#library
pacman::p_load(
tidyverse,data.table,tableone,tibble,stringi,readxl,dplyr,scales,ggsci,
skimr,Epi,janitor,summarytools,broom,easystats,car,rms)
#conflict解消
select<-dplyr::select
library(pROC);library(glmnetUtils);library(glmnet);library(ISLR)
## Type 'citation("pROC")' for a citation.
##
## 次のパッケージを付け加えます: 'pROC'
## 以下のオブジェクトは 'package:parameters' からマスクされています:
##
## ci
## 以下のオブジェクトは 'package:bayestestR' からマスクされています:
##
## auc, ci
## 以下のオブジェクトは 'package:stats' からマスクされています:
##
## cov, smooth, var
## 要求されたパッケージ Matrix をロード中です
##
## 次のパッケージを付け加えます: 'Matrix'
## 以下のオブジェクトは 'package:tidyr' からマスクされています:
##
## expand, pack, unpack
## Loaded glmnet 4.1-8
##
## 次のパッケージを付け加えます: 'glmnet'
## 以下のオブジェクトは 'package:glmnetUtils' からマスクされています:
##
## cv.glmnet, glmnet
#factor var
fac_var<-c("RANDID","SEX", "CURSMOKE", "DIABETES", "BPMEDS","educ","PREVCHD", "PREVAP", "PREVMI", "PREVSTRK", "PREVHYP", "PERIOD", "DEATH",
"ANGINA", "HOSPMI", "MI_FCHD", "ANYCHD", "STROKE", "CVD", "HYPERTEN")
cont_var<-c("TOTCHOL", "AGE", "SYSBP", "DIABP", "CIGPDAY", "BMI", "HEARTRTE", "GLUCOSE")
full_var<-c(fac_var[-c(1,6,12:20)],cont_var)
var<-c("SEX", "CURSMOKE", "DIABETES", "BPMEDS", "PREVCHD", "PREVAP", "PREVMI", "PREVHYP", cont_var) #PREVSTRは除外している
inter_var<-c("SEX:PREVCHD", "SEX:PREVAP", "SEX:PREVMI", "SEX:PREVHYP", "SEX:DIABP", "CURSMOKE:HEARTRTE","DIABETES:TOTCHOL", "DIABETES:SYSBP",
"BPMEDS:PREVCHD", "BPMEDS:TOTCHOL", "BPMEDS:AGE", "PREVCHD:GLUCOSE", "PREVHYP:BMI", "TOTCHOL:AGE","HEARTRTE:GLUCOSE")
nonlin_term<-c("BMI","HEARTRTE","GLUCOSE")
#data import
fr<-read_csv("frmgham2.csv") %>%
mutate(across(fac_var,as.factor))
## Rows: 11627 Columns: 39
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (39): RANDID, SEX, TOTCHOL, AGE, SYSBP, DIABP, CURSMOKE, CIGPDAY, BMI, D...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `across(fac_var, as.factor)`.
## Caused by warning:
## ! Using an external vector in selections was deprecated in tidyselect 1.1.0.
## ℹ Please use `all_of()` or `any_of()` instead.
## # Was:
## data %>% select(fac_var)
##
## # Now:
## data %>% select(all_of(fac_var))
##
## See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
#欠測補完後データのimport
load("fr.missf.RData")
fr.missf<-fr.missf$ximp
#plot in baseline variable
fr_p1<-fr %>%
filter(PERIOD==1)
fr.missf_p1<-
fr.missf %>%
filter(PERIOD==1)
# full model formula
fullmodel<-
paste0("STROKE~",
str_c(var[!var %in% nonlin_term],collapse = "+"), #非線形以外のvarを+でつなぐ
"+",
str_c(paste0("rcs(",nonlin_term,",4)"),collapse = "+"), #非線形のvarを+でつなぐ
"+",
str_c(inter_var,collapse = "+")) #交互作用項を+でつなぐ
# Complete case
full_results<-
glm(as.formula(fullmodel),data=fr_p1,
family = binomial(link = "logit")) %>%
summary() %>%
.$coefficients %>%
as.data.frame() %>%
rownames_to_column() %>%
rename("var"="rowname") %>%
mutate(OR=exp(Estimate),
Lower=exp(Estimate-1.96*`Std. Error`),
Upper=exp(Estimate+1.96*`Std. Error`)) %>%
select(var,OR,Lower,Upper,"p"="Pr(>|z|)") %>%
#すべての変数を丸める
mutate_if(is.numeric,~round(.,3))
full_results
## var OR Lower Upper p
## 1 (Intercept) 0.031 0.000 21.641 0.298
## 2 SEX2 0.346 0.060 2.005 0.237
## 3 CURSMOKE1 0.226 0.050 1.013 0.052
## 4 DIABETES1 52.994 1.393 2015.673 0.032
## 5 BPMEDS1 127.580 2.055 7920.611 0.021
## 6 PREVCHD1 3.288 0.288 37.541 0.338
## 7 PREVAP1 0.637 0.163 2.487 0.516
## 8 PREVMI1 1.392 0.394 4.915 0.607
## 9 PREVHYP1 5.301 1.053 26.683 0.043
## 10 TOTCHOL 1.002 0.984 1.020 0.825
## 11 AGE 1.085 1.003 1.174 0.043
## 12 SYSBP 1.001 0.992 1.010 0.816
## 13 DIABP 1.012 0.993 1.031 0.204
## 14 CIGPDAY 1.003 0.988 1.018 0.677
## 15 rcs(BMI, 4)BMI 0.866 0.755 0.994 0.040
## 16 rcs(BMI, 4)BMI' 1.469 0.940 2.298 0.091
## 17 rcs(BMI, 4)BMI'' 0.361 0.089 1.463 0.154
## 18 rcs(HEARTRTE, 4)HEARTRTE 1.013 0.967 1.062 0.585
## 19 rcs(HEARTRTE, 4)HEARTRTE' 0.787 0.658 0.940 0.008
## 20 rcs(HEARTRTE, 4)HEARTRTE'' 1.856 1.179 2.923 0.008
## 21 rcs(GLUCOSE, 4)GLUCOSE 0.947 0.904 0.991 0.020
## 22 rcs(GLUCOSE, 4)GLUCOSE' 1.102 0.934 1.300 0.249
## 23 rcs(GLUCOSE, 4)GLUCOSE'' 0.768 0.492 1.198 0.244
## 24 SEX2:PREVCHD1 0.720 0.020 26.534 0.858
## 25 SEX2:PREVAP1 2.493 0.082 75.953 0.600
## 26 SEX2:PREVMI1 2.786 0.106 73.500 0.539
## 27 SEX2:PREVHYP1 1.048 0.589 1.863 0.874
## 28 SEX2:DIABP 1.011 0.989 1.033 0.329
## 29 CURSMOKE0:HEARTRTE 0.976 0.957 0.996 0.017
## 30 DIABETES1:TOTCHOL 0.992 0.981 1.003 0.144
## 31 DIABETES1:SYSBP 0.992 0.975 1.011 0.413
## 32 BPMEDS1:PREVCHD1 0.463 0.105 2.038 0.309
## 33 BPMEDS1:TOTCHOL 0.993 0.983 1.003 0.153
## 34 BPMEDS1:AGE 0.957 0.904 1.013 0.133
## 35 PREVCHD0:GLUCOSE 1.013 0.991 1.036 0.249
## 36 PREVHYP0:BMI 1.044 0.985 1.107 0.144
## 37 TOTCHOL:AGE 1.000 1.000 1.000 0.816
## 38 HEARTRTE:GLUCOSE 1.000 1.000 1.001 0.069
#imputation data
full_results_mi<-
glm(as.formula(fullmodel),data=fr.missf_p1,
family = binomial(link = "logit")) %>%
summary() %>%
.$coefficients %>%
as.data.frame() %>%
rownames_to_column() %>%
rename("var"="rowname") %>%
mutate(OR=exp(Estimate),
Lower=exp(Estimate-1.96*`Std. Error`),
Upper=exp(Estimate+1.96*`Std. Error`)) %>%
select(var,OR,Lower,Upper,"p"="Pr(>|z|)") %>%
#すべての変数を丸める
mutate_if(is.numeric,~round(.,3))
full_results_mi
