library(readxl)
library(parameters)
library (apa)
library (haven)
library (ggplot2)
library (ggpubr)
library (gridExtra)
library (apaTables)
library (reshape)
library (GPArotation)
library (mvtnorm)
library (psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:GPArotation':
## 
##     equamax, varimin
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library (psychometric)
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:reshape':
## 
##     rename
## The following object is masked from 'package:gridExtra':
## 
##     combine
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Loading required package: multilevel
## Loading required package: nlme
## 
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
## 
##     collapse
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
## Loading required package: purrr
## 
## Attaching package: 'psychometric'
## The following object is masked from 'package:psych':
## 
##     alpha
## The following object is masked from 'package:ggplot2':
## 
##     alpha
library (lavaan)
## This is lavaan 0.6-16
## lavaan is FREE software! Please report any bugs.
## 
## Attaching package: 'lavaan'
## The following object is masked from 'package:psych':
## 
##     cor2cov
library (nFactors)
## Loading required package: lattice
## 
## Attaching package: 'nFactors'
## The following object is masked from 'package:lattice':
## 
##     parallel
library (semPlot)
library (MVN)
library (semTools)
## 
## ###############################################################################
## This is semTools 0.5-6
## All users of R (or SEM) are invited to submit functions or ideas for functions.
## ###############################################################################
## 
## Attaching package: 'semTools'
## The following objects are masked from 'package:psych':
## 
##     reliability, skew
## The following object is masked from 'package:parameters':
## 
##     kurtosis
library(caret)
## 
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
## 
##     lift
## The following object is masked from 'package:parameters':
## 
##     compare_models
library(gtsummary)
## 
## Attaching package: 'gtsummary'
## The following object is masked from 'package:MASS':
## 
##     select
library(skimr)

Caraceríticas sociodemográficas

Base_de_datos_IA <- read_excel("Base de datos_IA.xlsx")
## New names:
## • `` -> `...58`
## • `` -> `...59`
Demográfico <- Base_de_datos_IA [ , -c(1:6)]
tbl_summary(Demográfico[ ,c(1,4)])
Characteristic N = 1341
¿Con qué género te identificas?
    Femenino 79 (59%)
    Masculino 47 (35%)
    No binario 6 (4.5%)
    Otros 2 (1.5%)
¿A qué máster estás vinculado?
    Dirección y Gestión de Centros Educativos 1 (0.7%)
    Educación Interdisciplinaria de las Artes 14 (10%)
    Entornos de Enseñanza y Aprendizaje con Tecnologías Digitales 31 (23%)
    Formación del Profesorado de Secundaria Obligatoria y Bachillerato, Formación Profesional y Enseñanza de Idiomas 87 (65%)
    Intervenciones Sociales y Educativas 1 (0.7%)
1 n (%)
tbl_summary(Demográfico[ ,4])
Characteristic N = 1341
¿A qué máster estás vinculado?
    Dirección y Gestión de Centros Educativos 1 (0.7%)
    Educación Interdisciplinaria de las Artes 14 (10%)
    Entornos de Enseñanza y Aprendizaje con Tecnologías Digitales 31 (23%)
    Formación del Profesorado de Secundaria Obligatoria y Bachillerato, Formación Profesional y Enseñanza de Idiomas 87 (65%)
    Intervenciones Sociales y Educativas 1 (0.7%)
1 n (%)
skim(Demográfico[ ,2])
Data summary
Name Demográfico[, 2]
Number of rows 134
Number of columns 1
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
¿Cuál es tu edad? 0 1 32.1 9.5 22 25 30 36.75 63 ▇▅▂▁▁

Alfabetización respecto a la Inteligencia Artificial

Base_de_datos_IA <- read_excel("Base de datos_IA.xlsx", 
    sheet = "AF")
ASI <- Base_de_datos_IA
dim(ASI)
## [1] 134  32
summary(ASI)
##       IM01            IM02            IM03            IM04          SE01      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.0   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:3.000   1st Qu.:1.000   1st Qu.:2.0   1st Qu.:3.000  
##  Median :3.000   Median :4.000   Median :2.000   Median :4.0   Median :4.000  
##  Mean   :2.843   Mean   :3.903   Mean   :2.381   Mean   :3.5   Mean   :3.701  
##  3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:3.000   3rd Qu.:5.0   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.0   Max.   :5.000  
##       SE02            SE03            SE04            CL01      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :3.597   Mean   :3.761   Mean   :3.403   Mean   :3.754  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       CL02            BI01            BI02            BI03            EN01     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.000   1st Qu.:1.00  
##  Median :4.000   Median :4.000   Median :4.000   Median :3.000   Median :2.00  
##  Mean   :3.522   Mean   :3.858   Mean   :3.664   Mean   :3.194   Mean   :2.53  
##  3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:3.75  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.00  
##       EN02            SI01            SI02            SI03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :2.000   Median :2.000   Median :2.000   Median :2.000  
##  Mean   :2.164   Mean   :2.351   Mean   :2.164   Mean   :2.269  
##  3rd Qu.:3.000   3rd Qu.:3.750   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##      AIE01           AIE02           AIE03       AIE04          AIE05      
##  Min.   :1.000   Min.   :2.000   Min.   :1   Min.   :1.00   Min.   :2.000  
##  1st Qu.:4.000   1st Qu.:4.250   1st Qu.:3   1st Qu.:4.00   1st Qu.:5.000  
##  Median :5.000   Median :5.000   Median :4   Median :5.00   Median :5.000  
##  Mean   :4.515   Mean   :4.634   Mean   :4   Mean   :4.53   Mean   :4.694  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5   3rd Qu.:5.00   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5   Max.   :5.00   Max.   :5.000  
##      AIE06           AIE07           AIE08            KU01      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:5.000   1st Qu.:4.000   1st Qu.:3.000  
##  Median :5.000   Median :5.000   Median :5.000   Median :4.000  
##  Mean   :4.537   Mean   :4.769   Mean   :4.299   Mean   :3.746  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       KU02            KU03            EC01           EC02           EC03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.00   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:1.000   1st Qu.:3.00   1st Qu.:1.00   1st Qu.:1.000  
##  Median :4.000   Median :2.000   Median :4.00   Median :2.00   Median :3.000  
##  Mean   :3.873   Mean   :2.627   Mean   :3.47   Mean   :2.53   Mean   :2.716  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:4.00   3rd Qu.:4.00   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.00   Max.   :5.00   Max.   :5.000
DT::datatable(ASI)
apply(ASI, 2 , mean)
##     IM01     IM02     IM03     IM04     SE01     SE02     SE03     SE04 
## 2.843284 3.902985 2.380597 3.500000 3.701493 3.597015 3.761194 3.402985 
##     CL01     CL02     BI01     BI02     BI03     EN01     EN02     SI01 
## 3.753731 3.522388 3.858209 3.664179 3.194030 2.529851 2.164179 2.350746 
##     SI02     SI03    AIE01    AIE02    AIE03    AIE04    AIE05    AIE06 
## 2.164179 2.268657 4.514925 4.634328 4.000000 4.529851 4.694030 4.537313 
##    AIE07    AIE08     KU01     KU02     KU03     EC01     EC02     EC03 
## 4.768657 4.298507 3.746269 3.873134 2.626866 3.470149 2.529851 2.716418
apply(ASI, 2 , var)
##      IM01      IM02      IM03      IM04      SE01      SE02      SE03      SE04 
## 1.8173606 1.5017955 1.3803726 2.0263158 1.3688699 1.4454046 1.1004377 1.4303670 
##      CL01      CL02      BI01      BI02      BI03      EN01      EN02      SI01 
## 1.2847604 1.3791943 1.7917742 1.3525418 1.9019190 1.8449669 1.8976546 1.9587588 
##      SI02      SI03     AIE01     AIE02     AIE03     AIE04     AIE05     AIE06 
## 1.7172035 1.8520929 0.6125575 0.5043766 1.1729323 0.7171473 0.3643250 0.6564920 
##     AIE07     AIE08      KU01      KU02      KU03      EC01      EC02      EC03 
## 0.4047245 0.9628549 1.1080687 1.2845360 1.7694984 1.4840646 2.0554932 1.8437886
alfa <- alpha(ASI) 
alfa
## [1] 0.9413436
KMO(ASI)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = ASI)
## Overall MSA =  0.89
## MSA for each item = 
##  IM01  IM02  IM03  IM04  SE01  SE02  SE03  SE04  CL01  CL02  BI01  BI02  BI03 
##  0.91  0.90  0.93  0.91  0.90  0.90  0.93  0.89  0.92  0.92  0.90  0.94  0.93 
##  EN01  EN02  SI01  SI02  SI03 AIE01 AIE02 AIE03 AIE04 AIE05 AIE06 AIE07 AIE08 
##  0.90  0.84  0.89  0.90  0.91  0.80  0.69  0.74  0.82  0.76  0.55  0.61  0.85 
##  KU01  KU02  KU03  EC01  EC02  EC03 
##  0.75  0.90  0.91  0.93  0.78  0.87
cortest.bartlett(ASI)
## R was not square, finding R from data
## $chisq
## [1] 2997.789
## 
## $p.value
## [1] 0
## 
## $df
## [1] 496
set.seed(123) 
training.samples <- ASI$IM01 %>% createDataPartition(p = 0.70, list = FALSE)
train.data <- ASI [training.samples, ] 
test.data <- ASI [-training.samples, ]

