This is an Rpubs test file!

setwd("~/Binghamton/DIDA 370/zip_codes")
library(sf)
library(ggplot2)
library(dplyr)
library(urbnmapr)

map <- st_read("cb_2019_us_zcta510_500k.shp")
Reading layer `cb_2019_us_zcta510_500k' from data source 
  `C:\Users\melha\OneDrive\Documents\Binghamton\DIDA 370\zip_codes\cb_2019_us_zcta510_500k.shp' 
  using driver `ESRI Shapefile'
Simple feature collection with 33144 features and 5 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: -176.6847 ymin: -14.37374 xmax: 145.8304 ymax: 71.34132
Geodetic CRS:  NAD83
colnames(map)[1] <- "zipcode"
map$zipcode <- as.numeric(map$zipcode)

map_ny <- map %>% 
  filter(zipcode > 09999 & zipcode < 15000) 

ggplot(map_ny)+
  geom_sf(fill = "white")

setwd("~/Binghamton/DIDA 370")
data <- read.csv("select_zipcode_statistics.csv")

library(tidyr)
library(tidyverse)
#join shapefile with survey data
ny1 <- map_ny %>% 
  left_join(data, by = c("zipcode" = "Geographic.Area.Name")) %>%         drop_na() %>% 
  st_transform("EPSG:32116")

#get just Broome county
#load in NYS county shape file and set crs
counties <- get_urbn_map("counties", sf = TRUE)

#filter the data to get just NYS
broome <- counties %>% 
  filter(state_abbv == "NY") %>% 
  filter(county_name == "Broome County") %>% 
  st_transform("EPSG:32116")
old-style crs object detected; please recreate object with a recent sf::st_crs()
#isolate Broome County
broome_map <- ny1[broome,]
#plot it
ggplot(broome_map)+
  geom_sf(mapping = aes(), fill = "white")+
  theme_minimal()+
  labs(title = "Broome County Zipcodes")

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KVGhpcyBpcyBhbiBScHVicyB0ZXN0IGZpbGUhDQoNCmBgYHtyfQ0Kc2V0d2QoIn4vQmluZ2hhbXRvbi9ESURBIDM3MC96aXBfY29kZXMiKQ0KbGlicmFyeShzZikNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KHVyYm5tYXByKQ0KDQptYXAgPC0gc3RfcmVhZCgiY2JfMjAxOV91c196Y3RhNTEwXzUwMGsuc2hwIikNCg0KY29sbmFtZXMobWFwKVsxXSA8LSAiemlwY29kZSINCm1hcCR6aXBjb2RlIDwtIGFzLm51bWVyaWMobWFwJHppcGNvZGUpDQoNCm1hcF9ueSA8LSBtYXAgJT4lIA0KICBmaWx0ZXIoemlwY29kZSA+IDA5OTk5ICYgemlwY29kZSA8IDE1MDAwKSANCg0KZ2dwbG90KG1hcF9ueSkrDQogIGdlb21fc2YoZmlsbCA9ICJ3aGl0ZSIpDQpgYGANCg0KYGBge3J9DQpzZXR3ZCgifi9CaW5naGFtdG9uL0RJREEgMzcwIikNCmRhdGEgPC0gcmVhZC5jc3YoInNlbGVjdF96aXBjb2RlX3N0YXRpc3RpY3MuY3N2IikNCg0KbGlicmFyeSh0aWR5cikNCmxpYnJhcnkodGlkeXZlcnNlKQ0KI2pvaW4gc2hhcGVmaWxlIHdpdGggc3VydmV5IGRhdGENCm55MSA8LSBtYXBfbnkgJT4lIA0KICBsZWZ0X2pvaW4oZGF0YSwgYnkgPSBjKCJ6aXBjb2RlIiA9ICJHZW9ncmFwaGljLkFyZWEuTmFtZSIpKSAlPiUgICAgICAgICBkcm9wX25hKCkgJT4lIA0KICBzdF90cmFuc2Zvcm0oIkVQU0c6MzIxMTYiKQ0KDQojZ2V0IGp1c3QgQnJvb21lIGNvdW50eQ0KI2xvYWQgaW4gTllTIGNvdW50eSBzaGFwZSBmaWxlIGFuZCBzZXQgY3JzDQpjb3VudGllcyA8LSBnZXRfdXJibl9tYXAoImNvdW50aWVzIiwgc2YgPSBUUlVFKQ0KDQojZmlsdGVyIHRoZSBkYXRhIHRvIGdldCBqdXN0IE5ZUw0KYnJvb21lIDwtIGNvdW50aWVzICU+JSANCiAgZmlsdGVyKHN0YXRlX2FiYnYgPT0gIk5ZIikgJT4lIA0KICBmaWx0ZXIoY291bnR5X25hbWUgPT0gIkJyb29tZSBDb3VudHkiKSAlPiUgDQogIHN0X3RyYW5zZm9ybSgiRVBTRzozMjExNiIpDQoNCiNpc29sYXRlIEJyb29tZSBDb3VudHkNCmJyb29tZV9tYXAgPC0gbnkxW2Jyb29tZSxdDQoNCmBgYA0KYGBge3J9DQojcGxvdCBpdA0KZ2dwbG90KGJyb29tZV9tYXApKw0KICBnZW9tX3NmKG1hcHBpbmcgPSBhZXMoKSwgZmlsbCA9ICJ3aGl0ZSIpKw0KICB0aGVtZV9taW5pbWFsKCkrDQogIGxhYnModGl0bGUgPSAiQnJvb21lIENvdW50eSBaaXBjb2RlcyIpDQpgYGANCg0K