3_hiermut_3, t3_hiermut_4, t3_hiermut_5, t3_hiermut_6)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.94      0.94    0.94      0.72  16 0.0052    4 1.6     0.76
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.93  0.94  0.95
## Duhachek  0.93  0.94  0.95
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## t3_hiermut_1      0.93      0.93    0.92      0.72  13   0.0065 0.0152  0.78
## t3_hiermut_2      0.92      0.93    0.92      0.71  13   0.0067 0.0141  0.78
## t3_hiermut_3      0.92      0.92    0.92      0.71  12   0.0068 0.0142  0.75
## t3_hiermut_4      0.92      0.92    0.91      0.70  11   0.0071 0.0121  0.75
## t3_hiermut_5      0.92      0.92    0.91      0.70  12   0.0070 0.0136  0.75
## t3_hiermut_6      0.95      0.95    0.94      0.80  20   0.0041 0.0014  0.80
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean  sd
## t3_hiermut_1 341  0.88  0.88  0.86   0.83  4.0 1.8
## t3_hiermut_2 341  0.89  0.89  0.87   0.84  3.9 1.9
## t3_hiermut_3 341  0.90  0.90  0.89   0.85  4.2 1.9
## t3_hiermut_4 341  0.93  0.93  0.93   0.89  3.9 1.8
## t3_hiermut_5 341  0.92  0.92  0.90   0.87  3.9 1.8
## t3_hiermut_6 341  0.75  0.74  0.64   0.63  3.9 2.0
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## t3_hiermut_1 0.11 0.14 0.12 0.22 0.19 0.13 0.09 0.03
## t3_hiermut_2 0.13 0.14 0.15 0.18 0.15 0.16 0.09 0.03
## t3_hiermut_3 0.11 0.11 0.09 0.20 0.20 0.17 0.12 0.03
## t3_hiermut_4 0.13 0.12 0.14 0.23 0.19 0.12 0.07 0.03
## t3_hiermut_5 0.13 0.14 0.15 0.16 0.18 0.15 0.08 0.03
## t3_hiermut_6 0.16 0.15 0.14 0.11 0.14 0.20 0.10 0.03
with(multi_team_clean, psych::alpha(data.frame(cbind(t3_futvoice_1, t3_futvoice_2, t3_futvoice_3))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t3_futvoice_1, t3_futvoice_2, 
##     t3_futvoice_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.96      0.96    0.94      0.88  22 0.0041  2.8 1.9     0.88
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.95  0.96  0.96
## Duhachek  0.95  0.96  0.96
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## t3_futvoice_1      0.92      0.92    0.85      0.85  11   0.0089    NA  0.85
## t3_futvoice_2      0.94      0.94    0.88      0.88  15   0.0068    NA  0.88
## t3_futvoice_3      0.95      0.95    0.91      0.91  21   0.0049    NA  0.91
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean  sd
## t3_futvoice_1 341  0.97  0.97  0.96   0.93  2.8 1.9
## t3_futvoice_2 341  0.96  0.96  0.93   0.91  2.9 2.0
## t3_futvoice_3 341  0.95  0.95  0.90   0.88  2.9 2.0
## 
## Non missing response frequency for each item
##                  1    2    3    4    5    6    7 miss
## t3_futvoice_1 0.35 0.21 0.14 0.10 0.07 0.06 0.07 0.03
## t3_futvoice_2 0.35 0.21 0.11 0.12 0.08 0.05 0.08 0.03
## t3_futvoice_3 0.33 0.21 0.13 0.12 0.06 0.06 0.09 0.03
with(multi_team_clean, psych::alpha(data.frame(cbind(t3_conf_1, t3_conf_2, t3_conf_3))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t3_conf_1, t3_conf_2, t3_conf_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.65      0.67    0.72       0.4   2 0.034  4.7 1.4     0.19
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.59  0.65  0.71
## Duhachek  0.59  0.65  0.72
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r med.r
## t3_conf_1      0.31      0.31    0.19      0.19  0.46   0.0730    NA  0.19
## t3_conf_2      0.30      0.30    0.17      0.17  0.42   0.0751    NA  0.17
## t3_conf_3      0.91      0.92    0.84      0.84 10.80   0.0091    NA  0.84
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean  sd
## t3_conf_1 341  0.86  0.87  0.88   0.63  4.4 1.8
## t3_conf_2 341  0.86  0.87  0.89   0.66  4.7 1.7
## t3_conf_3 341  0.61  0.58  0.20   0.19  5.1 1.9
## 
## Non missing response frequency for each item
##              1    2    3    4    5    6    7 miss
## t3_conf_1 0.10 0.07 0.11 0.20 0.18 0.20 0.13 0.03
## t3_conf_2 0.06 0.07 0.09 0.21 0.20 0.22 0.15 0.03
## t3_conf_3 0.06 0.09 0.08 0.09 0.13 0.23 0.32 0.03
with(multi_team_clean, psych::alpha(data.frame(cbind(t3_voice_1, t3_voice_2, t3_voice_3))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t3_voice_1, t3_voice_2, t3_voice_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.94      0.94    0.91      0.84  16 0.0056  4.8 1.6     0.83
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.93  0.94  0.95
## Duhachek  0.93  0.94  0.95
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## t3_voice_1      0.90      0.90    0.83      0.83  9.5   0.0102    NA  0.83
## t3_voice_2      0.93      0.93    0.86      0.86 12.4   0.0080    NA  0.86
## t3_voice_3      0.91      0.91    0.83      0.83  9.9   0.0098    NA  0.83
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean  sd
## t3_voice_1 341  0.95  0.95  0.92   0.89  4.8 1.7
## t3_voice_2 341  0.94  0.94  0.88   0.86  4.6 1.8
## t3_voice_3 341  0.95  0.95  0.91   0.88  4.9 1.7
## 
## Non missing response frequency for each item
##               1    2    3    4    5    6    7 miss
## t3_voice_1 0.05 0.07 0.07 0.17 0.23 0.24 0.16 0.03
## t3_voice_2 0.07 0.06 0.12 0.19 0.20 0.18 0.18 0.03
## t3_voice_3 0.05 0.06 0.07 0.15 0.23 0.24 0.19 0.03
with(multi_team_clean, psych::alpha(data.frame(cbind(t4_hiermut_1, t4_hiermut_2, t4_hiermut_3, t4_hiermut_4, t4_hiermut_5, t4_hiermut_6))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t4_hiermut_1, t4_hiermut_2, 
##     t4_hiermut_3, t4_hiermut_4, t4_hiermut_5, t4_hiermut_6)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.94      0.94    0.94      0.72  16 0.0052    4 1.6     0.76
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.93  0.94  0.95