skim(train.data)
Data summary
Name train.data
Number of rows 96
Number of columns 32
_______________________
Column type frequency:
numeric 32
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
IM01 0 1 2.85 1.33 1 2.00 3.0 4 5 ▆▅▇▅▃
IM02 0 1 3.92 1.19 1 3.00 4.0 5 5 ▁▂▂▆▇
IM03 0 1 2.46 1.17 1 1.75 2.0 3 5 ▇▇▇▃▂
IM04 0 1 3.54 1.39 1 2.00 4.0 5 5 ▂▃▃▅▇
SE01 0 1 3.71 1.13 1 3.00 4.0 5 5 ▂▂▅▇▆
SE02 0 1 3.62 1.17 1 3.00 4.0 5 5 ▂▂▇▇▇
SE03 0 1 3.75 1.03 1 3.00 4.0 5 5 ▁▂▆▇▆
SE04 0 1 3.38 1.15 1 3.00 4.0 4 5 ▂▂▆▇▃
CL01 0 1 3.71 1.18 1 3.00 4.0 5 5 ▂▂▃▇▅
CL02 0 1 3.49 1.17 1 3.00 4.0 4 5 ▂▂▆▇▅
BI01 0 1 3.90 1.33 1 3.00 4.0 5 5 ▂▂▂▅▇
BI02 0 1 3.76 1.09 1 3.00 4.0 5 5 ▁▂▃▇▅
BI03 0 1 3.28 1.34 1 2.00 3.0 4 5 ▃▇▆▇▇
EN01 0 1 2.67 1.35 1 2.00 2.0 4 5 ▇▇▆▅▃
EN02 0 1 2.23 1.38 1 1.00 2.0 3 5 ▇▅▂▂▂
SI01 0 1 2.44 1.43 1 1.00 2.0 4 5 ▇▅▂▃▃
SI02 0 1 2.22 1.32 1 1.00 2.0 3 5 ▇▅▂▂▂
SI03 0 1 2.28 1.41 1 1.00 2.0 3 5 ▇▃▂▂▂
AIE01 0 1 4.49 0.81 1 4.00 5.0 5 5 ▁▁▁▃▇
AIE02 0 1 4.67 0.64 2 4.75 5.0 5 5 ▁▁▁▂▇
AIE03 0 1 4.11 1.04 1 3.75 4.0 5 5 ▁▁▃▅▇
AIE04 0 1 4.51 0.91 1 4.00 5.0 5 5 ▁▁▁▂▇
AIE05 0 1 4.70 0.60 2 5.00 5.0 5 5 ▁▁▁▂▇
AIE06 0 1 4.53 0.85 1 4.00 5.0 5 5 ▁▁▁▂▇
AIE07 0 1 4.75 0.68 1 5.00 5.0 5 5 ▁▁▁▁▇
AIE08 0 1 4.39 0.88 2 4.00 5.0 5 5 ▁▂▁▃▇
KU01 0 1 3.75 1.07 1 3.00 4.0 5 5 ▁▂▇▇▇
KU02 0 1 3.88 1.11 1 3.00 4.0 5 5 ▁▂▅▅▇
KU03 0 1 2.77 1.36 1 2.00 3.0 4 5 ▇▇▇▇▅
EC01 0 1 3.51 1.19 1 3.00 4.0 4 5 ▁▅▅▇▅
EC02 0 1 2.62 1.44 1 1.00 2.5 4 5 ▇▅▅▅▃
EC03 0 1 2.79 1.34 1 2.00 3.0 4 5 ▇▇▆▇▃

Análisis Factorial Exploratorio (AFE)

scree(train.data, pc=FALSE)

fa.parallel(train.data, fa='fa')

## Parallel analysis suggests that the number of factors =  3  and the number of components =  NA
extraccion <- factanal(train.data, 4, rotation = 'varimax')
print(extraccion)
## 
## Call:
## factanal(x = train.data, factors = 4, rotation = "varimax")
## 
## Uniquenesses:
##  IM01  IM02  IM03  IM04  SE01  SE02  SE03  SE04  CL01  CL02  BI01  BI02  BI03 
## 0.430 0.308 0.462 0.284 0.238 0.225 0.108 0.391 0.298 0.246 0.266 0.300 0.421 
##  EN01  EN02  SI01  SI02  SI03 AIE01 AIE02 AIE03 AIE04 AIE05 AIE06 AIE07 AIE08 
## 0.360 0.407 0.265 0.429 0.694 0.786 0.852 0.805 0.584 0.762 0.842 0.772 0.766 
##  KU01  KU02  KU03  EC01  EC02  EC03 
## 0.631 0.337 0.440 0.333 0.460 0.431 
## 
## Loadings:
##       Factor1 Factor2 Factor3 Factor4
## IM01   0.670   0.244           0.239 
## IM02   0.804                   0.171 
## IM03   0.707   0.150  -0.101         
## IM04   0.836                         
## SE01   0.565   0.277   0.573   0.193 
## SE02   0.628   0.265   0.545   0.115 
## SE03   0.488   0.409   0.696         
## SE04   0.533           0.498   0.278 
## CL01   0.693   0.213   0.357   0.223 
## CL02   0.601   0.236   0.554   0.175 
## BI01   0.733   0.347   0.161   0.224 
## BI02   0.649   0.418   0.312         
## BI03   0.716   0.194   0.168         
## EN01   0.566   0.482          -0.288 
## EN02   0.429   0.471   0.107  -0.418 
## SI01   0.543   0.543   0.123  -0.362 
## SI02   0.588   0.379   0.142  -0.249 
## SI03   0.465   0.225   0.193         
## AIE01          0.346   0.271   0.140 
## AIE02          0.134           0.355 
## AIE03          0.114   0.149   0.392 
## AIE04          0.205   0.122   0.595 
## AIE05          0.256   0.242   0.326 
## AIE06                  0.376   0.123 
## AIE07                          0.459 
## AIE08  0.214   0.219   0.126   0.352 
## KU01   0.175   0.550           0.188 
## KU02   0.231   0.629   0.185   0.423 
## KU03   0.199   0.660   0.276         
## EC01   0.317   0.586   0.196   0.430 
## EC02   0.246   0.669           0.178 
## EC03   0.289   0.657   0.173   0.154 
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings      7.645   4.461   2.575   2.387
## Proportion Var   0.239   0.139   0.080   0.075
## Cumulative Var   0.239   0.378   0.459   0.533
## 
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 641.06 on 374 degrees of freedom.
## The p-value is 2.37e-16
round(extraccion$loadings,3)
## 
## Loadings:
##       Factor1 Factor2 Factor3 Factor4
## IM01   0.670   0.244           0.239 
## IM02   0.804                   0.171 
## IM03   0.707   0.150  -0.101         
## IM04   0.836                         
## SE01   0.565   0.277   0.573   0.193 
## SE02   0.628   0.265   0.545   0.115 
## SE03   0.488   0.409   0.696         
## SE04   0.533           0.498   0.278 
## CL01   0.693   0.213   0.357   0.223 
## CL02   0.601   0.236   0.554   0.175 
## BI01   0.733   0.347   0.161   0.224 
## BI02   0.649   0.418   0.312         
## BI03   0.716   0.194   0.168         
## EN01   0.566   0.482          -0.288 
## EN02   0.429   0.471   0.107  -0.418 
## SI01   0.543   0.543   0.123  -0.362 
## SI02   0.588   0.379   0.142  -0.249 
## SI03   0.465   0.225   0.193         
## AIE01          0.346   0.271   0.140 
## AIE02          0.134           0.355 
## AIE03          0.114   0.149   0.392 
## AIE04          0.205   0.122   0.595 
## AIE05          0.256   0.242   0.326 
## AIE06                  0.376   0.123 
## AIE07                          0.459 
## AIE08  0.214   0.219   0.126   0.352 
## KU01   0.175   0.550           0.188 
## KU02   0.231   0.629   0.185   0.423 
## KU03   0.199   0.660   0.276         
## EC01   0.317   0.586   0.196   0.430 
## EC02   0.246   0.669           0.178 
## EC03   0.289   0.657   0.173   0.154 
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings      7.647   4.461   2.574   2.387
## Proportion Var   0.239   0.139   0.080   0.075
## Cumulative Var   0.239   0.378   0.459   0.533
modelo_varimax = fa(ASI,nfactors = 4,rotate = "varimax",
                    fa="minres")
fa.diagram(modelo_varimax)