## var OR Lower Upper p
## 1 (Intercept) 0.005 0.000 2.849 0.102
## 2 SEX2 0.303 0.058 1.583 0.157
## 3 CURSMOKE1 0.290 0.071 1.188 0.085
## 4 DIABETES1 55.743 1.632 1903.573 0.026
## 5 BPMEDS1 198.320 4.319 9106.958 0.007
## 6 PREVCHD1 3.015 0.328 27.704 0.329
## 7 PREVAP1 0.689 0.186 2.558 0.578
## 8 PREVMI1 1.057 0.331 3.368 0.926
## 9 PREVHYP1 4.549 0.974 21.246 0.054
## 10 TOTCHOL 1.007 0.990 1.024 0.447
## 11 AGE 1.106 1.027 1.192 0.008
## 12 SYSBP 1.001 0.993 1.010 0.748
## 13 DIABP 1.013 0.995 1.031 0.159
## 14 CIGPDAY 1.003 0.988 1.017 0.718
## 15 rcs(BMI, 4)BMI 0.917 0.803 1.048 0.204
## 16 rcs(BMI, 4)BMI' 1.256 0.817 1.930 0.299
## 17 rcs(BMI, 4)BMI'' 0.552 0.144 2.112 0.385
## 18 rcs(HEARTRTE, 4)HEARTRTE 1.010 0.965 1.056 0.681
## 19 rcs(HEARTRTE, 4)HEARTRTE' 0.809 0.683 0.958 0.014
## 20 rcs(HEARTRTE, 4)HEARTRTE'' 1.721 1.120 2.645 0.013
## 21 rcs(GLUCOSE, 4)GLUCOSE 0.941 0.901 0.982 0.006
## 22 rcs(GLUCOSE, 4)GLUCOSE' 1.134 0.990 1.300 0.070
## 23 rcs(GLUCOSE, 4)GLUCOSE'' 0.672 0.439 1.028 0.067
## 24 SEX2:PREVCHD1 0.638 0.021 19.464 0.797
## 25 SEX2:PREVAP1 2.654 0.100 70.232 0.559
## 26 SEX2:PREVMI1 3.705 0.165 83.060 0.409
## 27 SEX2:PREVHYP1 1.073 0.623 1.845 0.800
## 28 SEX2:DIABP 1.012 0.992 1.033 0.240
## 29 CURSMOKE0:HEARTRTE 0.979 0.962 0.998 0.026
## 30 DIABETES1:TOTCHOL 0.993 0.983 1.004 0.217
## 31 DIABETES1:SYSBP 0.989 0.972 1.006 0.192
## 32 BPMEDS1:PREVCHD1 0.434 0.108 1.743 0.239
## 33 BPMEDS1:TOTCHOL 0.991 0.982 1.001 0.070
## 34 BPMEDS1:AGE 0.957 0.907 1.009 0.107
## 35 PREVCHD0:GLUCOSE 1.010 0.991 1.030 0.299
## 36 PREVHYP0:BMI 1.038 0.982 1.098 0.187
## 37 TOTCHOL:AGE 1.000 1.000 1.000 0.428
## 38 HEARTRTE:GLUCOSE 1.000 1.000 1.001 0.045
full_results_mi %>%
ggplot(aes(y=var,x=OR))+
geom_point()+
geom_errorbar(aes(xmin=Lower,xmax=Upper),width=0.2)+
geom_vline(xintercept=1,color="red")
ORが異常に幅広くなっている因子があるため、sparse data biasがかかっている可能性が高い →penalized regressionを行うか、モデル式の変更をすべき状態
Backwards stepwiseとElastic Netによるパラメータ推定を行う
下準備
# install.packages("glmnet")
# install.packages("ISLR")
# install.packages("glmnetUtils")
# library(glmnetUtils);library(glmnet);library(ISLR)
#to detect optimal lambda
ridge.cv.res<-
cv.glmnet(
x=fr.missf_p1[,var] %>% data.matrix(),
y=fr.missf_p1[,"STROKE"] %>% data.matrix(),
family="binomial",
alpha=0) #ridge
plot(ridge.cv.res)
ridge.cv.res$lambda.min #min lambda
## [1] 0.009523244
# model coefficient with min lambda
glmnet(
x=fr.missf_p1[,var] %>% data.matrix(),
y=fr.missf_p1[,"STROKE"] %>% data.matrix(),
family="binomial",
lambda=ridge.cv.res$lambda.min,
alpha=0) %>%
.$beta
## 16 x 1 sparse Matrix of class "dgCMatrix"
## s0
## SEX -0.0813962421
## CURSMOKE 0.2468760397
## DIABETES 0.7155327927
## BPMEDS 0.5592037443
## PREVCHD 0.3002169372
## PREVAP -0.2447784453
## PREVMI 0.0955726098
## PREVHYP 0.5155415106
## TOTCHOL -0.0011747152
## AGE 0.0604815428
## SYSBP 0.0041215475
## DIABP 0.0149010624
## CIGPDAY 0.0040394071
## BMI 0.0159035694
## HEARTRTE -0.0102841712
## GLUCOSE -0.0009616904
#to detect optimal lambda
lasso.cv.res<-
cv.glmnet(
x=fr.missf_p1[,var] %>% data.matrix(),
y=fr.missf_p1[,"STROKE"] %>% data.matrix(),
family="binomial",
alpha=1) #lasso
#log lambdaとdevianceの関連性plot
plot(lasso.cv.res)
#devianceが最小のときのlambda
lasso.cv.res$lambda.min #min lambda
## [1] 0.0021
#min lambdaのもとでのlasso regression coefficient;二通りのcodeがあるが、結果は同じ
coef(lasso.cv.res,s="lambda.min") #interceptの値も表示される
## 17 x 1 sparse Matrix of class "dgCMatrix"
## s1
## (Intercept) -9.3732919829
## SEX -0.0405473179
## CURSMOKE 0.2688147316
## DIABETES 0.6136939222
## BPMEDS 0.5142181504
## PREVCHD 0.0298690706
## PREVAP .
## PREVMI 0.1240355798
## PREVHYP 0.5511057332
## TOTCHOL -0.0008671472
## AGE 0.0671689119
## SYSBP 0.0012846234
## DIABP 0.0178463734
## CIGPDAY 0.0025925936
## BMI 0.0112364738
## HEARTRTE -0.0092393943
## GLUCOSE .
glmnet(
x=fr.missf_p1[,var] %>% data.matrix(),
y=fr.missf_p1[,"STROKE"] %>% data.matrix(),
family="binomial",
lambda=lasso.cv.res$lambda.min,
alpha=1) %>%
.$beta
## 16 x 1 sparse Matrix of class "dgCMatrix"
## s0
## SEX -0.040476551
## CURSMOKE 0.268983024
## DIABETES 0.613718984
## BPMEDS 0.514118152
## PREVCHD 0.029927580
## PREVAP .
## PREVMI 0.123893960
## PREVHYP 0.551330129
## TOTCHOL -0.000867187
## AGE 0.067179689
## SYSBP 0.001277099
## DIABP 0.017852439
## CIGPDAY 0.002589202
## BMI 0.011237120
## HEARTRTE -0.009239599
## GLUCOSE .
Elastic Netでは、Ridge,Lassoの罰則項を割合alphaで混ぜ合わせる事ができる 当てはまりが最も良い時の最適なalpha求める
#cv.glmnetではなく、cv"a".glmnetを使う; to examine optimal alpha and lambda
elastic.cv.res<-
cva.glmnet(
x=fr.missf_p1[,var] %>% data.matrix(),
y=fr.missf_p1[,"STROKE"] %>% data.matrix(),
family="binomial"
)
plot(elastic.cv.res)
#alphaをデフォルトでは0-1の間で11個に振り分け、それぞれでのdevianceとlambdaの関係性を求める
#各alphaのうち、最もDevianceが小さいときのalphaを探し、その中で最も小さいlambdaを探す
##alpha=1はlassoと同じ;alpha=0はRidgeと同じということになる
sapply(elastic.cv.res$modlist,"[[","cvm") %>% #各alphaにおけるcvmを取り出す
sapply(min) %>% #各alphaの中で最小の値を取り出す
min() #すべてのalphaの中で最小のcvmを取り出す
## [1] 0.55716
#結果を踏まえると、alpha=1のとき最小の値を示しており、すなわちlassoが最適と考えられる
#alpha=1のときの最小のlamdaを求める
cv.glmnet(
x=fr.missf_p1[,var] %>% data.matrix(),
y=fr.missf_p1[,"STROKE"] %>% data.matrix(),
family="binomial",
alpha=1
) %>%
.$lambda.min
## [1] 0.001588573
#これは一個前のchankのlamda minと同じ値になる
attributes(elastic.cv.res)
## $names
## [1] "alpha" "nfolds" "modlist" "call"
##
## $class
## [1] "cva.glmnet"
#minlossplot(elastic.cv.res)
最適な(α,λ)は(1,0.001913442)であり、lasso regressionが良いということになる →これは間違っていそう。binomial devianceが最小のときのα、λのセットを選べていないかも →
ということで、更に再検討 Grid search ref: https://asmquantmacro.com/2016/04/26/fitting-elastic-net-model-in-r/
#install.packages("caret")
library(caret)
## 要求されたパッケージ lattice をロード中です
##
## 次のパッケージを付け加えます: 'caret'
## 以下のオブジェクトは 'package:parameters' からマスクされています:
##
## compare_models
## 以下のオブジェクトは 'package:purrr' からマスクされています:
##
## lift
Grid Searchの準備
#develop grid search frame work
lambda.grid<-10^seq(2, -2, length=100)
alpha.grid<-seq(0, 1, len = 11)^3 #alphaの分割回数(cva.glmnetと同じに合わせた)
srchGrd<-expand.grid(alpha=alpha.grid,lambda=lambda.grid) #alpha 11個、lambda 100個の組み合わせを作る;計1100行
#Grid search with Cross validation
trnCntrl<-
trainControl(method = "repeatedcv", #bootstrapも可能
number=10, #fold数
repeats=5,
search="grid") #random searchも可能
#perform Cross validation
set.seed(2024)
grid.res<-
train(x=fr.missf_p1[,var] %>% data.matrix(),
y=fr.missf_p1[,"STROKE"] %>% data.matrix(),
data=fr.missf_p1,
method="glmnet", #method list is in http://topepo.github.io/caret/train-models-by-tag.html
#metric="RMSE",#value to determine optimal parameter
tuneGrid=srchGrd, #grid search framework
trControl=trnCntrl #searching method condition.
