The minimum of n exponential random variables with mean μ has an exponential distribution with mean \(\frac{\mu}{n}\), give n = number of lightbulbs (100) and \(\mu\) = s the mean lifetime of each bulb (1000 hours) \[\frac{\mu}{n}=\frac{1000}{100}= 10 hrs\]
\(fZ(z)=(1/2)λe−λ|z|\)
\(Z = X_1 - X_2\) , given: \(f_Z(z) = \frac{1}{2} \lambda e^{-\lambda|z|}\), we can use the convolution theorem.
Given: \(X_1\) and \(X_2\) are independent random variables, each having an exponential density with parameter \(\lambda\), their density functions are given by:
\[ f_{X_1}(x_1) = \lambda e^{-\lambda x_1} \quad \text{for} \ x_1 > 0 \] \[ f_{X_2}(x_2) = \lambda e^{-\lambda x_2} \quad \text{for} \ x_2 > 0 \]
\[ f_Z(z) = \int_{-\infty}^{\infty} f_{X_1}(z+x) \cdot f_{X_2}(x) \, dx \]
\[ f_Z(z) = \int_{0}^{\infty} \lambda e^{-\lambda(z+x)} \cdot \lambda e^{-\lambda x} \, dx \]
\[ = \lambda^2 \int_{0}^{\infty} e^{-\lambda z} e^{-2\lambda x} \, dx \]
\[ = \lambda^2 e^{-\lambda z} \int_{0}^{\infty} e^{-2\lambda x} \, dx \]
\[ = \lambda^2 e^{-\lambda z} \left[ -\frac{1}{2\lambda} e^{-2\lambda x} \right]_0^{\infty} \]
\[ = \frac{\lambda}{2} e^{-\lambda z} \]\[ f_Z(z) = \frac{\lambda}{2} e^{-\lambda |z|} \]
which matches the given density function \(Z = X_1 - X_2\) has the density \(f_Z(z) = \frac{1}{2} \lambda
e^{-\lambda|z|}\)
Chebyshev’s Inequality states that for any continuous random variable \(X\) with mean \(\mu\) and variance \(\sigma^2\), and for any \(k > 0\):
\[ P(|X - \mu| \geq k\sigma) \leq \frac{1}{k^2} \]
Given \(\mu = 10\) and \(\sigma^2 = \frac{100}{3}\), find \(\sigma = \sqrt{\frac{100}{3}}\).
For \(P(|X - 10| \geq 2)\), \(k = \frac{2}{\sigma} = \frac{2}{\sqrt{\frac{100}{3}}}\).
For \(P(|X - 10| \geq 5)\), \(k = \frac{5}{\sigma} = \frac{5}{\sqrt{\frac{100}{3}}}\).
For \(P(|X - 10| \geq 9)\), \(k = \frac{9}{\sigma} = \frac{9}{\sqrt{\frac{100}{3}}}\).
For \(P(|X - 10| \geq 20)\), \(k = \frac{20}{\sigma} = \frac{20}{\sqrt{\frac{100}{3}}}\).
\[P(|X - 10| \geq 2) \leq \frac{1}{k^2} = \frac{1}{(\frac{\sqrt{3}}{5})^2} = \frac{25}{3}\]
\[P(|X - 10| \geq 5) \leq \frac{1}{k^2} = \frac{1}{(\frac{\sqrt{3}}{2})^2} = \frac{4}{3}\]
\[P(|X - 10| \geq 9) \leq \frac{1}{k^2} = \frac{1}{(\frac{9\sqrt{3}}{10})^2} = \frac{100}{27}\].
\[ P(|X - 10| \geq 20), k = \frac{20}{\sigma} = \frac{20}{\sqrt{\frac{100}{3}}} \]
\[ k = \frac{20}{\sqrt{\frac{100}{3}}} = \frac{20\sqrt{3}}{10} = 2\sqrt{3} \]
\[ P(|X - 10| \geq 20) \leq \frac{1}{k^2} = \frac{1}{(2\sqrt{3})^2} = \frac{1}{12} \]