Análisis Factorial Confirmatorio (AFC)

ASIconf <- ASI
attach(ASIconf)

Onefactor<- 'IA =~ IM01 + IM02 + IM03+ IM04 + SE01 + SE02 + SE03 + SE04 + CL01 + CL02 +
BI01 + BI02 + BI03 + EN01 + EN02+ SI01 + SI02 + SI03 + 
AIE01 + AIE02 + AIE03 + AIE04 + AIE05 + AIE06 + AIE07 + AIE08 +
KU01 + KU02 + KU03 + EC01 + EC02 + EC03'

Fourfactor<-'MR1 =~IM01 + IM02 + IM03+ IM04 + SE01 + SE02 + SE03 + SE04 + CL01 + CL02
MR2 =~  BI01 + BI02 + BI03 + EN01 + EN02+ SI01 + SI02 + SI03
MR3 =~ AIE01 + AIE02 + AIE03 + AIE04 + AIE05 + AIE06 + AIE07 + AIE08
MR4 =~ KU01 + KU02 + KU03 + EC01 + EC02 + EC03'


CFAone <- cfa(Onefactor,orthogonal=TRUE, data=test.data , estimator="WLSMV",ordered =names(test.data))
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= -4.899091e-15) is smaller than zero. This may be a symptom that
##     the model is not identified.
summary(CFAone, fit.measures=TRUE)
## lavaan 0.6.16 ended normally after 65 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                       148
## 
##   Number of observations                            38
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1121.975     768.065
##   Degrees of freedom                               464         464
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  2.730
##   Shift parameter                                          357.045
##     simple second-order correction                                
## 
## Model Test Baseline Model:
## 
##   Test statistic                             12189.016    2735.539
##   Degrees of freedom                               496         496
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  5.221
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.944       0.864
##   Tucker-Lewis Index (TLI)                       0.940       0.855
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.196       0.133
##   90 Percent confidence interval - lower         0.181       0.116
##   90 Percent confidence interval - upper         0.210       0.150
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
##   P-value H_0: Robust RMSEA <= 0.050                            NA
##   P-value H_0: Robust RMSEA >= 0.080                            NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.200       0.200
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   IA =~                                               
##     IM01              1.000                           
##     IM02              0.859    0.105    8.181    0.000
##     IM03              0.943    0.061   15.545    0.000
##     IM04              1.065    0.079   13.408    0.000
##     SE01              1.132    0.066   17.106    0.000
##     SE02              1.141    0.067   16.920    0.000
##     SE03              1.029    0.076   13.549    0.000
##     SE04              0.845    0.096    8.812    0.000
##     CL01              1.000    0.082   12.185    0.000
##     CL02              1.144    0.074   15.371    0.000
##     BI01              1.158    0.080   14.505    0.000
##     BI02              1.183    0.082   14.463    0.000
##     BI03              1.098    0.072   15.257    0.000
##     EN01              1.044    0.070   14.894    0.000
##     EN02              1.080    0.084   12.798    0.000
##     SI01              1.003    0.083   12.154    0.000
##     SI02              0.982    0.105    9.365    0.000
##     SI03              0.693    0.136    5.113    0.000
##     AIE01            -0.187    0.193   -0.971    0.332
##     AIE02            -0.121    0.232   -0.524    0.600
##     AIE03             0.740    0.106    6.993    0.000
##     AIE04             0.600    0.168    3.572    0.000
##     AIE05            -0.418    0.200   -2.087    0.037
##     AIE06             0.015    0.223    0.065    0.948
##     AIE07            -0.641    0.165   -3.893    0.000
##     AIE08             0.515    0.131    3.945    0.000
##     KU01              0.505    0.143    3.528    0.000
##     KU02              0.739    0.121    6.112    0.000
##     KU03              0.738    0.109    6.752    0.000
##     EC01              0.976    0.077   12.732    0.000
##     EC02              0.899    0.113    7.956    0.000
##     EC03              0.786    0.106    7.393    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .IM01              0.000                           
##    .IM02              0.000                           
##    .IM03              0.000                           
##    .IM04              0.000                           
##    .SE01              0.000                           
##    .SE02              0.000                           
##    .SE03              0.000                           
##    .SE04              0.000                           
##    .CL01              0.000                           
##    .CL02              0.000                           
##    .BI01              0.000                           
##    .BI02              0.000                           
##    .BI03              0.000                           
##    .EN01              0.000                           
##    .EN02              0.000                           
##    .SI01              0.000                           
##    .SI02              0.000                           
##    .SI03              0.000                           
##    .AIE01             0.000                           
##    .AIE02             0.000                           
##    .AIE03             0.000                           
##    .AIE04             0.000                           
##    .AIE05             0.000                           
##    .AIE06             0.000                           
##    .AIE07             0.000                           
##    .AIE08             0.000                           
##    .KU01              0.000                           
##    .KU02              0.000                           
##    .KU03              0.000                           
##    .EC01              0.000                           
##    .EC02              0.000                           
##    .EC03              0.000                           
##     IA                0.000                           
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     IM01|t1          -0.634    0.222   -2.857    0.004
##     IM01|t2          -0.267    0.209   -1.279    0.201
##     IM01|t3           0.480    0.215    2.231    0.026
##     IM01|t4           1.003    0.249    4.036    0.000
##     IM02|t1          -1.252    0.277   -4.521    0.000
##     IM02|t2          -1.003    0.249   -4.036    0.000
##     IM02|t3          -0.555    0.218   -2.546    0.011
##     IM02|t4           0.199    0.208    0.960    0.337
##     IM03|t1          -0.267    0.209   -1.279    0.201
##     IM03|t2           0.267    0.209    1.279    0.201
##     IM03|t3           1.003    0.249    4.036    0.000
##     IM03|t4           1.938    0.431    4.493    0.000
##     IM04|t1          -1.003    0.249   -4.036    0.000
##     IM04|t2          -0.336    0.210   -1.598    0.110
##     IM04|t3          -0.267    0.209   -1.279    0.201
##     IM04|t4           0.480    0.215    2.231    0.026
##     SE01|t1          -1.412    0.301   -4.689    0.000
##     SE01|t2          -0.805    0.232   -3.465    0.001
##     SE01|t3          -0.407    0.212   -1.915    0.055
##     SE01|t4           0.480    0.215    2.231    0.026
##     SE02|t1          -1.252    0.277   -4.521    0.000
##     SE02|t2          -0.805    0.232   -3.465    0.001
##     SE02|t3          -0.199    0.208   -0.960    0.337
##     SE02|t4           0.634    0.222    2.857    0.004
##     SE03|t1          -1.620    0.342   -4.741    0.000
##     SE03|t2          -1.119    0.261   -4.295    0.000
##     SE03|t3          -0.480    0.215   -2.231    0.026
##     SE03|t4           0.555    0.218    2.546    0.011
##     SE04|t1          -1.252    0.277   -4.521    0.000
##     SE04|t2          -0.716    0.226   -3.164    0.002
##     SE04|t3          -0.132    0.207   -0.640    0.522
##     SE04|t4           0.634    0.222    2.857    0.004
##     CL01|t1          -1.620    0.342   -4.741    0.000
##     CL01|t2          -0.480    0.215   -2.231    0.026
##     CL01|t3           0.555    0.218    2.546    0.011
##     CL02|t1          -1.620    0.342   -4.741    0.000
##     CL02|t2          -0.805    0.232   -3.465    0.001
##     CL02|t3          -0.267    0.209   -1.279    0.201
##     CL02|t4           0.634    0.222    2.857    0.004
##     BI01|t1          -1.412    0.301   -4.689    0.000
##     BI01|t2          -0.716    0.226   -3.164    0.002
##     BI01|t3          -0.407    0.212   -1.915    0.055
##     BI01|t4           0.199    0.208    0.960    0.337
##     BI02|t1          -1.252    0.277   -4.521    0.000
##     BI02|t2          -0.634    0.222   -2.857    0.004
##     BI02|t3          -0.132    0.207   -0.640    0.522
##     BI02|t4           0.716    0.226    3.164    0.002
##     BI03|t1          -0.634    0.222   -2.857    0.004
##     BI03|t2          -0.336    0.210   -1.598    0.110
##     BI03|t3           0.132    0.207    0.640    0.522
##     BI03|t4           1.003    0.249    4.036    0.000
##     EN01|t1          -0.132    0.207   -0.640    0.522
##     EN01|t2           0.336    0.210    1.598    0.110
##     EN01|t3           0.899    0.239    3.757    0.000
##     EN01|t4           1.412    0.301    4.689    0.000
##     EN02|t1           0.199    0.208    0.960    0.337
##     EN02|t2           0.480    0.215    2.231    0.026
##     EN02|t3           0.899    0.239    3.757    0.000
##     EN02|t4           1.412    0.301    4.689    0.000
##     SI01|t1          -0.066    0.206   -0.320    0.749
##     SI01|t2           