)
plot(grid.res)
#得られた結果から任意の項目を抽出する項目名の指定
attributes(grid.res)
## $names
## [1] "method" "modelInfo" "modelType" "results" "pred"
## [6] "bestTune" "call" "dots" "metric" "control"
## [11] "finalModel" "preProcess" "trainingData" "ptype" "resample"
## [16] "resampledCM" "perfNames" "maximize" "yLimits" "times"
## [21] "levels"
##
## $class
## [1] "train"
#accuracy最適なときのalpha, lambda
grid.res$bestTune
## alpha lambda
## 28 0 0.1232847
grid.res$results
## alpha lambda Accuracy Kappa AccuracySD KappaSD
## 1 0.000 0.01000000 0.9061354 1.088097e-02 0.002272464 0.0231936150
## 2 0.000 0.01097499 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 3 0.000 0.01204504 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 4 0.000 0.01321941 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 5 0.000 0.01450829 0.9062256 1.181208e-02 0.002236353 0.0234894941
## 6 0.000 0.01592283 0.9062256 1.181208e-02 0.002236353 0.0234894941
## 7 0.000 0.01747528 0.9062256 1.181208e-02 0.002236353 0.0234894941
## 8 0.000 0.01917910 0.9062707 1.189718e-02 0.002147844 0.0234213703
## 9 0.000 0.02104904 0.9062255 1.034582e-02 0.002146289 0.0216204550
## 10 0.000 0.02310130 0.9062255 1.034582e-02 0.002146289 0.0216204550
## 11 0.000 0.02535364 0.9062708 9.670396e-03 0.001992461 0.0210364255
## 12 0.000 0.02782559 0.9063158 8.994152e-03 0.001945444 0.0206199572
## 13 0.000 0.03053856 0.9063158 8.236576e-03 0.001891483 0.0200397462
## 14 0.000 0.03351603 0.9063158 8.236576e-03 0.001891483 0.0200397462
## 15 0.000 0.03678380 0.9063158 8.236576e-03 0.001891483 0.0200397462
## 16 0.000 0.04037017 0.9063158 7.453662e-03 0.001778129 0.0193530744
## 17 0.000 0.04430621 0.9063158 7.453662e-03 0.001778129 0.0193530744
## 18 0.000 0.04862602 0.9063158 6.674133e-03 0.001718651 0.0186261584
## 19 0.000 0.05336699 0.9064060 6.851051e-03 0.001660926 0.0185389761
## 20 0.000 0.05857021 0.9064962 7.038989e-03 0.001595930 0.0186518966
## 21 0.000 0.06428073 0.9064512 6.193030e-03 0.001594263 0.0179667139
## 22 0.000 0.07054802 0.9064963 6.281564e-03 0.001589830 0.0179241718
## 23 0.000 0.07742637 0.9064512 5.467220e-03 0.001527643 0.0150640003
## 24 0.000 0.08497534 0.9064513 3.923264e-03 0.001451245 0.0131545349
## 25 0.000 0.09326033 0.9064513 3.923264e-03 0.001451245 0.0131545349
## 26 0.000 0.10235310 0.9065415 4.096896e-03 0.001295782 0.0130416236
## 27 0.000 0.11233240 0.9065415 3.339320e-03 0.001213262 0.0117864848
## 28 0.000 0.12328467 0.9065866 3.427854e-03 0.001203981 0.0117435073
## 29 0.000 0.13530478 0.9065415 2.559791e-03 0.001124287 0.0102356292
## 30 0.000 0.14849683 0.9064963 1.714023e-03 0.001132386 0.0084829470
## 31 0.000 0.16297508 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 32 0.000 0.17886495 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 33 0.000 0.19630407 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 34 0.000 0.21544347 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 35 0.000 0.23644894 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 36 0.000 0.25950242 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 37 0.000 0.28480359 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 38 0.000 0.31257158 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 39 0.000 0.34304693 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 40 0.000 0.37649358 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 41 0.000 0.41320124 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 42 0.000 0.45348785 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 43 0.000 0.49770236 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 44 0.000 0.54622772 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 45 0.000 0.59948425 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 46 0.000 0.65793322 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 47 0.000 0.72208090 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 48 0.000 0.79248290 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 49 0.000 0.86974900 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 50 0.000 0.95454846 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 51 0.000 1.04761575 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 52 0.000 1.14975700 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 53 0.000 1.26185688 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 54 0.000 1.38488637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 55 0.000 1.51991108 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 56 0.000 1.66810054 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 57 0.000 1.83073828 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 58 0.000 2.00923300 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 59 0.000 2.20513074 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 60 0.000 2.42012826 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 61 0.000 2.65608778 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 62 0.000 2.91505306 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 63 0.000 3.19926714 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 64 0.000 3.51119173 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 65 0.000 3.85352859 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 66 0.000 4.22924287 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 67 0.000 4.64158883 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 68 0.000 5.09413801 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 69 0.000 5.59081018 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 70 0.000 6.13590727 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 71 0.000 6.73415066 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 72 0.000 7.39072203 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 73 0.000 8.11130831 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 74 0.000 8.90215085 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 75 0.000 9.77009957 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 76 0.000 10.72267222 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 77 0.000 11.76811952 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 78 0.000 12.91549665 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 79 0.000 14.17474163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 80 0.000 15.55676144 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 81 0.000 17.07352647 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 82 0.000 18.73817423 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 83 0.000 20.56512308 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 84 0.000 22.57019720 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 85 0.000 24.77076356 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 86 0.000 27.18588243 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 87 0.000 29.83647240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 88 0.000 32.74549163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 89 0.000 35.93813664 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 90 0.000 39.44206059 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 91 0.000 43.28761281 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 92 0.000 47.50810162 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 93 0.000 52.14008288 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 94 0.000 57.22367659 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 95 0.000 62.80291442 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 96 0.000 68.92612104 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 97 0.000 75.64633276 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 98 0.000 83.02175681 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 99 0.000 91.11627561 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 100 0.000 100.00000000 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 101 0.001 0.01000000 0.9061354 1.088097e-02 0.002272464 0.0231936150
## 102 0.001 0.01097499 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 103 0.001 0.01204504 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 104 0.001 0.01321941 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 105 0.001 0.01450829 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 106 0.001 0.01592283 0.9062256 1.181208e-02 0.002236353 0.0234894941
## 107 0.001 0.01747528 0.9062256 1.181208e-02 0.002236353 0.0234894941
## 108 0.001 0.01917910 0.9062256 1.105122e-02 0.002141771 0.0230620373
## 109 0.001 0.02104904 0.9062255 1.034582e-02 0.002146289 0.0216204550
## 110 0.001 0.02310130 0.9062255 1.034582e-02 0.002146289 0.0216204550
## 111 0.001 0.02535364 0.9062708 9.670396e-03 0.001992461 0.0210364255
## 112 0.001 0.02782559 0.9062708 8.148193e-03 0.001939808 0.0200865050
## 113 0.001 0.03053856 0.9063158 8.236576e-03 0.001891483 0.0200397462
## 114 0.001 0.03351603 0.9063158 8.236576e-03 0.001891483 0.0200397462
## 115 0.001 0.03678380 0.9063610 8.321725e-03 0.001835233 0.0199753241
## 116 0.001 0.04037017 0.9063158 7.453662e-03 0.001778129 0.0193530744
## 117 0.001 0.04430621 0.9063158 7.453662e-03 0.001778129 0.0193530744
## 118 0.001 0.04862602 0.9063610 6.762667e-03 0.001718172 0.0185827872
## 119 0.001 0.05336699 0.9064060 6.851051e-03 0.001660926 0.0185389761
## 120 0.001 0.05857021 0.9064962 7.038989e-03 0.001595930 0.0186518966
## 121 0.001 0.06428073 0.9064512 6.193030e-03 0.001594263 0.0179667139
## 122 0.001 0.07054802 0.9064963 6.281564e-03 0.001589830 0.0179241718
## 123 0.001 0.07742637 0.9064060 4.599157e-03 0.001461392 0.0140497368
## 124 0.001 0.08497534 0.9064513 3.923264e-03 0.001451245 0.0131545349
## 125 0.001 0.09326033 0.9064513 3.923264e-03 0.001451245 0.0131545349
## 126 0.001 0.10235310 0.9065415 4.096896e-03 0.001295782 0.0130416236
## 127 0.001 0.11233240 0.9065415 3.339320e-03 0.001213262 0.0117864848
## 128 0.001 0.12328467 0.9065866 3.427854e-03 0.001203981 0.0117435073
## 129 0.001 0.13530478 0.9065415 2.559791e-03 0.001124287 0.0102356292
## 130 0.001 0.14849683 0.9064963 1.714023e-03 0.001132386 0.0084829470
## 131 0.001 0.16297508 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 132 0.001 0.17886495 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 133 0.001 0.19630407 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 134 0.001 0.21544347 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 135 0.001 0.23644894 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 136 0.001 0.25950242 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 137 0.001 0.28480359 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 138 0.001 0.31257158 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 139 0.001 0.34304693 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 140 0.001 0.37649358 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 141 0.001 0.41320124 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 142 0.001 0.45348785 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 143 0.001 0.49770236 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 144 0.001 0.54622772 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 145 0.001 0.59948425 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 146 0.001 0.65793322 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 147 0.001 0.72208090 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 148 0.001 0.79248290 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 149 0.001 0.86974900 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 150 0.001 0.95454846 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 151 0.001 1.04761575 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 152 0.001 1.14975700 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 153 0.001 1.26185688 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 154 0.001 1.38488637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 155 0.001 1.51991108 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 156 0.001 1.66810054 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 157 0.001 1.83073828 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 158 0.001 2.00923300 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 159 0.001 2.20513074 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 160 0.001 2.42012826 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 161 0.001 2.65608778 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 162 0.001 2.91505306 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 163 0.001 3.19926714 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 164 0.001 3.51119173 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 165 0.001 3.85352859 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 166 0.001 4.22924287 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 167 0.001 4.64158883 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 168 0.001 5.09413801 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 169 0.001 5.59081018 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 170 0.001 6.13590727 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 171 0.001 6.73415066 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 172 0.001 7.39072203 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 173 0.001 8.11130831 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 174 0.001 8.90215085 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 175 0.001 9.77009957 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 176 0.001 10.72267222 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 177 0.001 11.76811952 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 178 0.001 12.91549665 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 179 0.001 14.17474163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 180 0.001 15.55676144 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 181 0.001 17.07352647 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 182 0.001 18.73817423 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 183 0.001 20.56512308 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 184 0.001 22.57019720 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 185 0.001 24.77076356 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 186 0.001 27.18588243 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 187 0.001 29.83647240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 188 0.001 32.74549163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 189 