## Duhachek  0.93  0.94  0.95
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## t4_hiermut_1      0.93      0.93    0.93      0.72  13   0.0066 0.022  0.75
## t4_hiermut_2      0.92      0.93    0.93      0.71  12   0.0067 0.022  0.76
## t4_hiermut_3      0.92      0.92    0.92      0.70  12   0.0068 0.015  0.76
## t4_hiermut_4      0.92      0.92    0.92      0.70  12   0.0069 0.014  0.75
## t4_hiermut_5      0.92      0.92    0.92      0.70  12   0.0070 0.015  0.76
## t4_hiermut_6      0.95      0.95    0.95      0.80  20   0.0040 0.003  0.78
## 
##  Item statistics 
##               n raw.r std.r r.cor r.drop mean  sd
## t4_hiermut_1 69  0.89  0.89  0.86   0.84  4.0 1.7
## t4_hiermut_2 69  0.90  0.90  0.87   0.85  3.7 1.8
## t4_hiermut_3 69  0.91  0.91  0.91   0.87  4.3 1.8
## t4_hiermut_4 69  0.92  0.92  0.91   0.87  3.8 1.8
## t4_hiermut_5 69  0.92  0.92  0.92   0.88  4.0 1.8
## t4_hiermut_6 69  0.73  0.73  0.64   0.61  3.9 1.8
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## t4_hiermut_1 0.12 0.14 0.07 0.25 0.19 0.20 0.03  0.8
## t4_hiermut_2 0.10 0.25 0.12 0.12 0.23 0.16 0.03  0.8
## t4_hiermut_3 0.10 0.09 0.12 0.16 0.23 0.22 0.09  0.8
## t4_hiermut_4 0.12 0.17 0.12 0.19 0.20 0.16 0.04  0.8
## t4_hiermut_5 0.13 0.12 0.09 0.20 0.23 0.19 0.04  0.8
## t4_hiermut_6 0.09 0.22 0.14 0.13 0.16 0.19 0.07  0.8
with(multi_team_clean, psych::alpha(data.frame(cbind(t4_futvoice_1, t4_futvoice_2, t4_futvoice_3))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t4_futvoice_1, t4_futvoice_2, 
##     t4_futvoice_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.97      0.98    0.97      0.93  39 0.0024    3  2     0.93
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.97  0.97  0.98
## Duhachek  0.97  0.97  0.98
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## t4_futvoice_1      0.95      0.95    0.91      0.91  20   0.0052    NA  0.91
## t4_futvoice_2      0.96      0.96    0.93      0.93  25   0.0042    NA  0.93
## t4_futvoice_3      0.97      0.98    0.95      0.95  39   0.0027    NA  0.95
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean  sd
## t4_futvoice_1 69  0.98  0.98  0.97   0.96  2.9 2.0
## t4_futvoice_2 69  0.98  0.98  0.96   0.95  2.9 1.9
## t4_futvoice_3 69  0.97  0.97  0.94   0.93  3.0 2.2
## 
## Non missing response frequency for each item
##                  1    2    3    4    5    6    7 miss
## t4_futvoice_1 0.38 0.14 0.14 0.13 0.03 0.10 0.07  0.8
## t4_futvoice_2 0.33 0.19 0.10 0.16 0.07 0.09 0.06  0.8
## t4_futvoice_3 0.38 0.13 0.14 0.09 0.04 0.12 0.10  0.8
with(multi_team_clean, psych::alpha(data.frame(cbind(t4_conf_1, t4_conf_2, t4_conf_3))))
## Warning in psych::alpha(data.frame(cbind(t4_conf_1, t4_conf_2, t4_conf_3))): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( t4_conf_3 ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t4_conf_1, t4_conf_2, t4_conf_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N   ase mean  sd median_r
##       0.44      0.47    0.66      0.23 0.89 0.057  4.6 1.3   -0.094
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.33  0.44  0.53
## Duhachek  0.32  0.44  0.55
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r  med.r
## t4_conf_1     -0.20     -0.21  -0.094    -0.094 -0.17   0.1277    NA -0.094
## t4_conf_2     -0.21     -0.21  -0.095    -0.095 -0.17   0.1285    NA -0.095
## t4_conf_3      0.93      0.93   0.873     0.873 13.69   0.0073    NA  0.873
## 
##  Item statistics 
##            n raw.r std.r r.cor r.drop mean  sd
## t4_conf_1 69  0.83  0.85  0.90  0.534  4.5 1.8
## t4_conf_2 69  0.83  0.85  0.90  0.544  4.7 1.8
## t4_conf_3 69  0.43  0.39 -0.11 -0.098  4.5 2.0
## 
## Non missing response frequency for each item
##              1    2    3    4    5    6    7 miss
## t4_conf_1 0.09 0.10 0.10 0.14 0.20 0.25 0.12  0.8
## t4_conf_2 0.10 0.03 0.10 0.13 0.22 0.29 0.13  0.8
## t4_conf_3 0.07 0.14 0.13 0.17 0.07 0.17 0.23  0.8
with(multi_team_clean, psych::alpha(data.frame(cbind(t4_voice_1, t4_voice_2, t4_voice_3))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t4_voice_1, t4_voice_2, t4_voice_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.91      0.92    0.88      0.79  11 0.0079    5 1.4     0.78
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt      0.9  0.91  0.93
## Duhachek   0.9  0.91  0.93
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## t4_voice_1      0.90      0.90    0.83      0.83 9.5    0.010    NA  0.83
## t4_voice_2      0.88      0.88    0.78      0.78 7.2    0.013    NA  0.78
## t4_voice_3      0.85      0.86    0.75      0.75 5.9    0.016    NA  0.75
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean  sd
## t4_voice_1 69  0.91  0.91  0.83   0.80  5.1 1.4
## t4_voice_2 69  0.93  0.93  0.87   0.83  4.8 1.6
## t4_voice_3 69  0.94  0.94  0.90   0.86  5.2 1.4
## 
## Non missing response frequency for each item
##               1    2    3    4    5    6    7 miss
## t4_voice_1 0.00 0.03 0.09 0.28 0.17 0.22 0.22  0.8
## t4_voice_2 0.03 0.07 0.13 0.19 0.17 0.25 0.16  0.8
## t4_voice_3 0.03 0.01 0.04 0.19 0.30 0.23 0.19  0.8
with(multi_team_clean, psych::alpha(data.frame(cbind(t5_hiermut_1, t5_hiermut_2, t5_hiermut_3, t5_hiermut_4, t5_hiermut_5, t5_hiermut_6))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t5_hiermut_1, t5_hiermut_2, 
##     t5_hiermut_3, t5_hiermut_4, t5_hiermut_5, t5_hiermut_6)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.93      0.93    0.93      0.69  13 0.0059  3.8 1.7     0.68
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.92  0.93  0.94
## Duhachek  0.92  0.93  0.94
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se  var.r med.r