0.336    0.210    1.598    0.110
##     SI01|t3           0.899    0.239    3.757    0.000
##     SI01|t4           1.620    0.342    4.741    0.000
##     SI02|t1           0.066    0.206    0.320    0.749
##     SI02|t2           0.480    0.215    2.231    0.026
##     SI02|t3           0.805    0.232    3.465    0.001
##     SI02|t4           1.938    0.431    4.493    0.000
##     SI03|t1          -0.336    0.210   -1.598    0.110
##     SI03|t2           0.336    0.210    1.598    0.110
##     SI03|t3           0.899    0.239    3.757    0.000
##     SI03|t4           1.620    0.342    4.741    0.000
##     AIE01|t1         -1.938    0.431   -4.493    0.000
##     AIE01|t2         -1.412    0.301   -4.689    0.000
##     AIE01|t3         -0.480    0.215   -2.231    0.026
##     AIE02|t1         -1.620    0.342   -4.741    0.000
##     AIE02|t2         -1.119    0.261   -4.295    0.000
##     AIE02|t3         -0.634    0.222   -2.857    0.004
##     AIE03|t1         -1.938    0.431   -4.493    0.000
##     AIE03|t2         -1.003    0.249   -4.036    0.000
##     AIE03|t3         -0.199    0.208   -0.960    0.337
##     AIE03|t4          0.480    0.215    2.231    0.026
##     AIE04|t1         -1.252    0.277   -4.521    0.000
##     AIE04|t2         -0.480    0.215   -2.231    0.026
##     AIE05|t1         -1.412    0.301   -4.689    0.000
##     AIE05|t2         -0.716    0.226   -3.164    0.002
##     AIE06|t1         -1.119    0.261   -4.295    0.000
##     AIE06|t2         -0.480    0.215   -2.231    0.026
##     AIE07|t1         -1.620    0.342   -4.741    0.000
##     AIE07|t2         -1.119    0.261   -4.295    0.000
##     AIE08|t1         -1.620    0.342   -4.741    0.000
##     AIE08|t2         -1.119    0.261   -4.295    0.000
##     AIE08|t3         -0.716    0.226   -3.164    0.002
##     AIE08|t4          0.000    0.206    0.000    1.000
##     KU01|t1          -1.119    0.261   -4.295    0.000
##     KU01|t2          -0.199    0.208   -0.960    0.337
##     KU01|t3           0.555    0.218    2.546    0.011
##     KU02|t1          -1.412    0.301   -4.689    0.000
##     KU02|t2          -1.119    0.261   -4.295    0.000
##     KU02|t3          -0.555    0.218   -2.546    0.011
##     KU02|t4           0.336    0.210    1.598    0.110
##     KU03|t1          -0.480    0.215   -2.231    0.026
##     KU03|t2           0.407    0.212    1.915    0.055
##     KU03|t3           0.899    0.239    3.757    0.000
##     KU03|t4           1.620    0.342    4.741    0.000
##     EC01|t1          -1.119    0.261   -4.295    0.000
##     EC01|t2          -0.634    0.222   -2.857    0.004
##     EC01|t3          -0.199    0.208   -0.960    0.337
##     EC01|t4           0.899    0.239    3.757    0.000
##     EC02|t1          -0.132    0.207   -0.640    0.522
##     EC02|t2           0.336    0.210    1.598    0.110
##     EC02|t3           0.480    0.215    2.231    0.026
##     EC02|t4           1.620    0.342    4.741    0.000
##     EC03|t1          -0.407    0.212   -1.915    0.055
##     EC03|t2           0.000    0.206    0.000    1.000
##     EC03|t3           0.634    0.222    2.857    0.004
##     EC03|t4           1.252    0.277    4.521    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .IM01              0.379                           
##    .IM02              0.542                           
##    .IM03              0.448                           
##    .IM04              0.295                           
##    .SE01              0.204                           
##    .SE02              0.191                           
##    .SE03              0.343                           
##    .SE04              0.556                           
##    .CL01              0.379                           
##    .CL02              0.188                           
##    .BI01              0.167                           
##    .BI02              0.131                           
##    .BI03              0.251                           
##    .EN01              0.324                           
##    .EN02              0.276                           
##    .SI01              0.375                           
##    .SI02              0.401                           
##    .SI03              0.702                           
##    .AIE01             0.978                           
##    .AIE02             0.991                           
##    .AIE03             0.660                           
##    .AIE04             0.776                           
##    .AIE05             0.891                           
##    .AIE06             1.000                           
##    .AIE07             0.745                           
##    .AIE08             0.835                           
##    .KU01              0.841                           
##    .KU02              0.661                           
##    .KU03              0.662                           
##    .EC01              0.408                           
##    .EC02              0.498                           
##    .EC03              0.616                           
##     IA                0.621    0.078    7.917    0.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     IM01              1.000                           
##     IM02              1.000                           
##     IM03              1.000                           
##     IM04              1.000                           
##     SE01              1.000                           
##     SE02              1.000                           
##     SE03              1.000                           
##     SE04              1.000                           
##     CL01              1.000                           
##     CL02              1.000                           
##     BI01              1.000                           
##     BI02              1.000                           
##     BI03              1.000                           
##     EN01              1.000                           
##     EN02              1.000                           
##     SI01              1.000                           
##     SI02              1.000                           
##     SI03              1.000                           
##     AIE01             1.000                           
##     AIE02             1.000                           
##     AIE03             1.000                           
##     AIE04             1.000                           
##     AIE05             1.000                           
##     AIE06             1.000                           
##     AIE07             1.000                           
##     AIE08             1.000                           
##     KU01              1.000                           
##     KU02              1.000                           
##     KU03              1.000                           
##     EC01              1.000                           
##     EC02              1.000                           
##     EC03              1.000
CFAtworele <- cfa(Fourfactor,orthogonal=FALSE, data=test.data , estimator="WLSMV",ordered =names(test.data ))
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= -1.034490e-13) is smaller than zero. This may be a symptom that
##     the model is not identified.
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
summary(CFAtworele, fit.measures=TRUE)
## lavaan 0.6.16 ended normally after 97 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                       154
## 
##   Number of observations                            38
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               874.960     681.557
##   Degrees of freedom                               458         458
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  2.634
##   Shift parameter                                          349.339
##     simple second-order correction                                
## 
## Model Test Baseline Model:
## 
##   Test statistic                             12189.016    2735.539
##   Degrees of freedom                               496         496
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  5.221
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.964       0.900
##   Tucker-Lewis Index (TLI)                       0.961       0.892
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.157       0.115
##   90 Percent confidence interval - lower         0.141       0.096
##   90 Percent confidence interval - upper         0.173       0.133
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       0.999
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
##   P-value H_0: Robust RMSEA <= 0.050                            NA
##   P-value H_0: Robust RMSEA >= 0.080                            NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.185       0.185
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   MR1 =~                                              