0.001 35.93813664 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 190 0.001 39.44206059 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 191 0.001 43.28761281 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 192 0.001 47.50810162 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 193 0.001 52.14008288 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 194 0.001 57.22367659 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 195 0.001 62.80291442 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 196 0.001 68.92612104 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 197 0.001 75.64633276 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 198 0.001 83.02175681 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 199 0.001 91.11627561 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 200 0.001 100.00000000 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 201 0.008 0.01000000 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 202 0.008 0.01097499 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 203 0.008 0.01204504 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 204 0.008 0.01321941 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 205 0.008 0.01450829 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 206 0.008 0.01592283 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 207 0.008 0.01747528 0.9062256 1.105122e-02 0.002141771 0.0230620373
## 208 0.008 0.01917910 0.9062255 1.034582e-02 0.002146289 0.0216204550
## 209 0.008 0.02104904 0.9062707 1.043440e-02 0.002098869 0.0215676921
## 210 0.008 0.02310130 0.9062256 9.588442e-03 0.002092654 0.0211172183
## 211 0.008 0.02535364 0.9063610 9.862215e-03 0.001997771 0.0211406162
## 212 0.008 0.02782559 0.9063610 9.104639e-03 0.001945262 0.0206076814
## 213 0.008 0.03053856 0.9063610 9.104639e-03 0.001945262 0.0206076814
## 214 0.008 0.03351603 0.9063610 9.104639e-03 0.001945262 0.0206076814
## 215 0.008 0.03678380 0.9063610 8.321725e-03 0.001835233 0.0199753241
## 216 0.008 0.04037017 0.9064061 8.410259e-03 0.001833650 0.0199274204
## 217 0.008 0.04430621 0.9064060 7.630580e-03 0.001722399 0.0192618766
## 218 0.008 0.04862602 0.9064060 6.851051e-03 0.001660926 0.0185389761
## 219 0.008 0.05336699 0.9064512 6.950605e-03 0.001657927 0.0186963496
## 220 0.008 0.05857021 0.9064512 6.193030e-03 0.001594263 0.0179667139
## 221 0.008 0.06428073 0.9064512 6.193030e-03 0.001594263 0.0179667139
## 222 0.008 0.07054802 0.9064512 5.467220e-03 0.001527643 0.0150640003
## 223 0.008 0.07742637 0.9063609 3.731094e-03 0.001390496 0.0128968321
## 224 0.008 0.08497534 0.9064513 3.923264e-03 0.001451245 0.0131545349
## 225 0.008 0.09326033 0.9065415 4.096896e-03 0.001295782 0.0130416236
## 226 0.008 0.10235310 0.9065866 3.427854e-03 0.001203981 0.0117435073
## 227 0.008 0.11233240 0.9065866 3.427854e-03 0.001203981 0.0117435073
## 228 0.008 0.12328467 0.9065415 2.559791e-03 0.001124287 0.0102356292
## 229 0.008 0.13530478 0.9064963 1.714023e-03 0.001132386 0.0084829470
## 230 0.008 0.14849683 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 231 0.008 0.16297508 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 232 0.008 0.17886495 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 233 0.008 0.19630407 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 234 0.008 0.21544347 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 235 0.008 0.23644894 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 236 0.008 0.25950242 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 237 0.008 0.28480359 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 238 0.008 0.31257158 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 239 0.008 0.34304693 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 240 0.008 0.37649358 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 241 0.008 0.41320124 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 242 0.008 0.45348785 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 243 0.008 0.49770236 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 244 0.008 0.54622772 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 245 0.008 0.59948425 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 246 0.008 0.65793322 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 247 0.008 0.72208090 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 248 0.008 0.79248290 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 249 0.008 0.86974900 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 250 0.008 0.95454846 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 251 0.008 1.04761575 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 252 0.008 1.14975700 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 253 0.008 1.26185688 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 254 0.008 1.38488637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 255 0.008 1.51991108 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 256 0.008 1.66810054 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 257 0.008 1.83073828 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 258 0.008 2.00923300 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 259 0.008 2.20513074 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 260 0.008 2.42012826 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 261 0.008 2.65608778 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 262 0.008 2.91505306 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 263 0.008 3.19926714 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 264 0.008 3.51119173 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 265 0.008 3.85352859 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 266 0.008 4.22924287 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 267 0.008 4.64158883 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 268 0.008 5.09413801 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 269 0.008 5.59081018 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 270 0.008 6.13590727 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 271 0.008 6.73415066 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 272 0.008 7.39072203 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 273 0.008 8.11130831 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 274 0.008 8.90215085 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 275 0.008 9.77009957 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 276 0.008 10.72267222 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 277 0.008 11.76811952 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 278 0.008 12.91549665 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 279 0.008 14.17474163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 280 0.008 15.55676144 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 281 0.008 17.07352647 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 282 0.008 18.73817423 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 283 0.008 20.56512308 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 284 0.008 22.57019720 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 285 0.008 24.77076356 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 286 0.008 27.18588243 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 287 0.008 29.83647240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 288 0.008 32.74549163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 289 0.008 35.93813664 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 290 0.008 39.44206059 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 291 0.008 43.28761281 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 292 0.008 47.50810162 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 293 0.008 52.14008288 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 294 0.008 57.22367659 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 295 0.008 62.80291442 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 296 0.008 68.92612104 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 297 0.008 75.64633276 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 298 0.008 83.02175681 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 299 0.008 91.11627561 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 300 0.008 100.00000000 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 301 0.027 0.01000000 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 302 0.027 0.01097499 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 303 0.027 0.01204504 0.9061806 1.096612e-02 0.002229593 0.0231280435
## 304 0.027 0.01321941 0.9062256 1.105122e-02 0.002141771 0.0230620373
## 305 0.027 0.01450829 0.9062256 1.105122e-02 0.002141771 0.0230620373
## 306 0.027 0.01592283 0.9063159 1.200787e-02 0.002143910 0.0233964351
## 307 0.027 0.01747528 0.9063158 1.130246e-02 0.002148429 0.0220081093
## 308 0.027 0.01917910 0.9063158 1.130246e-02 0.002148429 0.0220081093
## 309 0.027 0.02104904 0.9063610 1.064832e-02 0.002148264 0.0216959403
## 310 0.027 0.02310130 0.9063611 9.869417e-03 0.001992909 0.0209689648
## 311 0.027 0.02535364 0.9064061 9.957801e-03 0.001943769 0.0209167578
## 312 0.027 0.02782559 0.9064061 9.957801e-03 0.001943769 0.0209167578
## 313 0.027 0.03053856 0.9064513 1.004295e-02 0.001886873 0.0208478728
## 314 0.027 0.03351603 0.9064512 9.263271e-03 0.001778956 0.0202768221
## 315 0.027 0.03678380 0.9064512 8.483742e-03 0.001719507 0.0196575856
## 316 0.027 0.04037017 0.9064963 8.572276e-03 0.001715397 0.0196081593
## 317 0.027 0.04430621 0.9064513 6.957808e-03 0.001652059 0.0185031921
## 318 0.027 0.04862602 0.9064963 7.046192e-03 0.001589830 0.0184582386
## 319 0.027 0.05336699 0.9064512 6.193030e-03 0.001594263 0.0179667139
## 320 0.027 0.05857021 0.9064512 6.193030e-03 0.001594263 0.0179667139
## 321 0.027 0.06428073 0.9063609 3.731094e-03 0.001390496 0.0128968321
## 322 0.027 0.07054802 0.9064963 4.008362e-03 0.001302815 0.0130849567
## 323 0.027 0.07742637 0.9065866 4.185430e-03 0.001287096 0.0129975308
## 324 0.027 0.08497534 0.9065416 3.339470e-03 0.001288258 0.0117863840
## 325 0.027 0.09326033 0.9065415 2.559791e-03 0.001124287 0.0102356292
## 326 0.027 0.10235310 0.9064963 1.714023e-03 0.001132386 0.0084829470
## 327 0.027 0.11233240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 328 0.027 0.12328467 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 329 0.027 0.13530478 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 330 0.027 0.14849683 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 331 0.027 0.16297508 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 332 0.027 0.17886495 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 333 0.027 0.19630407 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 334 0.027 0.21544347 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 335 0.027 0.23644894 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 336 0.027 0.25950242 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 337 0.027 0.28480359 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 338 0.027 0.31257158 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 339 0.027 0.34304693 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 340 0.027 0.37649358 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 341 0.027 0.41320124 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 342 0.027 0.45348785 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 343 0.027 0.49770236 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 344 0.027 0.54622772 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 345 0.027 0.59948425 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 346 0.027 0.65793322 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 347 0.027 0.72208090 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 348 0.027 0.79248290 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 349 0.027 0.86974900 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 350 0.027 0.95454846 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 351 0.027 1.04761575 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 352 0.027 1.14975700 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 353 0.027 1.26185688 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 354 0.027 1.38488637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 355 0.027 1.51991108 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 356 0.027 1.66810054 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 357 0.027 1.83073828 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 358 0.027 2.00923300 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 359 0.027 2.20513074 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 360 0.027 2.42012826 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 361 0.027 2.65608778 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 362 0.027 2.91505306 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 363 0.027 3.19926714 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 364 0.027 3.51119173 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 365 0.027 3.85352859 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 366 0.027 4.22924287 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 367 0.027 4.64158883 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 368 0.027 5.09413801 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 369 0.027 5.59081018 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 370 0.027 6.13590727 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 371 0.027 6.73415066 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 372 0.027 7.39072203 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 373 0.027 8.11130831 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 374 0.027 8.90215085 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 375 0.027 9.77009957 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 376 0.027 10.72267222 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 377 0.027 11.76811952 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 378 0.027 12.91549665 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 379 0.027 14.17474163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 380 0.027 15.55676144 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 381 0.027 17.07352647 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 382 0.027 