## t5_hiermut_1      0.92      0.92    0.91      0.69 10.9   0.0071 0.0128  0.67
## t5_hiermut_2      0.91      0.91    0.91      0.67 10.4   0.0074 0.0133  0.68
## t5_hiermut_3      0.90      0.90    0.89      0.65  9.2   0.0085 0.0090  0.66
## t5_hiermut_4      0.91      0.91    0.90      0.67  9.9   0.0079 0.0111  0.66
## t5_hiermut_5      0.92      0.92    0.92      0.69 11.1   0.0071 0.0134  0.71
## t5_hiermut_6      0.94      0.94    0.94      0.75 14.7   0.0055 0.0049  0.75
## 
##  Item statistics 
##               n raw.r std.r r.cor r.drop mean  sd
## t5_hiermut_1 28  0.85  0.86  0.83   0.79  3.6 1.8
## t5_hiermut_2 28  0.87  0.88  0.86   0.82  3.7 1.8
## t5_hiermut_3 28  0.93  0.93  0.94   0.90  4.3 2.0
## t5_hiermut_4 28  0.90  0.90  0.89   0.85  3.9 2.0
## t5_hiermut_5 28  0.85  0.85  0.81   0.78  4.1 2.0
## t5_hiermut_6 28  0.74  0.74  0.65   0.63  3.4 2.0
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## t5_hiermut_1 0.18 0.14 0.14 0.14 0.25 0.14 0.00 0.92
## t5_hiermut_2 0.18 0.07 0.21 0.18 0.18 0.14 0.04 0.92
## t5_hiermut_3 0.18 0.07 0.04 0.18 0.14 0.32 0.07 0.92
## t5_hiermut_4 0.21 0.11 0.04 0.14 0.29 0.14 0.07 0.92
## t5_hiermut_5 0.18 0.07 0.14 0.07 0.25 0.18 0.11 0.92
## t5_hiermut_6 0.18 0.29 0.07 0.14 0.14 0.11 0.07 0.92
with(multi_team_clean, psych::alpha(data.frame(cbind(t5_futvoice_1, t5_futvoice_2, t5_futvoice_3))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t5_futvoice_1, t5_futvoice_2, 
##     t5_futvoice_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##        0.9       0.9    0.87      0.76 9.5 0.009  3.1 1.7     0.74
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.89   0.9  0.92
## Duhachek  0.89   0.9  0.92
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## t5_futvoice_1      0.82      0.82    0.69      0.69  4.5   0.0196    NA  0.69
## t5_futvoice_2      0.92      0.92    0.85      0.85 11.0   0.0089    NA  0.85
## t5_futvoice_3      0.85      0.85    0.74      0.74  5.8   0.0158    NA  0.74
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean  sd
## t5_futvoice_1 28  0.94  0.94  0.92   0.87  3.1 1.8
## t5_futvoice_2 28  0.88  0.88  0.78   0.74  3.1 1.8
## t5_futvoice_3 28  0.93  0.92  0.88   0.82  3.1 2.0
## 
## Non missing response frequency for each item
##                  1    2    3    4    5    6    7 miss
## t5_futvoice_1 0.29 0.11 0.25 0.11 0.07 0.18 0.00 0.92
## t5_futvoice_2 0.29 0.14 0.11 0.21 0.14 0.07 0.04 0.92
## t5_futvoice_3 0.32 0.11 0.14 0.21 0.04 0.11 0.07 0.92
with(multi_team_clean, psych::alpha(data.frame(cbind(t5_conf_1, t5_conf_2, t5_conf_3))))
## Warning in psych::alpha(data.frame(cbind(t5_conf_1, t5_conf_2, t5_conf_3))): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( t5_conf_3 ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t5_conf_1, t5_conf_2, t5_conf_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N   ase mean sd median_r
##       0.34      0.48    0.61      0.24 0.92 0.067  4.7  1   -0.041
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.21  0.34  0.45
## Duhachek  0.21  0.34  0.47
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r  med.r
## t5_conf_1    -0.075    -0.087  -0.041    -0.041 -0.08    0.100    NA -0.041
## t5_conf_2    -0.109    -0.115  -0.054    -0.054 -0.10    0.112    NA -0.054
## t5_conf_3     0.879     0.889   0.801     0.801  8.04    0.012    NA  0.801
## 
##  Item statistics 
##            n raw.r std.r  r.cor r.drop mean  sd
## t5_conf_1 28  0.73  0.83  0.846  0.366  4.5 1.4
## t5_conf_2 28  0.72  0.84  0.853  0.448  5.0 1.1
## t5_conf_3 28  0.60  0.43 -0.056 -0.051  4.5 1.9
## 
## Non missing response frequency for each item
##              1    2    3    4    5    6    7 miss
## t5_conf_1 0.04 0.04 0.21 0.14 0.29 0.29 0.00 0.92
## t5_conf_2 0.00 0.00 0.11 0.25 0.29 0.29 0.07 0.92
## t5_conf_3 0.07 0.07 0.21 0.14 0.11 0.18 0.21 0.92
with(multi_team_clean, psych::alpha(data.frame(cbind(t5_voice_1, t5_voice_2, t5_voice_3))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t5_voice_1, t5_voice_2, t5_voice_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##        0.9       0.9    0.88      0.75 8.8 0.0097  5.3 1.1     0.73
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.88   0.9  0.92
## Duhachek  0.88   0.9  0.92
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## t5_voice_1      0.78      0.78    0.64      0.64  3.6   0.0233    NA  0.64
## t5_voice_2      0.93      0.93    0.87      0.87 13.5   0.0074    NA  0.87
## t5_voice_3      0.84      0.84    0.73      0.73  5.3   0.0169    NA  0.73
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean  sd
## t5_voice_1 28  0.95  0.95  0.94   0.88  5.2 1.3
## t5_voice_2 28  0.86  0.87  0.74   0.71  5.4 1.2
## t5_voice_3 28  0.92  0.92  0.89   0.82  5.4 1.3
## 
## Non missing response frequency for each item
##               2    3    4    5    6    7 miss
## t5_voice_1 0.00 0.11 0.21 0.25 0.25 0.18 0.92
## t5_voice_2 0.04 0.04 0.11 0.29 0.36 0.18 0.92
## t5_voice_3 0.00 0.07 0.18 0.25 0.25 0.25 0.92
with(multi_team_clean, psych::alpha(data.frame(cbind(t6_hiermut_1, t6_hiermut_2, t6_hiermut_3, t6_hiermut_4, t6_hiermut_5, t6_hiermut_6))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t6_hiermut_1, t6_hiermut_2, 
##     t6_hiermut_3, t6_hiermut_4, t6_hiermut_5, t6_hiermut_6)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.89      0.89    0.92      0.58 8.3 0.0098  4.1 1.5     0.58
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.87  0.89   0.9
## Duhachek  0.87  0.89   0.9
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## t6_hiermut_1      0.83      0.84    0.87      0.51  5.3   0.0148 0.055  0.51