##     IM01              1.000                           
##     IM02              0.827    0.100    8.264    0.000
##     IM03              0.921    0.063   14.676    0.000
##     IM04              1.056    0.079   13.302    0.000
##     SE01              1.059    0.062   17.036    0.000
##     SE02              1.070    0.064   16.839    0.000
##     SE03              0.965    0.070   13.759    0.000
##     SE04              0.812    0.092    8.856    0.000
##     CL01              0.944    0.078   12.087    0.000
##     CL02              1.073    0.069   15.576    0.000
##   MR2 =~                                              
##     BI01              1.000                           
##     BI02              1.007    0.054   18.530    0.000
##     BI03              0.923    0.041   22.601    0.000
##     EN01              0.891    0.056   15.989    0.000
##     EN02              0.908    0.064   14.227    0.000
##     SI01              0.858    0.071   12.041    0.000
##     SI02              0.849    0.069   12.322    0.000
##     SI03              0.605    0.105    5.743    0.000
##   MR3 =~                                              
##     AIE01             1.000                           
##     AIE02             0.627    0.806    0.778    0.437
##     AIE03            -3.603    2.946   -1.223    0.221
##     AIE04            -2.621    2.211   -1.185    0.236
##     AIE05             1.805    1.529    1.181    0.238
##     AIE06            -0.284    1.026   -0.277    0.782
##     AIE07             2.893    2.746    1.053    0.292
##     AIE08            -2.462    1.894   -1.300    0.194
##   MR4 =~                                              
##     KU01              1.000                           
##     KU02              1.367    0.266    5.141    0.000
##     KU03              1.266    0.273    4.637    0.000
##     EC01              1.771    0.334    5.307    0.000
##     EC02              1.484    0.294    5.048    0.000
##     EC03              1.358    0.296    4.582    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   MR1 ~~                                              
##     MR2               0.678    0.064   10.657    0.000
##     MR3              -0.125    0.104   -1.202    0.229
##     MR4               0.303    0.074    4.074    0.000
##   MR2 ~~                                              
##     MR3              -0.154    0.135   -1.145    0.252
##     MR4               0.322    0.087    3.685    0.000
##   MR3 ~~                                              
##     MR4              -0.075    0.069   -1.088    0.277
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .IM01              0.000                           
##    .IM02              0.000                           
##    .IM03              0.000                           
##    .IM04              0.000                           
##    .SE01              0.000                           
##    .SE02              0.000                           
##    .SE03              0.000                           
##    .SE04              0.000                           
##    .CL01              0.000                           
##    .CL02              0.000                           
##    .BI01              0.000                           
##    .BI02              0.000                           
##    .BI03              0.000                           
##    .EN01              0.000                           
##    .EN02              0.000                           
##    .SI01              0.000                           
##    .SI02              0.000                           
##    .SI03              0.000                           
##    .AIE01             0.000                           
##    .AIE02             0.000                           
##    .AIE03             0.000                           
##    .AIE04             0.000                           
##    .AIE05             0.000                           
##    .AIE06             0.000                           
##    .AIE07             0.000                           
##    .AIE08             0.000                           
##    .KU01              0.000                           
##    .KU02              0.000                           
##    .KU03              0.000                           
##    .EC01              0.000                           
##    .EC02              0.000                           
##    .EC03              0.000                           
##     MR1               0.000                           
##     MR2               0.000                           
##     MR3               0.000                           
##     MR4               0.000                           
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     IM01|t1          -0.634    0.222   -2.857    0.004
##     IM01|t2          -0.267    0.209   -1.279    0.201
##     IM01|t3           0.480    0.215    2.231    0.026
##     IM01|t4           1.003    0.249    4.036    0.000
##     IM02|t1          -1.252    0.277   -4.521    0.000
##     IM02|t2          -1.003    0.249   -4.036    0.000
##     IM02|t3          -0.555    0.218   -2.546    0.011
##     IM02|t4           0.199    0.208    0.960    0.337
##     IM03|t1          -0.267    0.209   -1.279    0.201
##     IM03|t2           0.267    0.209    1.279    0.201
##     IM03|t3           1.003    0.249    4.036    0.000
##     IM03|t4           1.938    0.431    4.493    0.000
##     IM04|t1          -1.003    0.249   -4.036    0.000
##     IM04|t2          -0.336    0.210   -1.598    0.110
##     IM04|t3          -0.267    0.209   -1.279    0.201
##     IM04|t4           0.480    0.215    2.231    0.026
##     SE01|t1          -1.412    0.301   -4.689    0.000
##     SE01|t2          -0.805    0.232   -3.465    0.001
##     SE01|t3          -0.407    0.212   -1.915    0.055
##     SE01|t4           0.480    0.215    2.231    0.026
##     SE02|t1          -1.252    0.277   -4.521    0.000
##     SE02|t2          -0.805    0.232   -3.465    0.001
##     SE02|t3          -0.199    0.208   -0.960    0.337
##     SE02|t4           0.634    0.222    2.857    0.004
##     SE03|t1          -1.620    0.342   -4.741    0.000
##     SE03|t2          -1.119    0.261   -4.295    0.000
##     SE03|t3          -0.480    0.215   -2.231    0.026
##     SE03|t4           0.555    0.218    2.546    0.011
##     SE04|t1          -1.252    0.277   -4.521    0.000
##     SE04|t2          -0.716    0.226   -3.164    0.002
##     SE04|t3          -0.132    0.207   -0.640    0.522
##     SE04|t4           0.634    0.222    2.857    0.004
##     CL01|t1          -1.620    0.342   -4.741    0.000
##     CL01|t2          -0.480    0.215   -2.231    0.026
##     CL01|t3           0.555    0.218    2.546    0.011
##     CL02|t1          -1.620    0.342   -4.741    0.000
##     CL02|t2          -0.805    0.232   -3.465    0.001
##     CL02|t3          -0.267    0.209   -1.279    0.201
##     CL02|t4           0.634    0.222    2.857    0.004
##     BI01|t1          -1.412    0.301   -4.689    0.000
##     BI01|t2          -0.716    0.226   -3.164    0.002
##     BI01|t3          -0.407    0.212   -1.915    0.055
##     BI01|t4           0.199    0.208    0.960    0.337
##     BI02|t1          -1.252    0.277   -4.521    0.000
##     BI02|t2          -0.634    0.222   -2.857    0.004
##     BI02|t3          -0.132    0.207   -0.640    0.522
##     BI02|t4           0.716    0.226    3.164    0.002
##     BI03|t1          -0.634    0.222   -2.857    0.004
##     BI03|t2          -0.336    0.210   -1.598    0.110
##     BI03|t3           0.132    0.207    0.640    0.522
##     BI03|t4           1.003    0.249    4.036    0.000
##     EN01|t1          -0.132    0.207   -0.640    0.522
##     EN01|t2           0.336    0.210    1.598    0.110
##     EN01|t3           0.899    0.239    3.757    0.000
##     EN01|t4           1.412    0.301    4.689    0.000
##     EN02|t1           0.199    0.208    0.960    0.337
##     EN02|t2           0.480    0.215    2.231    0.026
##     EN02|t3           0.899    0.239    3.757    0.000
##     EN02|t4           1.412    0.301    4.689    0.000
##     SI01|t1          -0.066    0.206   -0.320    0.749
##     SI01|t2           0.336    0.210    1.598    0.110
##     SI01|t3           0.899    0.239    3.757    0.000
##     SI01|t4           1.620    0.342    4.741    0.000
##     SI02|t1           0.066    0.206    0.320    0.749
##     SI02|t2           0.480    0.215    2.231    0.026
##     SI02|t3           0.805    0.232    3.465    0.001
##     SI02|t4           1.938    0.431    4.493    0.000
##     SI03|t1          -0.336    0.210   -1.598    0.110
##     SI03|t2           0.336    0.210    1.598    0.110
##     SI03|t3           0.899    0.239    3.757    0.000
##     SI03|t4           1.620    0.342    4.741    0.000
##     AIE01|t1         -1.938    0.431   -4.493    0.000
##     AIE01|t2         -1.412    0.301   -4.689    0.000
##     AIE01|t3         -0.480    0.215   -2.231    0.026
##     AIE02|t1         -1.620    0.342   -4.741    0.000
##     AIE02|t2         -1.119    0.261   -4.295    0.000
##     AIE02|t3         -0.634    0.222   -2.857    0.004
##     AIE03|t1         -1.938    0.431   -4.493    0.000
##     AIE03|t2         -1.003    0.249   -4.036    0.000
##     AIE03|t3         -0.199    0.208   -0.960    0.337
##     AIE03|t4          0.480    0.215    2.231    0.026
##     AIE04|t1         -1.252    0.277   -4.521    0.000
##     AIE04|t2         -0.480    0.215   -2.231    0.026
##     AIE05|t1         -1.412    0.301   -4.689    0.000
##     AIE05|t2         -0.716    0.226   -3.164    0.002
##     AIE06|t1         -1.119    0.261   -4.295    0.000
##     AIE06|t2         -0.480    0.215   -2.231    0.026
##     AIE07|t1         -1.620    0.342   -4.741    0.000
##     AIE07|t2         -1.119    0.261   -4.295    0.000
##     AIE08|t1         -1.620    0.342   -4.741    0.000
##     AIE08|t2         -1.119    0.261   -4.295    0.000
##     AIE08|t3         -0.716    0.226   -3.164    0.002
##     AIE08|t4          0.000    0.206    0.000    1.000
##     KU01|t1          -1.119    0.261   -4.295    0.000
##     KU01|t2          -0.199    0.208   -0.960    0.337
##     KU01|t3           0.555    0.218    2.546    0.011
##     KU02|t1          -1.412    0.301   -4.689    0.000
##     KU02|t2          -1.119    0.261   -4.295    0.000
##     KU02|t3          -0.555    