11: The price of one share of stock in the Pilsdorff Beer Company
(see Exercise 8.2.12) is given by Yn on the nth day of the year. Finn
observes that the differences Xn = Yn+1 − Yn appear to be independent
random variables with a common distribution having mean µ = 0 and
variance σ
2 = 1/4. If Y1 = 100, estimate the probability that Y365 is ### (a) ≥
100. ### (b) ≥ 110. ### (c) ≥ 120.
mu <- 0
variance <- 1/4
sigma <- sqrt(variance)
Y1 <- 100
estimate_probability <- function(Y, threshold) {
z <- (threshold - Y) / sigma
probability <- 1 - pnorm(z, mean = mu, sd = sigma)
return(probability)
}
probability_a <- estimate_probability(Y1, 100)
cat("Probability that Y365 is ≥ 100:", probability_a, "\n")
## Probability that Y365 is ≥ 100: 0.5
(b) Estimate probability that Y365 is ≥ 110
probability_b <- estimate_probability(Y1, 110)
cat("Probability that Y365 is ≥ 110:", probability_b, "\n")
## Probability that Y365 is ≥ 110: 0
(c) Estimate probability that Y365 is ≥ 120
probability_c <- estimate_probability(Y1, 120)
cat("Probability that Y365 is ≥ 120:", probability_c, "\n")
## Probability that Y365 is ≥ 120: 0
2: . Calculate the expected value and variance of the binomial
distribution using the moment generating function.
MGF_binomial <- function(n, p, t) {
(1 - p + p * exp(t))^n
}
expected_value_binomial <- function(n, p) {
d_MGF <- D(expression((1 - p + p * exp(t))^n), "t")
eval(d_MGF, list(t = 0))
}
variance_binomial <- function(n, p) {
d2_MGF <- D(D(expression((1 - p + p * exp(t))^n), "t"), "t")
d_MGF <- D(expression((1 - p + p * exp(t))^n), "t")
eval(d2_MGF, list(t = 0)) - eval(d_MGF, list(t = 0))^2
}
n <- 10
p <- 0.5
mean_binomial <- expected_value_binomial(n, p)
variance_binomial <- variance_binomial(n, p)
cat("Expected value (mean) of the binomial distribution using MGF:", mean_binomial, "\n")
## Expected value (mean) of the binomial distribution using MGF: 5
cat("Variance of the binomial distribution using MGF:", variance_binomial, "\n")
## Variance of the binomial distribution using MGF: 2.5
3: . Calculate the expected value and variance of the exponential
distribution using the moment generating function.
lambda <- 2
MGF_exponential <- function(t, lambda) {
lambda / (lambda - t)
}
expected_value_exponential <- function(lambda) {
MGF_derivative <- -lambda / (lambda - 0)^2
MGF_derivative
}
variance_exponential <- function(lambda) {
MGF_second_derivative <- 2 * lambda^2 / (lambda - 0)^3
MGF_second_derivative
}
mean_exponential <- expected_value_exponential(lambda)
variance_exponential <- variance_exponential(lambda)
cat("Expected value (mean) of the exponential distribution using MGF:", mean_exponential, "\n")
## Expected value (mean) of the exponential distribution using MGF: -0.5
cat("Variance of the exponential distribution using MGF:", variance_exponential, "\n")
## Variance of the exponential distribution using MGF: 1