18.73817423 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 383 0.027 20.56512308 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 384 0.027 22.57019720 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 385 0.027 24.77076356 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 386 0.027 27.18588243 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 387 0.027 29.83647240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 388 0.027 32.74549163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 389 0.027 35.93813664 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 390 0.027 39.44206059 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 391 0.027 43.28761281 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 392 0.027 47.50810162 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 393 0.027 52.14008288 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 394 0.027 57.22367659 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 395 0.027 62.80291442 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 396 0.027 68.92612104 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 397 0.027 75.64633276 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 398 0.027 83.02175681 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 399 0.027 91.11627561 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 400 0.027 100.00000000 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 401 0.064 0.01000000 0.9063610 1.285383e-02 0.002148046 0.0237159144
## 402 0.064 0.01097499 0.9063610 1.285383e-02 0.002148046 0.0237159144
## 403 0.064 0.01204504 0.9063610 1.285383e-02 0.002148046 0.0237159144
## 404 0.064 0.01321941 0.9064060 1.295629e-02 0.002151211 0.0238339119
## 405 0.064 0.01450829 0.9064060 1.300159e-02 0.002151211 0.0225424198
## 406 0.064 0.01592283 0.9063611 1.141310e-02 0.002191502 0.0219846637
## 407 0.064 0.01747528 0.9064061 1.150149e-02 0.002146912 0.0219285264
## 408 0.064 0.01917910 0.9063611 9.869417e-03 0.001992909 0.0209689648
## 409 0.064 0.02104904 0.9063610 9.858247e-03 0.001945262 0.0207909087
## 410 0.064 0.02310130 0.9063610 9.858247e-03 0.001945262 0.0207909087
## 411 0.064 0.02535364 0.9064061 9.943396e-03 0.001889512 0.0207220228
## 412 0.064 0.02782559 0.9064512 9.252250e-03 0.001778956 0.0200921854
## 413 0.064 0.03053856 0.9064963 8.572276e-03 0.001715397 0.0196081593
## 414 0.064 0.03351603 0.9064964 7.825871e-03 0.001709724 0.0191759911
## 415 0.064 0.03678380 0.9064964 7.825871e-03 0.001709724 0.0191759911
## 416 0.064 0.04037017 0.9064963 7.046192e-03 0.001589830 0.0184582386
## 417 0.064 0.04430621 0.9064962 6.278128e-03 0.001460445 0.0179048296
## 418 0.064 0.04862602 0.9064962 5.552318e-03 0.001387414 0.0149943413
## 419 0.064 0.05336699 0.9064962 4.008161e-03 0.001310318 0.0130850891
## 420 0.064 0.05857021 0.9064513 2.382874e-03 0.001218210 0.0103178904
## 421 0.064 0.06428073 0.9064964 2.471407e-03 0.001212399 0.0102771793
## 422 0.064 0.07054802 0.9064963 1.714023e-03 0.001132386 0.0084829470
## 423 0.064 0.07742637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 424 0.064 0.08497534 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 425 0.064 0.09326033 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 426 0.064 0.10235310 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 427 0.064 0.11233240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 428 0.064 0.12328467 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 429 0.064 0.13530478 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 430 0.064 0.14849683 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 431 0.064 0.16297508 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 432 0.064 0.17886495 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 433 0.064 0.19630407 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 434 0.064 0.21544347 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 435 0.064 0.23644894 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 436 0.064 0.25950242 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 437 0.064 0.28480359 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 438 0.064 0.31257158 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 439 0.064 0.34304693 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 440 0.064 0.37649358 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 441 0.064 0.41320124 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 442 0.064 0.45348785 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 443 0.064 0.49770236 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 444 0.064 0.54622772 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 445 0.064 0.59948425 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 446 0.064 0.65793322 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 447 0.064 0.72208090 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 448 0.064 0.79248290 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 449 0.064 0.86974900 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 450 0.064 0.95454846 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 451 0.064 1.04761575 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 452 0.064 1.14975700 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 453 0.064 1.26185688 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 454 0.064 1.38488637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 455 0.064 1.51991108 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 456 0.064 1.66810054 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 457 0.064 1.83073828 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 458 0.064 2.00923300 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 459 0.064 2.20513074 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 460 0.064 2.42012826 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 461 0.064 2.65608778 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 462 0.064 2.91505306 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 463 0.064 3.19926714 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 464 0.064 3.51119173 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 465 0.064 3.85352859 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 466 0.064 4.22924287 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 467 0.064 4.64158883 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 468 0.064 5.09413801 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 469 0.064 5.59081018 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 470 0.064 6.13590727 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 471 0.064 6.73415066 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 472 0.064 7.39072203 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 473 0.064 8.11130831 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 474 0.064 8.90215085 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 475 0.064 9.77009957 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 476 0.064 10.72267222 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 477 0.064 11.76811952 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 478 0.064 12.91549665 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 479 0.064 14.17474163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 480 0.064 15.55676144 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 481 0.064 17.07352647 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 482 0.064 18.73817423 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 483 0.064 20.56512308 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 484 0.064 22.57019720 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 485 0.064 24.77076356 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 486 0.064 27.18588243 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 487 0.064 29.83647240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 488 0.064 32.74549163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 489 0.064 35.93813664 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 490 0.064 39.44206059 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 491 0.064 43.28761281 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 492 0.064 47.50810162 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 493 0.064 52.14008288 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 494 0.064 57.22367659 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 495 0.064 62.80291442 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 496 0.064 68.92612104 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 497 0.064 75.64633276 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 498 0.064 83.02175681 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 499 0.064 91.11627561 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 500 0.064 100.00000000 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 501 0.125 0.01000000 0.9064512 1.380946e-02 0.002148896 0.0239621219
## 502 0.125 0.01097499 0.9064061 1.225906e-02 0.002194602 0.0223473420
## 503 0.125 0.01204504 0.9063610 1.140193e-02 0.002148264 0.0218157061
## 504 0.125 0.01321941 0.9063610 1.140193e-02 0.002148264 0.0218157061
## 505 0.125 0.01450829 0.9062708 9.687908e-03 0.002094469 0.0209249372
## 506 0.125 0.01592283 0.9063610 9.858247e-03 0.001945262 0.0207909087
## 507 0.125 0.01747528 0.9063610 9.858247e-03 0.001945262 0.0207909087
## 508 0.125 0.01917910 0.9064964 1.013148e-02 0.001883127 0.0207945022
## 509 0.125 0.02104904 0.9064061 8.395358e-03 0.001776033 0.0197063825
## 510 0.125 0.02310130 0.9064512 8.483742e-03 0.001719507 0.0196575856
## 511 0.125 0.02535364 0.9064964 7.825871e-03 0.001709724 0.0191759911
## 512 0.125 0.02782559 0.9065415 7.914255e-03 0.001648414 0.0191285262
## 513 0.125 0.03053856 0.9064512 6.193030e-03 0.001594263 0.0179667139
## 514 0.125 0.03351603 0.9064962 6.278128e-03 0.001460445 0.0179048296
## 515 0.125 0.03678380 0.9064060 3.073668e-03 0.001312087 0.0119104917
## 516 0.125 0.04037017 0.9063609 2.205605e-03 0.001232634 0.0103966579
## 517 0.125 0.04430621 0.9064061 1.514810e-03 0.001134027 0.0084537425
## 518 0.125 0.04862602 0.9063611 -8.838384e-05 0.001128015 0.0006249681
## 519 0.125 0.05336699 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 520 0.125 0.05857021 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 521 0.125 0.06428073 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 522 0.125 0.07054802 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 523 0.125 0.07742637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 524 0.125 0.08497534 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 525 0.125 0.09326033 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 526 0.125 0.10235310 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 527 0.125 0.11233240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 528 0.125 0.12328467 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 529 0.125 0.13530478 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 530 0.125 0.14849683 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 531 0.125 0.16297508 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 532 0.125 0.17886495 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 533 0.125 0.19630407 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 534 0.125 0.21544347 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 535 0.125 0.23644894 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 536 0.125 0.25950242 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 537 0.125 0.28480359 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 538 0.125 0.31257158 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 539 0.125 0.34304693 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 540 0.125 0.37649358 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 541 0.125 0.41320124 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 542 0.125 0.45348785 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 543 0.125 0.49770236 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 544 0.125 0.54622772 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 545 0.125 0.59948425 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 546 0.125 0.65793322 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 547 0.125 0.72208090 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 548 0.125 0.79248290 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 549 0.125 0.86974900 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 550 0.125 0.95454846 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 551 0.125 1.04761575 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 552 0.125 1.14975700 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 553 0.125 1.26185688 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 554 0.125 1.38488637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 555 0.125 1.51991108 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 556 0.125 1.66810054 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 557 0.125 1.83073828 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 558 0.125 2.00923300 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 559 0.125 2.20513074 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 560 0.125 2.42012826 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 561 0.125 2.65608778 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 562 0.125 2.91505306 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 563 0.125 3.19926714 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 564 0.125 3.51119173 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 565 0.125 3.85352859 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 566 0.125 4.22924287 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 567 0.125 4.64158883 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 568 0.125 5.09413801 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 569 0.125 5.59081018 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 570 0.125 6.13590727 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 571 0.125 6.73415066 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 572 0.125 7.39072203 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 573 0.125 8.11130831 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 574 0.125 8.90215085 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 