0.218   -2.546    0.011
##     KU02|t4           0.336    0.210    1.598    0.110
##     KU03|t1          -0.480    0.215   -2.231    0.026
##     KU03|t2           0.407    0.212    1.915    0.055
##     KU03|t3           0.899    0.239    3.757    0.000
##     KU03|t4           1.620    0.342    4.741    0.000
##     EC01|t1          -1.119    0.261   -4.295    0.000
##     EC01|t2          -0.634    0.222   -2.857    0.004
##     EC01|t3          -0.199    0.208   -0.960    0.337
##     EC01|t4           0.899    0.239    3.757    0.000
##     EC02|t1          -0.132    0.207   -0.640    0.522
##     EC02|t2           0.336    0.210    1.598    0.110
##     EC02|t3           0.480    0.215    2.231    0.026
##     EC02|t4           1.620    0.342    4.741    0.000
##     EC03|t1          -0.407    0.212   -1.915    0.055
##     EC03|t2           0.000    0.206    0.000    1.000
##     EC03|t3           0.634    0.222    2.857    0.004
##     EC03|t4           1.252    0.277    4.521    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .IM01              0.255                           
##    .IM02              0.491                           
##    .IM03              0.369                           
##    .IM04              0.169                           
##    .SE01              0.165                           
##    .SE02              0.148                           
##    .SE03              0.305                           
##    .SE04              0.509                           
##    .CL01              0.336                           
##    .CL02              0.142                           
##    .BI01              0.055                           
##    .BI02              0.041                           
##    .BI03              0.196                           
##    .EN01              0.249                           
##    .EN02              0.220                           
##    .SI01              0.304                           
##    .SI02              0.318                           
##    .SI03              0.654                           
##    .AIE01             0.953                           
##    .AIE02             0.982                           
##    .AIE03             0.394                           
##    .AIE04             0.680                           
##    .AIE05             0.848                           
##    .AIE06             0.996                           
##    .AIE07             0.610                           
##    .AIE08             0.717                           
##    .KU01              0.675                           
##    .KU02              0.393                           
##    .KU03              0.479                           
##    .EC01             -0.020                           
##    .EC02              0.284                           
##    .EC03              0.401                           
##     MR1               0.745    0.085    8.738    0.000
##     MR2               0.945    0.079   12.015    0.000
##     MR3               0.047    0.073    0.635    0.525
##     MR4               0.325    0.125    2.605    0.009
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     IM01              1.000                           
##     IM02              1.000                           
##     IM03              1.000                           
##     IM04              1.000                           
##     SE01              1.000                           
##     SE02              1.000                           
##     SE03              1.000                           
##     SE04              1.000                           
##     CL01              1.000                           
##     CL02              1.000                           
##     BI01              1.000                           
##     BI02              1.000                           
##     BI03              1.000                           
##     EN01              1.000                           
##     EN02              1.000                           
##     SI01              1.000                           
##     SI02              1.000                           
##     SI03              1.000                           
##     AIE01             1.000                           
##     AIE02             1.000                           
##     AIE03             1.000                           
##     AIE04             1.000                           
##     AIE05             1.000                           
##     AIE06             1.000                           
##     AIE07             1.000                           
##     AIE08             1.000                           
##     KU01              1.000                           
##     KU02              1.000                           
##     KU03              1.000                           
##     EC01              1.000                           
##     EC02              1.000                           
##     EC03              1.000
fitMeasures(CFAtworele)
##                          npar                          fmin 
##                       154.000                        11.513 
##                         chisq                            df 
##                       874.960                       458.000 
##                        pvalue                  chisq.scaled 
##                         0.000                       681.557 
##                     df.scaled                 pvalue.scaled 
##                       458.000                         0.000 
##          chisq.scaling.factor                baseline.chisq 
##                         2.634                     12189.016 
##                   baseline.df               baseline.pvalue 
##                       496.000                         0.000 
##         baseline.chisq.scaled            baseline.df.scaled 
##                      2735.539                       496.000 
##        baseline.pvalue.scaled baseline.chisq.scaling.factor 
##                         0.000                         5.221 
##                           cfi                           tli 
##                         0.964                         0.961 
##                    cfi.scaled                    tli.scaled 
##                         0.900                         0.892 
##                    cfi.robust                    tli.robust 
##                            NA                            NA 
##                          nnfi                           rfi 
##                         0.961                         0.922 
##                           nfi                          pnfi 
##                         0.928                         0.857 
##                           ifi                           rni 
##                         0.964                         0.964 
##                   nnfi.scaled                    rfi.scaled 
##                         0.892                         0.730 
##                    nfi.scaled                   pnfi.scaled 
##                         0.751                         0.693 
##                    ifi.scaled                    rni.scaled 
##                         0.902                         0.900 
##                   nnfi.robust                    rni.robust 
##                            NA                            NA 
##                         rmsea                rmsea.ci.lower 
##                         0.157                         0.141 
##                rmsea.ci.upper                rmsea.ci.level 
##                         0.173                         0.900 
##                  rmsea.pvalue                rmsea.close.h0 
##                         0.000                         0.050 
##         rmsea.notclose.pvalue             rmsea.notclose.h0 
##                         1.000                         0.080 
##                  rmsea.scaled         rmsea.ci.lower.scaled 
##                         0.115                         0.096 
##         rmsea.ci.upper.scaled           rmsea.pvalue.scaled 
##                         0.133                         0.000 
##  rmsea.notclose.pvalue.scaled                  rmsea.robust 
##                         0.999                            NA 
##         rmsea.ci.lower.robust         rmsea.ci.upper.robust 
##                            NA                            NA 
##           rmsea.pvalue.robust  rmsea.notclose.pvalue.robust 
##                            NA                            NA 
##                           rmr                    rmr_nomean 
##                         0.167                         0.185 
##                          srmr                  srmr_bentler 
##                         0.185                         0.167 
##           srmr_bentler_nomean                          crmr 
##                         0.185                         0.172 
##                   crmr_nomean                    srmr_mplus 
##                         0.191                            NA 
##             srmr_mplus_nomean                         cn_05 
##                            NA                        22.520 
##                         cn_01                           gfi 
##                        23.469                         0.935 
##                          agfi                          pgfi 
##                         0.913                         0.700 
##                           mfi                          wrmr 
##                         0.004                         1.196
semPaths(CFAtworele, intercepts = FALSE,edge.label.cex=0.5, optimizeLatRes = TRUE, groups = "lat",pastel = TRUE, exoVar = FALSE, sizeInt=5,edge.color ="black",esize = 6, label.prop=1,sizeLat = 6,"std", layout="circle2")