## t6_hiermut_2      0.85      0.86    0.90      0.56  6.3   0.0132 0.070  0.57
## t6_hiermut_3      0.90      0.91    0.92      0.66  9.8   0.0088 0.039  0.72
## t6_hiermut_4      0.84      0.85    0.89      0.52  5.5   0.0142 0.063  0.52
## t6_hiermut_5      0.84      0.85    0.89      0.53  5.6   0.0138 0.071  0.50
## t6_hiermut_6      0.91      0.92    0.93      0.69 11.2   0.0076 0.027  0.72
## 
##  Item statistics 
##               n raw.r std.r r.cor r.drop mean  sd
## t6_hiermut_1 16  0.94  0.94  0.96   0.91  4.2 1.8
## t6_hiermut_2 16  0.85  0.85  0.83   0.77  3.9 2.0
## t6_hiermut_3 16  0.64  0.64  0.55   0.48  4.7 2.0
## t6_hiermut_4 16  0.92  0.92  0.93   0.88  4.1 1.7
## t6_hiermut_5 16  0.90  0.91  0.89   0.86  3.7 1.7
## t6_hiermut_6 16  0.58  0.58  0.48   0.40  4.1 2.0
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## t6_hiermut_1 0.06 0.19 0.06 0.25 0.12 0.25 0.06 0.95
## t6_hiermut_2 0.12 0.25 0.00 0.25 0.06 0.25 0.06 0.95
## t6_hiermut_3 0.12 0.06 0.00 0.19 0.25 0.19 0.19 0.95
## t6_hiermut_4 0.12 0.06 0.12 0.19 0.31 0.12 0.06 0.95
## t6_hiermut_5 0.06 0.31 0.06 0.19 0.19 0.19 0.00 0.95
## t6_hiermut_6 0.06 0.19 0.25 0.12 0.00 0.25 0.12 0.95
with(multi_team_clean, psych::alpha(data.frame(cbind(t6_futvoice_1, t6_futvoice_2, t6_futvoice_3))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t6_futvoice_1, t6_futvoice_2, 
##     t6_futvoice_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##        0.9       0.9    0.89      0.75 8.9 0.0096  3.5 1.9     0.66
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.88   0.9  0.92
## Duhachek  0.88   0.9  0.92
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## t6_futvoice_1      0.78      0.79    0.65      0.65  3.7   0.0228    NA  0.65
## t6_futvoice_2      0.79      0.80    0.66      0.66  3.9   0.0219    NA  0.66
## t6_futvoice_3      0.96      0.96    0.93      0.93 27.5   0.0037    NA  0.93
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean  sd
## t6_futvoice_1 16  0.95  0.95  0.95   0.88  3.6 2.1
## t6_futvoice_2 16  0.95  0.94  0.95   0.88  3.6 2.1
## t6_futvoice_3 16  0.83  0.84  0.68   0.67  3.4 1.9
## 
## Non missing response frequency for each item
##                  1    2    3    4    5    6    7 miss
## t6_futvoice_1 0.25 0.12 0.06 0.19 0.12 0.19 0.06 0.95
## t6_futvoice_2 0.25 0.06 0.19 0.25 0.00 0.12 0.12 0.95
## t6_futvoice_3 0.25 0.12 0.12 0.19 0.12 0.19 0.00 0.95
with(multi_team_clean, psych::alpha(data.frame(cbind(t6_conf_1, t6_conf_2, t6_conf_3))))
## Warning in psych::alpha(data.frame(cbind(t6_conf_1, t6_conf_2, t6_conf_3))): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( t6_conf_3 ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t6_conf_1, t6_conf_2, t6_conf_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N   ase mean  sd median_r
##       0.42      0.47    0.55      0.23 0.89 0.057  4.3 1.3        0
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.31  0.42  0.52
## Duhachek  0.31  0.42  0.53
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r    S/N alpha se var.r  med.r
## t6_conf_1     0.000     0.000   0.000     0.000  0.000    0.103    NA  0.000
## t6_conf_2    -0.081    -0.081  -0.039    -0.039 -0.075    0.115    NA -0.039
## t6_conf_3     0.827     0.840   0.723     0.723  5.231    0.018    NA  0.723
## 
##  Item statistics 
##            n raw.r std.r  r.cor r.drop mean  sd
## t6_conf_1 16  0.79  0.81  0.777  0.408  4.4 2.0
## t6_conf_2 16  0.78  0.82  0.802  0.511  4.2 1.6
## t6_conf_3 16  0.52  0.46 -0.023 -0.023  4.2 2.1
## 
## Non missing response frequency for each item
##              1    2    3    4    5    6    7 miss
## t6_conf_1 0.19 0.00 0.12 0.12 0.12 0.38 0.06 0.95
## t6_conf_2 0.06 0.12 0.12 0.12 0.31 0.25 0.00 0.95
## t6_conf_3 0.12 0.06 0.25 0.12 0.12 0.06 0.25 0.95
with(multi_team_clean, psych::alpha(data.frame(cbind(t6_voice_1, t6_voice_2, t6_voice_3))))
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(cbind(t6_voice_1, t6_voice_2, t6_voice_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.76      0.75    0.81      0.51 3.1 0.023  4.8 1.3     0.47
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.71  0.76   0.8
## Duhachek  0.71  0.76   0.8
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r med.r
## t6_voice_1      0.64      0.64    0.47      0.47  1.79   0.0382    NA  0.47
## t6_voice_2      0.91      0.91    0.84      0.84 10.18   0.0097    NA  0.84
## t6_voice_3      0.35      0.35    0.21      0.21  0.54   0.0695    NA  0.21
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean  sd
## t6_voice_1 16  0.83  0.83  0.81   0.62  4.9 1.5
## t6_voice_2 16  0.69  0.69  0.46   0.36  4.9 1.6
## t6_voice_3 16  0.94  0.94  0.95   0.84  4.6 1.7
## 
## Non missing response frequency for each item
##               1    2    3    4    5    6    7 miss
## t6_voice_1 0.06 0.00 0.06 0.25 0.25 0.25 0.12 0.95
## t6_voice_2 0.00 0.06 0.19 0.12 0.19 0.25 0.19 0.95
## t6_voice_3 0.06 0.00 0.19 0.31 0.12 0.12 0.19 0.95

Analyses

library(lmerTest)
## Loading required package: lme4
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(lme4)
library(multilevelTools)
library(extraoperators)
## Warning: package 'extraoperators' was built under R version 4.3.1
library(JWileymisc)
## Warning: package 'JWileymisc' was built under R version 4.3.1

Linear Models

summary(lmer(futvoice~hiermut+(1+pid|team), data = multi_team_clean_wide))
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: futvoice ~ hiermut + (1 + pid | team)