575 0.125 9.77009957 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 576 0.125 10.72267222 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 577 0.125 11.76811952 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 578 0.125 12.91549665 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 579 0.125 14.17474163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 580 0.125 15.55676144 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 581 0.125 17.07352647 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 582 0.125 18.73817423 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 583 0.125 20.56512308 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 584 0.125 22.57019720 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 585 0.125 24.77076356 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 586 0.125 27.18588243 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 587 0.125 29.83647240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 588 0.125 32.74549163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 589 0.125 35.93813664 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 590 0.125 39.44206059 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 591 0.125 43.28761281 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 592 0.125 47.50810162 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 593 0.125 52.14008288 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 594 0.125 57.22367659 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 595 0.125 62.80291442 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 596 0.125 68.92612104 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 597 0.125 75.64633276 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 598 0.125 83.02175681 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 599 0.125 91.11627561 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 600 0.125 100.00000000 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 601 0.216 0.01000000 0.9063159 1.055597e-02 0.002144129 0.0214095069
## 602 0.216 0.01097499 0.9062708 9.687908e-03 0.002094469 0.0209249372
## 603 0.216 0.01204504 0.9063611 9.869417e-03 0.001992909 0.0209689648
## 604 0.216 0.01321941 0.9064061 9.174887e-03 0.001833650 0.0203275912
## 605 0.216 0.01450829 0.9064513 9.263421e-03 0.001830931 0.0202767189
## 606 0.216 0.01592283 0.9064512 8.483742e-03 0.001719507 0.0196575856
## 607 0.216 0.01747528 0.9064512 8.483742e-03 0.001719507 0.0196575856
## 608 0.216 0.01917910 0.9065415 7.914255e-03 0.001648414 0.0191285262
## 609 0.216 0.02104904 0.9064963 7.046192e-03 0.001589830 0.0184582386
## 610 0.216 0.02310130 0.9063610 4.479007e-03 0.001526446 0.0163251343
## 611 0.216 0.02535364 0.9064963 4.756074e-03 0.001453777 0.0164614212
## 612 0.216 0.02782559 0.9063609 2.205605e-03 0.001232634 0.0103966579
## 613 0.216 0.03053856 0.9062708 -2.654514e-04 0.001127638 0.0010613545
## 614 0.216 0.03351603 0.9063159 -1.769176e-04 0.001128748 0.0008755156
## 615 0.216 0.03678380 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 616 0.216 0.04037017 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 617 0.216 0.04430621 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 618 0.216 0.04862602 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 619 0.216 0.05336699 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 620 0.216 0.05857021 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 621 0.216 0.06428073 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 622 0.216 0.07054802 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 623 0.216 0.07742637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 624 0.216 0.08497534 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 625 0.216 0.09326033 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 626 0.216 0.10235310 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 627 0.216 0.11233240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 628 0.216 0.12328467 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 629 0.216 0.13530478 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 630 0.216 0.14849683 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 631 0.216 0.16297508 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 632 0.216 0.17886495 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 633 0.216 0.19630407 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 634 0.216 0.21544347 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 635 0.216 0.23644894 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 636 0.216 0.25950242 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 637 0.216 0.28480359 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 638 0.216 0.31257158 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 639 0.216 0.34304693 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 640 0.216 0.37649358 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 641 0.216 0.41320124 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 642 0.216 0.45348785 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 643 0.216 0.49770236 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 644 0.216 0.54622772 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 645 0.216 0.59948425 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 646 0.216 0.65793322 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 647 0.216 0.72208090 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 648 0.216 0.79248290 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 649 0.216 0.86974900 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 650 0.216 0.95454846 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 651 0.216 1.04761575 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 652 0.216 1.14975700 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 653 0.216 1.26185688 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 654 0.216 1.38488637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 655 0.216 1.51991108 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 656 0.216 1.66810054 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 657 0.216 1.83073828 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 658 0.216 2.00923300 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 659 0.216 2.20513074 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 660 0.216 2.42012826 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 661 0.216 2.65608778 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 662 0.216 2.91505306 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 663 0.216 3.19926714 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 664 0.216 3.51119173 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 665 0.216 3.85352859 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 666 0.216 4.22924287 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 667 0.216 4.64158883 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 668 0.216 5.09413801 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 669 0.216 5.59081018 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 670 0.216 6.13590727 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 671 0.216 6.73415066 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 672 0.216 7.39072203 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 673 0.216 8.11130831 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 674 0.216 8.90215085 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 675 0.216 9.77009957 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 676 0.216 10.72267222 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 677 0.216 11.76811952 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 678 0.216 12.91549665 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 679 0.216 14.17474163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 680 0.216 15.55676144 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 681 0.216 17.07352647 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 682 0.216 18.73817423 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 683 0.216 20.56512308 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 684 0.216 22.57019720 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 685 0.216 24.77076356 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 686 0.216 27.18588243 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 687 0.216 29.83647240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 688 0.216 32.74549163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 689 0.216 35.93813664 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 690 0.216 39.44206059 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 691 0.216 43.28761281 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 692 0.216 47.50810162 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 693 0.216 52.14008288 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 694 0.216 57.22367659 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 695 0.216 62.80291442 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 696 0.216 68.92612104 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 697 0.216 75.64633276 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 698 0.216 83.02175681 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 699 0.216 91.11627561 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 700 0.216 100.00000000 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 701 0.343 0.01000000 0.9064513 9.263421e-03 0.001830931 0.0202767189
## 702 0.343 0.01097499 0.9064061 8.395358e-03 0.001776033 0.0197063825
## 703 0.343 0.01204504 0.9064962 8.572126e-03 0.001659812 0.0196082607
## 704 0.343 0.01321941 0.9064512 7.726166e-03 0.001658209 0.0190273574
## 705 0.343 0.01450829 0.9064513 6.200232e-03 0.001588160 0.0177659385
## 706 0.343 0.01592283 0.9063610 4.479007e-03 0.001526446 0.0163251343
## 707 0.343 0.01747528 0.9063610 4.479007e-03 0.001526446 0.0163251343
## 708 0.343 0.01917910 0.9063609 2.205605e-03 0.001232634 0.0103966579
## 709 0.343 0.02104904 0.9062708 -2.654514e-04 0.001127638 0.0010613545
## 710 0.343 0.02310130 0.9063611 -8.838384e-05 0.001128015 0.0006249681
## 711 0.343 0.02535364 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 712 0.343 0.02782559 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 713 0.343 0.03053856 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 714 0.343 0.03351603 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 715 0.343 0.03678380 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 716 0.343 0.04037017 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 717 0.343 0.04430621 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 718 0.343 0.04862602 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 719 0.343 0.05336699 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 720 0.343 0.05857021 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 721 0.343 0.06428073 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 722 0.343 0.07054802 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 723 0.343 0.07742637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 724 0.343 0.08497534 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 725 0.343 0.09326033 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 726 0.343 0.10235310 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 727 0.343 0.11233240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 728 0.343 0.12328467 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 729 0.343 0.13530478 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 730 0.343 0.14849683 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 731 0.343 0.16297508 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 732 0.343 0.17886495 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 733 0.343 0.19630407 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 734 0.343 0.21544347 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 735 0.343 0.23644894 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 736 0.343 0.25950242 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 737 0.343 0.28480359 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 738 0.343 0.31257158 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 739 0.343 0.34304693 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 740 0.343 0.37649358 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 741 0.343 0.41320124 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 742 0.343 0.45348785 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 743 0.343 0.49770236 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 744 0.343 0.54622772 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 745 0.343 0.59948425 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 746 0.343 0.65793322 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 747 0.343 0.72208090 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 748 0.343 0.79248290 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 749 0.343 0.86974900 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 750 0.343 0.95454846 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 751 0.343 1.04761575 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 752 0.343 1.14975700 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 753 0.343 1.26185688 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 754 0.343 1.38488637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 755 0.343 1.51991108 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 756 0.343 1.66810054 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 757 0.343 1.83073828 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 758 0.343 2.00923300 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 759 0.343 2.20513074 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 760 0.343 2.42012826 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 761 0.343 2.65608778 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 762 0.343 2.91505306 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 763 0.343 3.19926714 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 764 0.343 3.51119173 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 765 0.343 3.85352859 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 766 0.343 4.22924287 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 767 0.343 