This is an Rpubs test file!
setwd("C:/Users/matth/OneDrive/Desktop/Spatial R Class/zip_codes")
library(sf)
library(ggplot2)
library(dplyr)
library(urbnmapr)
map <- st_read("cb_2019_us_zcta510_500k.shp")
colnames(map)[1] <- "zipcode"
map$zipcode <- as.numeric(map$zipcode)
map_ny <- map %>%
filter(zipcode > 09999 & zipcode < 15000)
ggplot(map_ny)+
geom_sf(fill = "white")
setwd("~/Binghamton/DIDA 370")
data <- read.csv("select_zipcode_statistics.csv")
library(tidyr)
library(tidyverse)
#join shapefile with survey data
ny1 <- map_ny %>%
left_join(data, by = c("zipcode" = "Geographic.Area.Name")) %>% drop_na() %>%
st_transform("EPSG:32116")
#get just Broome county
#load in NYS county shape file and set crs
counties <- get_urbn_map("counties", sf = TRUE)
#filter the data to get just NYS
broome <- counties %>%
filter(state_abbv == "NY") %>%
filter(county_name == "Broome County") %>%
st_transform("EPSG:32116")
#isolate Broome County
broome_map <- ny1[broome,]
#plot it
ggplot(broome_map)+
geom_sf(mapping = aes(), fill = "white")+
theme_minimal()+
labs(title = "Broome County Zipcodes")
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KVGhpcyBpcyBhbiBScHVicyB0ZXN0IGZpbGUhDQoNCmBgYHtyfQ0Kc2V0d2QoIkM6L1VzZXJzL21hdHRoL09uZURyaXZlL0Rlc2t0b3AvU3BhdGlhbCBSIENsYXNzL3ppcF9jb2RlcyIpDQpsaWJyYXJ5KHNmKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkodXJibm1hcHIpDQoNCm1hcCA8LSBzdF9yZWFkKCJjYl8yMDE5X3VzX3pjdGE1MTBfNTAway5zaHAiKQ0KDQpjb2xuYW1lcyhtYXApWzFdIDwtICJ6aXBjb2RlIg0KbWFwJHppcGNvZGUgPC0gYXMubnVtZXJpYyhtYXAkemlwY29kZSkNCg0KbWFwX255IDwtIG1hcCAlPiUgDQogIGZpbHRlcih6aXBjb2RlID4gMDk5OTkgJiB6aXBjb2RlIDwgMTUwMDApIA0KDQpnZ3Bsb3QobWFwX255KSsNCiAgZ2VvbV9zZihmaWxsID0gIndoaXRlIikNCmBgYA0KDQpgYGB7cn0NCnNldHdkKCJ+L0JpbmdoYW10b24vRElEQSAzNzAiKQ0KZGF0YSA8LSByZWFkLmNzdigic2VsZWN0X3ppcGNvZGVfc3RhdGlzdGljcy5jc3YiKQ0KDQpsaWJyYXJ5KHRpZHlyKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQojam9pbiBzaGFwZWZpbGUgd2l0aCBzdXJ2ZXkgZGF0YQ0KbnkxIDwtIG1hcF9ueSAlPiUgDQogIGxlZnRfam9pbihkYXRhLCBieSA9IGMoInppcGNvZGUiID0gIkdlb2dyYXBoaWMuQXJlYS5OYW1lIikpICU+JSAgICAgICAgIGRyb3BfbmEoKSAlPiUgDQogIHN0X3RyYW5zZm9ybSgiRVBTRzozMjExNiIpDQoNCiNnZXQganVzdCBCcm9vbWUgY291bnR5DQojbG9hZCBpbiBOWVMgY291bnR5IHNoYXBlIGZpbGUgYW5kIHNldCBjcnMNCmNvdW50aWVzIDwtIGdldF91cmJuX21hcCgiY291bnRpZXMiLCBzZiA9IFRSVUUpDQoNCiNmaWx0ZXIgdGhlIGRhdGEgdG8gZ2V0IGp1c3QgTllTDQpicm9vbWUgPC0gY291bnRpZXMgJT4lIA0KICBmaWx0ZXIoc3RhdGVfYWJidiA9PSAiTlkiKSAlPiUgDQogIGZpbHRlcihjb3VudHlfbmFtZSA9PSAiQnJvb21lIENvdW50eSIpICU+JSANCiAgc3RfdHJhbnNmb3JtKCJFUFNHOjMyMTE2IikNCg0KI2lzb2xhdGUgQnJvb21lIENvdW50eQ0KYnJvb21lX21hcCA8LSBueTFbYnJvb21lLF0NCg0KI3Bsb3QgaXQNCmdncGxvdChicm9vbWVfbWFwKSsNCiAgZ2VvbV9zZihtYXBwaW5nID0gYWVzKCksIGZpbGwgPSAid2hpdGUiKSsNCiAgdGhlbWVfbWluaW1hbCgpKw0KICBsYWJzKHRpdGxlID0gIkJyb29tZSBDb3VudHkgWmlwY29kZXMiKQ0KDQpgYGANCg==