##    Data: multi_team_clean_wide
## 
## REML criterion at convergence: 4090.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.6333 -0.7453 -0.2272  0.6553  2.9859 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. Corr 
##  team     (Intercept) 4.711e-02 0.217044      
##           pid         2.007e-06 0.001417 -1.00
##  Residual             2.946e+00 1.716404      
## Number of obs: 1041, groups:  team, 6
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    4.05177    0.13973  916.69071   29.00   <2e-16 ***
## hiermut       -0.33423    0.03256 1033.68458  -10.27   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##         (Intr)
## hiermut -0.922
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
summary(lmer(conf~hiermut+(1+pid|team), data = multi_team_clean_wide))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model failed to converge with max|grad| = 14.4157 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: conf ~ hiermut + (1 + pid | team)
##    Data: multi_team_clean_wide
## 
## REML criterion at convergence: 3524.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.01652 -0.66679  0.00745  0.71810  2.52018 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. Corr 
##  team     (Intercept) 1.471e-01 0.383507      
##           pid         1.177e-06 0.001085 -0.98
##  Residual             1.702e+00 1.304539      
## Number of obs: 1041, groups:  team, 6
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 3.508e+00  1.248e-01 7.999e+00   28.10 2.78e-09 ***
## hiermut     2.984e-01  2.479e-02 1.035e+03   12.04  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##         (Intr)
## hiermut -0.798
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 14.4157 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
summary(lmer(voice~hiermut+(1+pid|team), data = multi_team_clean_wide))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model failed to converge with max|grad| = 1.00914 (tol = 0.002, component 1)

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: voice ~ hiermut + (1 + pid | team)
##    Data: multi_team_clean_wide
## 
## REML criterion at convergence: 3753.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.09542 -0.61864  0.09702  0.74069  2.12222 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.  Corr 
##  team     (Intercept) 1.206e-02 0.1097991      
##           pid         4.040e-07 0.0006356 -0.33
##  Residual             2.129e+00 1.4590949      
## Number of obs: 1041, groups:  team, 6
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 3.859e+00  1.322e-01 8.099e+00   29.20  1.7e-09 ***
## hiermut     2.815e-01  2.768e-02 1.033e+03   10.17  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##         (Intr)
## hiermut -0.823
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 1.00914 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?

With Exploratory measures

summary(lmer(futvoice~hiermut+status+gender+age+race+(1+pid|team), data = multi_team_clean_wide))
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -9.4e+00
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: futvoice ~ hiermut + status + gender + age + race + (1 + pid |      team)
##    Data: multi_team_clean_wide
## 
## REML criterion at convergence: 3898.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3385 -0.6693 -0.1644  0.5286  3.7355 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. Corr 
##  team     (Intercept) 2.197e-01 0.468726      
##           pid         6.133e-06 0.002477 -1.00
##  Residual             2.449e+00 1.565013      
## Number of obs: 1041, groups:  team, 6
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)  5.293e+00  2.831e-01  1.020e+03  18.697  < 2e-16 ***
## hiermut     -1.432e-01  3.281e-02  1.022e+03  -4.364  1.4e-05 ***
## status      -4.560e-01  3.202e-02  1.021e+03 -14.242  < 2e-16 ***
## gender      -9.335e-02  9.719e-02  1.022e+03  -0.961   0.3370    
## age          4.685e-03  4.613e-03  1.022e+03   1.016   0.3100    
## race1,2      8.015e-02  3.520e-01  1.021e+03   0.228   0.8199    
## race1,3     -5.175e-01  6.450e-01  1.021e+03  -0.802   0.4226    
## race1,3,7    6.711e-01  9.125e-01  1.022e+03   0.735   0.4622    
## race1,4     -6.915e-01  6.470e-01  1.021e+03  -1.069   0.2854    
## race1,4,7    1.199e+00  6.444e-01  1.021e+03   1.861   0.0630 .  
## race1,5     -8.082e-01  9.129e-01  1.021e+03  -0.885   0.3762    
## race1,7      1.001e+00  9.276e-01  1.023e+03   1.079   0.2806    
## race2       -7.792e-02  2.039e-01  1.019e+03  -0.382   0.7024    
## race2,7      7.289e-01  9.101e-01  1.021e+03   0.801   0.4234    
## race3        1.662e-02  1.709e-01  1.023e+03   0.097   0.9226    
## race4        2.009e-01  1.533e-01  1.021e+03   1.311   0.1902    
## race5        1.295e+00  6.456e-01  1.022e+03   2.006   0.0451 *  
## race7        6.102e-01  3.759e-01  1.022e+03   1.623   0.1048    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 18 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
summary(lmer(conf~hiermut+status+gender+age+race+(1+pid|team), data = multi_team_clean_wide))
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: conf ~ hiermut + status + gender + age + race + (1 + pid | team)
##    Data: multi_team_clean_wide
## 
## REML criterion at convergence: 2883
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8755 -0.6466  0.0630  0.6833  3.4039 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.  Corr 
##  team     (Intercept) 1.662e-02 0.1289304      
##           pid         1.993e-07 0.0004465 -1.00
##  Residual             9.125e-01 0.9552306      
## Number of obs: 1041, groups:  team, 6
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)  1.909e+00  1.734e-01  7.200e+02  11.014   <2e-16 ***