Modelo de Aceptación tecnológica

Base_de_datos_IA_TAM <- read_excel("Base de datos_IA.xlsx", 
                               sheet = "AF_TAM")
ASI_TAM <- Base_de_datos_IA_TAM
dim(ASI_TAM)
## [1] 134   8
summary(ASI_TAM)
##       PU1             PU2             PU3             PEU1      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:4.000  
##  Median :5.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :4.299   Mean   :4.067   Mean   :3.858   Mean   :4.075  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       PEU2            PEU3            BI1             BI2       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.000   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :3.000   Median :4.000  
##  Mean   :3.836   Mean   :3.828   Mean   :3.239   Mean   :3.679  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000
DT::datatable(ASI_TAM)
apply(ASI_TAM, 2 , mean)
##      PU1      PU2      PU3     PEU1     PEU2     PEU3      BI1      BI2 
## 4.298507 4.067164 3.858209 4.074627 3.835821 3.828358 3.238806 3.679104
apply(ASI_TAM, 2 , var)
##       PU1       PU2       PU3      PEU1      PEU2      PEU3       BI1       BI2 
## 0.8575917 1.2360566 1.2955336 1.0921333 0.9502862 1.0455056 1.8222422 1.6330939
alfa_TAM <- alpha(ASI_TAM) 
alfa_TAM
## [1] 0.8112004
set.seed(123) 
training.samples <- ASI_TAM$PU1 %>% createDataPartition(p = 0.60, list = FALSE)
train.data <- ASI_TAM [training.samples, ] 
test.data <- ASI_TAM [-training.samples, ]

KMO(train.data)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = train.data)
## Overall MSA =  0.79
## MSA for each item = 
##  PU1  PU2  PU3 PEU1 PEU2 PEU3  BI1  BI2 
## 0.85 0.73 0.79 0.77 0.82 0.80 0.63 0.82
cortest.bartlett(train.data)
## R was not square, finding R from data
## $chisq
## [1] 369.6452
## 
## $p.value
## [1] 2.73898e-61
## 
## $df
## [1] 28

Análisis Factorial Exploratorio (AFE)

scree(train.data, pc=FALSE)

fa.parallel(train.data, fa='fa')

## Parallel analysis suggests that the number of factors =  2  and the number of components =  NA
extraccion <- factanal(train.data, 3, rotation = 'varimax')
print(extraccion)
## 
## Call:
## factanal(x = train.data, factors = 3, rotation = "varimax")
## 
## Uniquenesses:
##   PU1   PU2   PU3  PEU1  PEU2  PEU3   BI1   BI2 
## 0.311 0.021 0.258 0.125 0.294 0.268 0.744 0.498 
## 
## Loadings:
##      Factor1 Factor2 Factor3
## PU1  0.276   0.720   0.307  
## PU2  0.264   0.953          
## PU3  0.195   0.759   0.358  
## PEU1 0.893   0.279          
## PEU2 0.803   0.200   0.149  
## PEU3 0.808   0.174   0.222  
## BI1                  0.498  
## BI2  0.131   0.332   0.612  
## 
##                Factor1 Factor2 Factor3
## SS loadings      2.300   2.265   0.918
## Proportion Var   0.287   0.283   0.115
## Cumulative Var   0.287   0.571   0.685
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 5.59 on 7 degrees of freedom.
## The p-value is 0.588
round(extraccion$loadings,3)
## 
## Loadings:
##      Factor1 Factor2 Factor3
## PU1  0.276   0.720   0.307  
## PU2  0.264   0.953          
## PU3  0.195   0.759   0.358  
## PEU1 0.893   0.279          
## PEU2 0.803   0.200   0.149  
## PEU3 0.808   0.174   0.222  
## BI1                  0.498  
## BI2  0.131   0.332   0.612  
## 
##                Factor1 Factor2 Factor3
## SS loadings      2.301   2.265   0.918
## Proportion Var   0.288   0.283   0.115
## Cumulative Var   0.288   0.571   0.685
modelo_varimax = fa(train.data,nfactors = 3,rotate = "varimax",
                    fa="minres")
fa.diagram(modelo_varimax)

Análisis Factorial Confirmatorio (AFC)

ASIconf <- test.data
attach(ASIconf)

Onefactor<- 'TAM =~ PU1 +PU2 + PU3 +PEU1 + PEU2+ PEU3 + BI1 + BI2'

Fourfactor<-'MR1_TAM =~ PU1 + PU2 + PU3
MR2_TAM =~  PEU1 + PEU2 + PEU3
MR3_TAM =~ BI1 + BI2'