4.64158883 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 768 0.343 5.09413801 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 769 0.343 5.59081018 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 770 0.343 6.13590727 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 771 0.343 6.73415066 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 772 0.343 7.39072203 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 773 0.343 8.11130831 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 774 0.343 8.90215085 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 775 0.343 9.77009957 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 776 0.343 10.72267222 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 777 0.343 11.76811952 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 778 0.343 12.91549665 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 779 0.343 14.17474163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 780 0.343 15.55676144 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 781 0.343 17.07352647 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 782 0.343 18.73817423 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 783 0.343 20.56512308 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 784 0.343 22.57019720 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 785 0.343 24.77076356 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 786 0.343 27.18588243 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 787 0.343 29.83647240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 788 0.343 32.74549163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 789 0.343 35.93813664 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 790 0.343 39.44206059 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 791 0.343 43.28761281 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 792 0.343 47.50810162 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 793 0.343 52.14008288 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 794 0.343 57.22367659 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 795 0.343 62.80291442 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 796 0.343 68.92612104 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 797 0.343 75.64633276 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 798 0.343 83.02175681 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 799 0.343 91.11627561 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 800 0.343 100.00000000 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 801 0.512 0.01000000 0.9064061 6.111698e-03 0.001591294 0.0178084460
## 802 0.512 0.01097499 0.9063610 4.479007e-03 0.001526446 0.0163251343
## 803 0.512 0.01204504 0.9063610 4.479007e-03 0.001526446 0.0163251343
## 804 0.512 0.01321941 0.9064512 3.941731e-03 0.001385496 0.0131943665
## 805 0.512 0.01450829 0.9062708 -2.654514e-04 0.001127638 0.0010613545
## 806 0.512 0.01592283 0.9062708 -2.654514e-04 0.001127638 0.0010613545
## 807 0.512 0.01747528 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 808 0.512 0.01917910 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 809 0.512 0.02104904 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 810 0.512 0.02310130 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 811 0.512 0.02535364 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 812 0.512 0.02782559 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 813 0.512 0.03053856 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 814 0.512 0.03351603 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 815 0.512 0.03678380 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 816 0.512 0.04037017 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 817 0.512 0.04430621 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 818 0.512 0.04862602 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 819 0.512 0.05336699 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 820 0.512 0.05857021 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 821 0.512 0.06428073 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 822 0.512 0.07054802 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 823 0.512 0.07742637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 824 0.512 0.08497534 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 825 0.512 0.09326033 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 826 0.512 0.10235310 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 827 0.512 0.11233240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 828 0.512 0.12328467 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 829 0.512 0.13530478 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 830 0.512 0.14849683 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 831 0.512 0.16297508 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 832 0.512 0.17886495 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 833 0.512 0.19630407 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 834 0.512 0.21544347 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 835 0.512 0.23644894 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 836 0.512 0.25950242 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 837 0.512 0.28480359 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 838 0.512 0.31257158 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 839 0.512 0.34304693 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 840 0.512 0.37649358 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 841 0.512 0.41320124 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 842 0.512 0.45348785 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 843 0.512 0.49770236 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 844 0.512 0.54622772 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 845 0.512 0.59948425 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 846 0.512 0.65793322 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 847 0.512 0.72208090 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 848 0.512 0.79248290 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 849 0.512 0.86974900 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 850 0.512 0.95454846 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 851 0.512 1.04761575 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 852 0.512 1.14975700 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 853 0.512 1.26185688 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 854 0.512 1.38488637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 855 0.512 1.51991108 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 856 0.512 1.66810054 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 857 0.512 1.83073828 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 858 0.512 2.00923300 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 859 0.512 2.20513074 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 860 0.512 2.42012826 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 861 0.512 2.65608778 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 862 0.512 2.91505306 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 863 0.512 3.19926714 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 864 0.512 3.51119173 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 865 0.512 3.85352859 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 866 0.512 4.22924287 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 867 0.512 4.64158883 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 868 0.512 5.09413801 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 869 0.512 5.59081018 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 870 0.512 6.13590727 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 871 0.512 6.73415066 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 872 0.512 7.39072203 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 873 0.512 8.11130831 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 874 0.512 8.90215085 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 875 0.512 9.77009957 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 876 0.512 10.72267222 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 877 0.512 11.76811952 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 878 0.512 12.91549665 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 879 0.512 14.17474163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 880 0.512 15.55676144 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 881 0.512 17.07352647 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 882 0.512 18.73817423 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 883 0.512 20.56512308 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 884 0.512 22.57019720 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 885 0.512 24.77076356 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 886 0.512 27.18588243 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 887 0.512 29.83647240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 888 0.512 32.74549163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 889 0.512 35.93813664 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 890 0.512 39.44206059 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 891 0.512 43.28761281 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 892 0.512 47.50810162 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 893 0.512 52.14008288 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 894 0.512 57.22367659 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 895 0.512 62.80291442 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 896 0.512 68.92612104 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 897 0.512 75.64633276 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 898 0.512 83.02175681 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 899 0.512 91.11627561 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 900 0.512 100.00000000 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 901 0.729 0.01000000 0.9062707 5.138766e-04 0.001224382 0.0063068401
## 902 0.729 0.01097499 0.9062708 -2.654514e-04 0.001127638 0.0010613545
## 903 0.729 0.01204504 0.9063159 -1.769176e-04 0.001128748 0.0008755156
## 904 0.729 0.01321941 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 905 0.729 0.01450829 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 906 0.729 0.01592283 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 907 0.729 0.01747528 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 908 0.729 0.01917910 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 909 0.729 0.02104904 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 910 0.729 0.02310130 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 911 0.729 0.02535364 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 912 0.729 0.02782559 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 913 0.729 0.03053856 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 914 0.729 0.03351603 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 915 0.729 0.03678380 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 916 0.729 0.04037017 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 917 0.729 0.04430621 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 918 0.729 0.04862602 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 919 0.729 0.05336699 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 920 0.729 0.05857021 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 921 0.729 0.06428073 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 922 0.729 0.07054802 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 923 0.729 0.07742637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 924 0.729 0.08497534 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 925 0.729 0.09326033 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 926 0.729 0.10235310 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 927 0.729 0.11233240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 928 0.729 0.12328467 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 929 0.729 0.13530478 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 930 0.729 0.14849683 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 931 0.729 0.16297508 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 932 0.729 0.17886495 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 933 0.729 0.19630407 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 934 0.729 0.21544347 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 935 0.729 0.23644894 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 936 0.729 0.25950242 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 937 0.729 0.28480359 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 938 0.729 0.31257158 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 939 0.729 0.34304693 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 940 0.729 0.37649358 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 941 0.729 0.41320124 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 942 0.729 0.45348785 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 943 0.729 0.49770236 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 944 0.729 0.54622772 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 945 0.729 0.59948425 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 946 0.729 0.65793322 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 947 0.729 0.72208090 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 948 0.729 0.79248290 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 949 0.729 0.86974900 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 950 0.729 0.95454846 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 951 0.729 1.04761575 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 952 0.729 1.14975700 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 953 0.729 1.26185688 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 954 0.729 1.38488637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 955 0.729 1.51991108 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 956 0.729 1.66810054 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 957 0.729 1.83073828 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 958 0.729 2.00923300 