## hiermut      5.661e-02  1.998e-02  1.019e+03   2.833   0.0047 ** 
## status       5.794e-01  1.954e-02  1.012e+03  29.653   <2e-16 ***
## gender       1.093e-01  5.927e-02  1.022e+03   1.844   0.0655 .  
## age         -3.449e-03  2.810e-03  1.021e+03  -1.228   0.2199    
## race1,2      9.533e-03  2.146e-01  1.023e+03   0.044   0.9646    
## race1,3      6.508e-02  3.930e-01  1.014e+03   0.166   0.8685    
## race1,3,7   -5.486e-01  5.563e-01  1.021e+03  -0.986   0.3243    
## race1,4      1.545e-01  3.949e-01  1.021e+03   0.391   0.6957    
## race1,4,7    2.867e-01  3.933e-01  1.021e+03   0.729   0.4662    
## race1,5      8.830e-01  5.571e-01  1.022e+03   1.585   0.1133    
## race1,7     -8.173e-01  5.650e-01  1.016e+03  -1.446   0.1484    
## race2        9.063e-02  1.238e-01  9.831e+02   0.732   0.4642    
## race2,7     -4.121e-01  5.555e-01  1.021e+03  -0.742   0.4584    
## race3       -8.900e-04  1.042e-01  1.021e+03  -0.009   0.9932    
## race4       -5.629e-02  9.354e-02  1.022e+03  -0.602   0.5474    
## race5        5.749e-02  3.940e-01  1.021e+03   0.146   0.8840    
## race7        1.638e-01  2.294e-01  1.022e+03   0.714   0.4752    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 18 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
summary(lmer(voice~hiermut+status+gender+age+race+(pid|team), data = multi_team_clean_wide))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model failed to converge with max|grad| = 7.71557 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: voice ~ hiermut + status + gender + age + race + (pid | team)
##    Data: multi_team_clean_wide
## 
## REML criterion at convergence: 3301.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6970 -0.5422  0.0482  0.6208  3.7286 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.  Corr 
##  team     (Intercept) 1.184e-01 0.3440796      
##           pid         6.503e-07 0.0008064 -0.96
##  Residual             1.366e+00 1.1688233      
## Number of obs: 1041, groups:  team, 6
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)  2.147e+00  2.227e-01  8.079e+01   9.641 4.42e-15 ***
## hiermut      6.458e-02  2.447e-02  1.018e+03   2.640 0.008430 ** 
## status       5.268e-01  2.399e-02  1.022e+03  21.960  < 2e-16 ***
## gender       1.158e-02  7.255e-02  1.004e+03   0.160 0.873262    
## age          6.475e-03  3.442e-03  1.019e+03   1.881 0.060224 .  
## race1,2      2.299e-01  2.627e-01  1.012e+03   0.875 0.381719    
## race1,3      1.788e+00  4.813e-01  1.015e+03   3.716 0.000214 ***
## race1,3,7   -1.726e+00  6.809e-01  1.015e+03  -2.534 0.011417 *  
## race1,4      1.097e+00  4.833e-01  9.960e+02   2.271 0.023369 *  
## race1,4,7   -3.189e-01  4.814e-01  9.949e+02  -0.662 0.507882    
## race1,5     -3.953e-02  6.818e-01  1.001e+03  -0.058 0.953778    
## race1,7      1.178e+00  6.918e-01  1.016e+03   1.703 0.088800 .  
## race2       -2.133e-01  1.516e-01  9.724e+02  -1.407 0.159767    
## race2,7     -7.229e-01  6.798e-01  9.945e+02  -1.063 0.287847    
## race3       -2.227e-01  1.276e-01  1.014e+03  -1.745 0.081300 .  
## race4       -2.376e-01  1.145e-01  1.001e+03  -2.075 0.038253 *  
## race5        2.129e-01  4.822e-01  9.988e+02   0.442 0.658887    
## race7       -2.769e-01  2.807e-01  1.001e+03  -0.987 0.324079    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 18 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 7.71557 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?

With interactions

Status

summary(lmer(futvoice~hiermut*status+gender+age+race+(1+pid|team), data = multi_team_clean_wide)) # Significant
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -3.3e+00
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: futvoice ~ hiermut * status + gender + age + race + (1 + pid |      team)
##    Data: multi_team_clean_wide
## 
## REML criterion at convergence: 3888.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7496 -0.6370 -0.2211  0.5528  3.5551 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. Corr 
##  team     (Intercept) 2.123e-01 0.460779      
##           pid         6.132e-06 0.002476 -1.00
##  Residual             2.413e+00 1.553330      
## Number of obs: 1041, groups:  team, 6
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     6.397e+00  3.920e-01  1.020e+03  16.320  < 2e-16 ***
## hiermut        -4.648e-01  8.593e-02  1.021e+03  -5.409 7.88e-08 ***
## status         -6.991e-01  6.800e-02  1.022e+03 -10.281  < 2e-16 ***
## gender         -7.791e-02  9.654e-02  1.021e+03  -0.807   0.4199    
## age             3.649e-03  4.585e-03  1.021e+03   0.796   0.4264    
## race1,2         6.159e-02  3.494e-01  1.020e+03   0.176   0.8601    
## race1,3        -6.559e-01  6.411e-01  1.020e+03  -1.023   0.3065    
## race1,3,7       5.324e-01  9.063e-01  1.021e+03   0.587   0.5571    
## race1,4        -6.501e-01  6.422e-01  1.021e+03  -1.012   0.3117    
## race1,4,7       1.259e+00  6.398e-01  1.021e+03   1.968   0.0493 *  
## race1,5        -8.289e-01  9.061e-01  1.020e+03  -0.915   0.3605    
## race1,7         1.144e+00  9.214e-01  1.022e+03   1.242   0.2145    
## race2          -5.851e-02  2.024e-01  1.019e+03  -0.289   0.7726    
## race2,7         6.582e-01  9.035e-01  1.021e+03   0.729   0.4665    
## race3          -7.512e-03  1.698e-01  1.022e+03  -0.044   0.9647    
## race4           2.271e-01  1.522e-01  1.020e+03   1.492   0.1361    
## race5           1.343e+00  6.409e-01  1.021e+03   2.095   0.0364 *  
## race7           5.088e-01  3.739e-01  1.021e+03   1.361   0.1739    
## hiermut:status  6.750e-02  1.669e-02  1.022e+03   4.044 5.65e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 19 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
summary(lmer(conf~hiermut*status+gender+age+race+(1+pid|team), data = multi_team_clean_wide))
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -1.7e+01
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: conf ~ hiermut * status + gender + age + race + (1 + pid | team)
##    Data: multi_team_clean_wide
## 
## REML criterion at convergence: 2888.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9019 -0.6355  0.0674  0.6935  3.4552 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.  Corr 
##  team     (Intercept) 7.753e-02 0.2784408      
##           pid         8.462e-07 0.0009199 -1.00
##  Residual             9.079e-01 0.9528194      
## Number of obs: 1041, groups:  team, 6
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     1.534e+00  2.413e-01  7.683e+02   6.355 3.58e-10 ***