CFAone <- cfa(Onefactor,orthogonal=TRUE, data=ASIconf, estimator="WLSMV",ordered =names(ASIconf))
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= -1.446814e-16) is smaller than zero. This may be a symptom that
##     the model is not identified.
summary(CFAone, fit.measures=TRUE)
## lavaan 0.6.16 ended normally after 24 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        40
## 
##   Number of observations                            53
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                78.319      84.429
##   Degrees of freedom                                20          20
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.023
##   Shift parameter                                            7.861
##     simple second-order correction                                
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2533.056    1423.625
##   Degrees of freedom                                28          28
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.795
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.977       0.954
##   Tucker-Lewis Index (TLI)                       0.967       0.935
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.715
##   Robust Tucker-Lewis Index (TLI)                            0.601
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.237       0.249
##   90 Percent confidence interval - lower         0.183       0.195
##   90 Percent confidence interval - upper         0.293       0.305
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       1.000
##                                                                   
##   Robust RMSEA                                               0.311
##   90 Percent confidence interval - lower                     0.217
##   90 Percent confidence interval - upper                     0.408
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.154       0.154
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   TAM =~                                              
##     PU1               1.000                           
##     PU2               1.097    0.110    9.975    0.000
##     PU3               1.027    0.120    8.548    0.000
##     PEU1              1.298    0.117   11.108    0.000
##     PEU2              1.261    0.111   11.407    0.000
##     PEU3              1.203    0.103   11.699    0.000
##     BI1              -0.218    0.140   -1.558    0.119
##     BI2               0.364    0.112    3.239    0.001
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .PU1               0.000                           
##    .PU2               0.000                           
##    .PU3               0.000                           
##    .PEU1              0.000                           
##    .PEU2              0.000                           
##    .PEU3              0.000                           
##    .BI1               0.000                           
##    .BI2               0.000                           
##     TAM               0.000                           
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     PU1|t1           -2.078    0.409   -5.074    0.000
##     PU1|t2           -1.778    0.322   -5.528    0.000
##     PU1|t3           -1.032    0.212   -4.869    0.000
##     PU1|t4           -0.119    0.174   -0.680    0.496
##     PU2|t1           -2.078    0.409   -5.074    0.000
##     PU2|t2           -1.314    0.241   -5.453    0.000
##     PU2|t3           -0.631    0.187   -3.373    0.001
##     PU2|t4            0.119    0.174    0.680    0.496
##     PU3|t1           -2.078    0.409   -5.074    0.000
##     PU3|t2           -1.032    0.212   -4.869    0.000
##     PU3|t3           -0.466    0.181   -2.575    0.010
##     PU3|t4            0.362    0.178    2.036    0.042
##     PEU1|t1          -1.584    0.282   -5.625    0.000
##     PEU1|t2          -1.210    0.229   -5.284    0.000
##     PEU1|t3          -0.751    0.193   -3.893    0.000
##     PEU1|t4           0.166    0.175    0.952    0.341
##     PEU2|t1          -1.778    0.322   -5.528    0.000
##     PEU2|t2          -1.210    0.229   -5.284    0.000
##     PEU2|t3          -0.362    0.178   -2.036    0.042
##     PEU2|t4           0.362    0.178    2.036    0.042
##     PEU3|t1          -1.778    0.322   -5.528    0.000
##     PEU3|t2          -1.117    0.220   -5.086    0.000
##     PEU3|t3          -0.519    0.183   -2.842    0.004
##     PEU3|t4           0.574    0.185    3.109    0.002
##     BI1|t1           -0.955    0.206   -4.638    0.000
##     BI1|t2           -0.466    0.181   -2.575    0.010
##     BI1|t3            0.071    0.174    0.408    0.683
##     BI1|t4            0.751    0.193    3.893    0.000
##     BI2|t1           -1.778    0.322   -5.528    0.000
##     BI2|t2           -1.032    0.212   -4.869    0.000
##     BI2|t3           -0.263    0.176   -1.495    0.135
##     BI2|t4            0.413    0.179    2.306    0.021
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .PU1               0.452                           
##    .PU2               0.341                           
##    .PU3               0.422                           
##    .PEU1              0.076                           
##    .PEU2              0.129                           
##    .PEU3              0.206                           
##    .BI1               0.974                           
##    .BI2               0.927                           
##     TAM               0.548    0.096    5.712    0.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     PU1               1.000                           
##     PU2               1.000                           
##     PU3               1.000                           
##     PEU1              1.000                           
##     PEU2              1.000                           
##     PEU3              1.000                           
##     BI1               1.000                           
##     BI2               1.000
CFAtworele <- cfa(Fourfactor,orthogonal=FALSE, data=ASIconf, estimator="WLSMV",ordered =names(ASIconf))
## Warning in lavaan::lavaan(model = Fourfactor, data = ASIconf, ordered = names(ASIconf), : lavaan WARNING:
##     the optimizer warns that a solution has NOT been found!
summary(CFAtworele, fit.measures=TRUE)
## Warning in lav_object_summary(object = object, header = header, fit.measures = fit.measures, : lavaan WARNING: fit measures not available if model did not converge
## lavaan 0.6.16 did NOT end normally after 818 iterations
## ** WARNING ** Estimates below are most likely unreliable
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        43
## 
##   Number of observations                            53
## 
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate    Std.Err  z-value  P(>|z|)
##   MR1_TAM =~                                            
##     PU1                 1.000                           
##     PU2                 1.027       NA                  
##     PU3                 0.986       NA                  
##   MR2_TAM =~                                            
##     PEU1                1.000                           
##     PEU2                0.976       NA                  
##     PEU3                0.938       NA                  
##   MR3_TAM =~                                            
##     BI1                 1.000                           
##     BI2            172408.514       NA                  
## 
## Covariances:
##                    Estimate    Std.Err  z-value  P(>|z|)
##   MR1_TAM ~~                                            
##     MR2_TAM             0.545       NA                  
##     MR3_TAM             0.000       NA                  
##   MR2_TAM ~~                                            
##     MR3_TAM             0.000       NA                  
## 
## Intercepts:
##                    Estimate    Std.Err  z-value  P(>|z|)
##    .PU1                 0.000                           
##    .PU2                 0.000                           
##    .PU3                 0.000                           
##    .PEU1                0.000                           
##    .PEU2                0.000                           
##    .PEU3                0.000                           
##    .BI1                 0.000                           
##    .BI2                 0.000                           
##     MR1_TAM             0.000                           
##     MR2_TAM             0.000                           
##     MR3_TAM             0.000                           
## 
## Thresholds:
##                    Estimate    Std.Err  z-value  P(>|z|)
##     PU1|t1             -2.078       NA                  
##     PU1|t2             -1.778       NA                  
##     PU1|t3             -1.032       NA                  
##     PU1|t4             -0.119       NA                  
##     PU2|t1             -2.078       NA                  
##     PU2|t2             -1.314       NA                  
##     PU2|t3             -0.631       NA                  
##     PU2|t4              0.119       NA                  
##     PU3|t1             -2.078       NA                  
##     PU3|t2             -1.032       NA                  
##     PU3|t3             -0.466       NA                  
##     PU3|t4              0.362       NA                  
##     PEU1|t1            -1.584       NA                  
##     PEU1|t2            -1.210       NA                  
##     PEU1|t3            -0.751       NA                  
##     PEU1|t4             0.166       NA                  
##     PEU2|t1            -1.778       NA                  
##     PEU2|t2            -1.210       NA                  
##     PEU2|t3            -0.362       NA                  
##     PEU2|t4             0.362       NA                  
##     PEU3|t1            -1.778       NA                  
##     PEU3|t2            -1.117       NA                  
##     PEU3|t3            -0.519       NA                  
##     PEU3|t4             0.574       NA                  
##     BI1|t1             -0.955       NA                  
##     BI1|t2             -0.466       NA                  
##     BI1|t3              0.071       NA                  
##     BI1|t4              0.751       NA                  
##     BI2|t1             -1.778       NA                  
##     BI2|t2             -1.032       NA                  
##     BI2|t3             -0.263       NA                  
##     BI2|t4              0.413       NA                  
## 
## Variances:
##                    Estimate    Std.Err  z-value  P(>|z|)
##    .PU1                 0.255                           
##    .PU2                 0.215                           
##    .PU3                 0.276                           
##    .PEU1                0.060                           
##    .PEU2                0.105                           
##    .PEU3                0.174                           
##    .BI1                 1.000                           
##    .BI2            -78929.546                           
##     MR1_TAM             0.745       NA                  
##     MR2_TAM             0.940       NA                  
##     MR3_TAM             0.000       NA                  
## 
## Scales y*:
##                    Estimate    Std.Err  z-value  P(>|z|)
##     PU1                 1.000                           
##     PU2                 1.000                           
##     PU3                 1.000                           
##     PEU1                1.000                           
##     PEU2                1.000                           
##     PEU3                1.000                           
##     BI1                 1.000                           
##     BI2                 1.000
semPaths(CFAtworele, intercepts = FALSE,edge.label.cex=0.5, optimizeLatRes = TRUE, groups = "lat",pastel = TRUE, exoVar = FALSE, sizeInt=5,edge.color ="black",esize = 6, label.prop=1,sizeLat = 6,"std", layout="circle2")