1000 hours. What is the expected time for the first of these bulbs to burn out? (See Exercise 10.)
bulb <- 100
lifetime <- 1000
lifetime <- rexp(bulb, rate = 1/lifetime)
expected_time <- mean(lifetime)
expected_time
## [1] 1134.738
exponential density with parameter λ. Show that Z = X1 − X2 has density \[ f_Z(z) = \frac{1}{2}\lambda e^{-\lambda|z|} \]
Exponential distributions describe the time between events in a Poisson process, with PDF: \(f(x) = \lambda e^{-\lambda x}\). The CDF of an exponential distribution is: \(F(x) = 1 - e^{-\lambda x}\).
Let \(Z = X_1 - X_2\), with \(X_1\) and \(X_2\) being independent exponential random variables. Using convolution, the PDF of \(Z\) is derived as: \[ f_Z(z) = \frac{\lambda}{2} e^{-\lambda |z|} \] This indicates that \(Z\) follows a Laplace distribution with mean 0 and scale parameter \(\frac{1}{\lambda}\).
lambda <- 0.5
f_Z <- function(z) {
(1/2) * lambda * exp(-lambda * abs(z))
}
z_values <- seq(-10, 10, length.out = 1000)
density_values <- f_Z(z_values)
plot(z_values, density_values, type = "l",
xlab = "z", ylab = "Density",
main = expression(f[z](z) == frac(1,2)*lambda*exp(-lambda*abs(z))))
mu <- 10
variance <- 100/3
sigma <- sqrt(variance)
k_values <- c(1, 2, 3)
chebyshev_upper_bound <- function(k, sigma) {
1 / (k^2)
}
upper_bounds <- sapply(k_values, chebyshev_upper_bound, sigma=sigma)
for (i in seq_along(k_values)) {
cat("Upper bound for P(|X - µ| ≥", k_values[i], "σ):", upper_bounds[i], "\n")
}
## Upper bound for P(|X - µ| ≥ 1 σ): 1
## Upper bound for P(|X - µ| ≥ 2 σ): 0.25
## Upper bound for P(|X - µ| ≥ 3 σ): 0.1111111