## hiermut         1.641e-01  5.269e-02  1.021e+03   3.114   0.0019 ** 
## status          6.602e-01  4.172e-02  1.021e+03  15.825  < 2e-16 ***
## gender          1.045e-01  5.919e-02  1.021e+03   1.766   0.0777 .  
## age            -3.156e-03  2.811e-03  1.020e+03  -1.123   0.2618    
## race1,2         1.556e-02  2.143e-01  1.021e+03   0.073   0.9421    
## race1,3         1.022e-01  3.931e-01  1.019e+03   0.260   0.7949    
## race1,3,7      -4.947e-01  5.556e-01  1.021e+03  -0.890   0.3735    
## race1,4         1.386e-01  3.940e-01  1.022e+03   0.352   0.7251    
## race1,4,7       2.652e-01  3.925e-01  1.022e+03   0.676   0.4994    
## race1,5         8.845e-01  5.558e-01  1.022e+03   1.591   0.1118    
## race1,7        -8.554e-01  5.646e-01  1.018e+03  -1.515   0.1301    
## race2           8.085e-02  1.237e-01  1.003e+03   0.653   0.5137    
## race2,7        -3.908e-01  5.542e-01  1.022e+03  -0.705   0.4809    
## race3           8.631e-03  1.041e-01  1.022e+03   0.083   0.9339    
## race4          -6.516e-02  9.341e-02  1.022e+03  -0.698   0.4856    
## race5           4.325e-02  3.931e-01  1.022e+03   0.110   0.9124    
## race7           1.976e-01  2.293e-01  1.022e+03   0.861   0.3892    
## hiermut:status -2.242e-02  1.023e-02  1.022e+03  -2.191   0.0287 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 19 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
summary(lmer(voice~hiermut*status+gender+age+race+(pid|team), data = multi_team_clean_wide))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model failed to converge with max|grad| = 6.59812 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: voice ~ hiermut * status + gender + age + race + (pid | team)
##    Data: multi_team_clean_wide
## 
## REML criterion at convergence: 3308.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6940 -0.5406  0.0480  0.6227  3.7259 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.  Corr 
##  team     (Intercept) 1.177e-01 0.3431067      
##           pid         7.456e-07 0.0008635 -0.96
##  Residual             1.367e+00 1.1693658      
## Number of obs: 1041, groups:  team, 6
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     2.132e+00  3.022e-01  2.799e+02   7.055 1.36e-11 ***
## hiermut         6.753e-02  6.467e-02  1.014e+03   1.044 0.296636    
## status          5.289e-01  5.127e-02  1.020e+03  10.317  < 2e-16 ***
## gender          1.167e-02  7.264e-02  1.002e+03   0.161 0.872425    
## age             6.494e-03  3.449e-03  1.019e+03   1.883 0.060036 .  
## race1,2         2.299e-01  2.629e-01  1.011e+03   0.874 0.382072    
## race1,3         1.790e+00  4.823e-01  1.015e+03   3.712 0.000217 ***
## race1,3,7      -1.726e+00  6.818e-01  1.012e+03  -2.532 0.011503 *  
## race1,4         1.097e+00  4.835e-01  9.942e+02   2.268 0.023525 *  
## race1,4,7      -3.199e-01  4.817e-01  9.932e+02  -0.664 0.506823    
## race1,5        -3.942e-02  6.821e-01  9.991e+02  -0.058 0.953927    
## race1,7         1.175e+00  6.927e-01  1.016e+03   1.696 0.090139 .  
## race2          -2.123e-01  1.518e-01  9.859e+02  -1.399 0.162251    
## race2,7        -7.228e-01  6.802e-01  9.929e+02  -1.063 0.288233    
## race3          -2.232e-01  1.278e-01  1.011e+03  -1.747 0.080962 .  
## race4          -2.376e-01  1.146e-01  9.989e+02  -2.073 0.038436 *  
## race5           2.119e-01  4.825e-01  9.968e+02   0.439 0.660639    
## race7          -2.763e-01  2.815e-01  9.994e+02  -0.982 0.326470    
## hiermut:status -5.958e-04  1.256e-02  1.010e+03  -0.047 0.962184    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 19 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 6.59812 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
sjPlot::plot_model(lmer(futvoice~hiermut*status+gender+age+race+(1+pid|team), data = multi_team_clean_wide),
                   type = "int",
                   mdrt.values = "meansd")
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -3.3e+00

#### Gender

summary(lmer(futvoice~hiermut*gender+status+age+race+(1+pid|team), data = multi_team_clean_wide))
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -9.3e+00
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: futvoice ~ hiermut * gender + status + age + race + (1 + pid |      team)
##    Data: multi_team_clean_wide
## 
## REML criterion at convergence: 3902.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3457 -0.6681 -0.1627  0.5269  3.7407 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. Corr 
##  team     (Intercept) 2.106e-01 0.458941      
##           pid         5.981e-06 0.002446 -1.00
##  Residual             2.452e+00 1.565756      
## Number of obs: 1041, groups:  team, 6
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     5.357e+00  4.391e-01  1.022e+03  12.199   <2e-16 ***
## hiermut        -1.596e-01  9.274e-02  1.020e+03  -1.721   0.0855 .  
## gender         -1.377e-01  2.526e-01  1.021e+03  -0.545   0.5859    
## status         -4.560e-01  3.203e-02  1.020e+03 -14.235   <2e-16 ***
## age             4.726e-03  4.621e-03  1.021e+03   1.023   0.3066    
## race1,2         7.661e-02  3.525e-01  1.020e+03   0.217   0.8280    
## race1,3        -5.209e-01  6.456e-01  1.020e+03  -0.807   0.4200    
## race1,3,7       6.774e-01  9.134e-01  1.021e+03   0.742   0.4585    
## race1,4        -6.909e-01  6.473e-01  1.020e+03  -1.067   0.2860    
## race1,4,7       1.196e+00  6.450e-01  1.021e+03   1.855   0.0639 .  
## race1,5        -8.029e-01  9.137e-01  1.020e+03  -0.879   0.3797    
## race1,7         1.026e+00  9.366e-01  1.022e+03   1.095   0.2736    
## race2          -8.046e-02  2.044e-01  1.019e+03  -0.394   0.6939    
## race2,7         7.264e-01  9.107e-01  1.021e+03   0.798   0.4252    
## race3           1.499e-02  1.713e-01  1.022e+03   0.087   0.9303    
## race4           2.011e-01  1.533e-01  1.020e+03   1.312   0.1899    
## race5           1.291e+00  6.463e-01  1.021e+03   1.998   0.0459 *  
## race7           6.136e-01  3.765e-01  1.021e+03   1.630   0.1034    
## hiermut:gender  1.129e-02  5.951e-02  1.021e+03   0.190   0.8495    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 19 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
summary(lmer(conf~hiermut*gender+status+age+race+(1+pid|team), data = multi_team_clean_wide))
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -1.7e+01
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: conf ~ hiermut * gender + status + age + race + (1 + pid | team)
##    Data: multi_team_clean_wide
## 
## REML criterion at convergence: 2890.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8779 -0.6308  0.0670  0.6845  3.4346 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.  Corr 
##  team     (Intercept) 7.563e-02 0.2750003      
##           pid         9.336e-07 0.0009662 -1.00
##  Residual             9.119e-01 0.9549205      
## Number of obs: 1041, groups:  team, 6
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     1.778e+00  2.683e-01  9.381e+02   6.627 5.77e-11 ***
## hiermut         8.955e-02  5.655e-02  1.021e+03   1.584    0.114    
## gender          1.965e-01  1.540e-01  1.022e+03   1.275    0.202    
## status          5.794e-01  1.956e-02  1.014e+03  29.614  < 2e-16 ***
## age            -3.593e-03  2.817e-03  1.021e+03  -1.276    0.202    
## race1,2         1.447e-02  2.150e-01  1.021e+03   0.067    0.946    
## race1,3         6.348e-02  3.936e-01  1.021e+03   0.161    0.872    
## race1,3,7      -5.525e-01  5.568e-01  1.021e+03  -0.992    0.321    
## race1,4         1.516e-01  3.948e-01  1.022e+03   0.384    0.701    
## race1,4,7       2.917e-01  3.934e-01  1.022e+03   0.742    0.459    
## race1,5         8.682e-01  5.573e-01  1.022e+03   1.558    0.120    
## race1,7        -8.550e-01  5.707e-01  1.019e+03  -1.498    0.134    
## race2           9.265e-02  1.243e-01  1.004e+03   0.746    0.456    
## race2,7        -4.088e-01  5.554e-01  1.022e+03  -0.736    0.462    
## race3           3.889e-03  1.044e-01  1.022e+03   0.037    0.970    
## race4          -5.638e-02  9.353e-02  1.022e+03  -0.603    0.547    
## race5           6.663e-02  3.941e-01  1.022e+03   0.169    0.866    
## race7           1.578e-01  2.296e-01  1.022e+03   0.688    0.492    
## hiermut:gender -2.216e-02  3.629e-02  1.022e+03  -0.611    0.542    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 19 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
summary(lmer(voice~hiermut*gender+status+gender+age+race+(pid|team), data = multi_team_clean_wide))
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -1.0e+07
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: voice ~ hiermut * gender + status + gender + age + race + (pid |      team)
##    Data: multi_team_clean_wide
## 
## REML criterion at convergence: 3306.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6893 -0.5390  0.0480  0.6209  3.7391 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. Corr 
##  team     (Intercept) 1.185e-01 0.344282      
##           pid         5.227e-07 0.000723 -0.99
##  Residual             1.368e+00 1.169721      
## Number of obs: 1041, groups:  team, 6
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     2.114e+00  3.340e-01  3.219e+02   6.330 8.23e-10 ***
## hiermut         7.362e-02  6.926e-02  1.014e+03   1.063 0.288017    
## gender          3.664e-02  1.887e-01  1.014e+03   0.194 0.846063    
## status          5.272e-01  2.400e-02  1.022e+03  21.962  < 2e-16 ***
## age             6.434e-03  3.449e-03  1.016e+03   1.865 0.062410 .  
## race1,2         2.319e-01  2.632e-01  1.017e+03   0.881 0.378528    
## race1,3         1.790e+00  4.817e-01  1.009e+03   3.715 0.000214 ***
## race1,3,7      -1.727e+00  6.816e-01  1.016e+03  -2.533 0.011455 *  
## race1,4         1.097e+00  4.836e-01  1.012e+03   2.269 0.023462 *  
## race1,4,7      -3.162e-01  4.819e-01  1.012e+03  -0.656 0.511854    
## race1,5        -4.237e-02  6.826e-01  1.014e+03  -0.062 0.950515    
## race1,7         1.166e+00  6.984e-01  1.011e+03   1.670 0.095232 .  
## race2          -2.130e-01  1.519e-01  9.894e+02  -1.402 0.161108    
## race2,7        -7.211e-01  6.804e-01  1.011e+03  -1.060 0.289474    
## race3          -2.207e-01  1.279e-01  1.017e+03  -1.726 0.084641 .  
## race4          -2.377e-01  1.146e-01  1.014e+03  -2.074 0.038316 *  
## race5           2.158e-01  4.828e-01  1.013e+03   0.447 0.655047    
## race7          -2.786e-01  2.812e-01  1.013e+03  -0.991 0.322012    
## hiermut:gender -6.442e-03  4.445e-02  1.014e+03  -0.145 0.884803    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 19 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')