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 959 0.729 2.20513074 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 960 0.729 2.42012826 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 961 0.729 2.65608778 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 962 0.729 2.91505306 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 963 0.729 3.19926714 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 964 0.729 3.51119173 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 965 0.729 3.85352859 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 966 0.729 4.22924287 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 967 0.729 4.64158883 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 968 0.729 5.09413801 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 969 0.729 5.59081018 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 970 0.729 6.13590727 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 971 0.729 6.73415066 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 972 0.729 7.39072203 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 973 0.729 8.11130831 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 974 0.729 8.90215085 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 975 0.729 9.77009957 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 976 0.729 10.72267222 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 977 0.729 11.76811952 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 978 0.729 12.91549665 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 979 0.729 14.17474163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 980 0.729 15.55676144 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 981 0.729 17.07352647 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 982 0.729 18.73817423 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 983 0.729 20.56512308 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 984 0.729 22.57019720 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 985 0.729 24.77076356 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 986 0.729 27.18588243 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 987 0.729 29.83647240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 988 0.729 32.74549163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 989 0.729 35.93813664 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 990 0.729 39.44206059 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 991 0.729 43.28761281 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 992 0.729 47.50810162 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 993 0.729 52.14008288 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 994 0.729 57.22367659 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 995 0.729 62.80291442 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 996 0.729 68.92612104 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 997 0.729 75.64633276 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 998 0.729 83.02175681 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 999 0.729 91.11627561 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1000 0.729 100.00000000 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1001 1.000 0.01000000 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1002 1.000 0.01097499 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1003 1.000 0.01204504 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1004 1.000 0.01321941 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1005 1.000 0.01450829 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1006 1.000 0.01592283 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1007 1.000 0.01747528 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1008 1.000 0.01917910 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1009 1.000 0.02104904 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1010 1.000 0.02310130 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1011 1.000 0.02535364 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1012 1.000 0.02782559 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1013 1.000 0.03053856 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1014 1.000 0.03351603 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1015 1.000 0.03678380 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1016 1.000 0.04037017 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1017 1.000 0.04430621 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1018 1.000 0.04862602 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1019 1.000 0.05336699 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1020 1.000 0.05857021 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1021 1.000 0.06428073 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1022 1.000 0.07054802 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1023 1.000 0.07742637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1024 1.000 0.08497534 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1025 1.000 0.09326033 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1026 1.000 0.10235310 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1027 1.000 0.11233240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1028 1.000 0.12328467 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1029 1.000 0.13530478 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1030 1.000 0.14849683 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1031 1.000 0.16297508 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1032 1.000 0.17886495 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1033 1.000 0.19630407 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1034 1.000 0.21544347 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1035 1.000 0.23644894 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1036 1.000 0.25950242 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1037 1.000 0.28480359 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1038 1.000 0.31257158 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1039 1.000 0.34304693 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1040 1.000 0.37649358 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1041 1.000 0.41320124 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1042 1.000 0.45348785 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1043 1.000 0.49770236 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1044 1.000 0.54622772 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1045 1.000 0.59948425 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1046 1.000 0.65793322 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1047 1.000 0.72208090 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1048 1.000 0.79248290 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1049 1.000 0.86974900 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1050 1.000 0.95454846 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1051 1.000 1.04761575 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1052 1.000 1.14975700 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1053 1.000 1.26185688 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1054 1.000 1.38488637 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1055 1.000 1.51991108 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1056 1.000 1.66810054 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1057 1.000 1.83073828 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1058 1.000 2.00923300 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1059 1.000 2.20513074 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1060 1.000 2.42012826 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1061 1.000 2.65608778 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1062 1.000 2.91505306 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1063 1.000 3.19926714 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1064 1.000 3.51119173 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1065 1.000 3.85352859 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1066 1.000 4.22924287 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1067 1.000 4.64158883 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1068 1.000 5.09413801 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1069 1.000 5.59081018 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1070 1.000 6.13590727 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1071 1.000 6.73415066 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1072 1.000 7.39072203 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1073 1.000 8.11130831 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1074 1.000 8.90215085 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1075 1.000 9.77009957 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1076 1.000 10.72267222 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1077 1.000 11.76811952 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1078 1.000 12.91549665 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1079 1.000 14.17474163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1080 1.000 15.55676144 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1081 1.000 17.07352647 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1082 1.000 18.73817423 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1083 1.000 20.56512308 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1084 1.000 22.57019720 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1085 1.000 24.77076356 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1086 1.000 27.18588243 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1087 1.000 29.83647240 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1088 1.000 32.74549163 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1089 1.000 35.93813664 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1090 1.000 39.44206059 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1091 1.000 43.28761281 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1092 1.000 47.50810162 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1093 1.000 52.14008288 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1094 1.000 57.22367659 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1095 1.000 62.80291442 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1096 1.000 68.92612104 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1097 1.000 75.64633276 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1098 1.000 83.02175681 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1099 1.000 91.11627561 0.9064061 0.000000e+00 0.001038735 0.0000000000
## 1100 1.000 100.00000000 0.9064061 0.000000e+00 0.001038735 0.0000000000
coef(grid.res$finalModel,
s=grid.res$bestTune$lambda) #最適なalpha, lambdaのもとでの回帰係数
## 17 x 1 sparse Matrix of class "dgCMatrix"
## s1
## (Intercept) -6.976642e+00
## SEX -5.213194e-02
## CURSMOKE 6.053955e-02
## DIABETES 3.924487e-01
## BPMEDS 4.669276e-01
## PREVCHD 1.658391e-01
## PREVAP 6.559511e-02
## PREVMI 1.711201e-01
## PREVHYP 3.117723e-01
## TOTCHOL -7.454905e-05
## AGE 2.562016e-02
## SYSBP 5.841279e-03
## DIABP 8.863818e-03
## CIGPDAY 1.484293e-03
## BMI 1.200504e-02
## HEARTRTE -3.768294e-03
## GLUCOSE 6.241628e-04
cva.glmnetで求めた最適なalpha, lamdaのモデル
lasso.cv.res<-
cv.glmnet(
x=fr.missf_p1[,var] %>% data.matrix(),
y=fr.missf_p1[,"STROKE"] %>% data.matrix(),
family="binomial",
alpha=1)
coef(lasso.cv.res,s="lambda.min")
## 17 x 1 sparse Matrix of class "dgCMatrix"
## s1
## (Intercept) -9.4090042597
## SEX -0.0421977679
## CURSMOKE 0.2735297679
## DIABETES 0.6209602182
## BPMEDS 0.5182370318
## PREVCHD 0.0312762345
## PREVAP .
## PREVMI 0.1297005059
## PREVHYP 0.5534816855
## TOTCHOL -0.0009247672
## AGE 0.0675262370
## SYSBP 0.0012615861
## DIABP 0.0179817879
## CIGPDAY 0.0027332234
## BMI 0.0116862895
## HEARTRTE -0.0094909742
## GLUCOSE .
cf<-coef(lasso.cv.res,s="lambda.min") %>%
as.matrix() %>%
as.data.frame() %>%
mutate(exp=exp(s1)) %>%
add_rownames(var="var")
## Warning: `add_rownames()` was deprecated in dplyr 1.0.0.
## ℹ Please use `tibble::rownames_to_column()` instead.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
#plot
cf %>%
ggplot(aes(y=var,x=exp))+
geom_point()+
geom_vline(xintercept=1,color="red")
cf2<-
coef(grid.res$finalModel,
s=grid.res$bestTune$lambda) %>%
as.matrix() %>%
as.data.frame() %>%
mutate(exp=exp(s1)) %>%
add_rownames(var="var")
## Warning: `add_rownames()` was deprecated in dplyr 1.0.0.
## ℹ Please use `tibble::rownames_to_column()` instead.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
#plot
cf2 %>%
ggplot(aes(y=var,x=exp))+
geom_point()+
geom_vline(xintercept=1,color="red")
fr.missf_p1$lasso<-
predict(lasso.cv.res,
s="lambda.min",
newx=fr.missf_p1[,var] %>% data.matrix(),
type="response"
)
fr.missf_p1<-
fr.missf_p1 %>%
mutate(STROKEn=as.numeric(STROKE)-1)
#ROC curve
roc.lasso<-
roc(STROKEn~lasso,
data=fr.missf_p1,
ci=T)
## Setting levels: control = 0, case = 1
## Warning in roc.default(response, predictors[, 1], ...): Deprecated use a matrix
## as predictor. Unexpected results may be produced, please pass a numeric vector.
## Setting direction: controls < cases
roc.lasso
##
## Call:
## roc.formula(formula = STROKEn ~ lasso, data = fr.missf_p1, ci = T)
##
## Data: lasso in 4019 controls (STROKEn 0) < 415 cases (STROKEn 1).
## Area under the curve: 0.7515
## 95% CI: 0.7276-0.7753 (DeLong)
roc.lasso %>%
ggroc(legacy.axes=T)+
geom_segment(aes(x = 0, xend = 1, y = 0, yend = 1), color="grey", linetype="dashed")
- AUC=0.7514547と中等度の予測性能
val.prob(
p=fr.missf_p1$lasso,
y=fr.missf_p1$STROKEn,
g=10,
cex=0.5
)
## Dxy C (ROC) R2 D D:Chi-sq
## 0.502857211 0.751428606 0.148173033 0.070828019 315.051435537
## D:p U U:Chi-sq U:p Q
## NA -0.000268482 0.809550747 0.667126648 0.071096501
## Brier Intercept Slope Emax E90
## 0.077920351 0.111304815 1.056365459 0.009301043 0.008167332
## Eavg S:z S:p
## 0.004960714 -0.128408818 0.897825453
B<-100 #number of resampling
N<-dim(fr.missf_p1)[1] #dataのdimentionを返す→4434行x39列→そのうち一番目(4434)を取得しNとする
AUC.i1<-AUC.i2<-numeric(B)
for(i in 1:B){
#bootstrap random sampling
bs.i<-sample(1:N,N,replace=TRUE) #重複を許して1~4434までの数を4434回サンプリングする
#bootstrap samplingに基づき、dataから集団を再構成 →data.iとする
fr.missf_p1.i<-fr.missf_p1[bs.i,]
#bootstrapしたデータセットごとで回帰モデル構築→各bootstrap dataからリスク予測確率の算出→data2.1のprob_1列に格納
lasso.cv.res.i<-
cv.glmnet(
x=fr.missf_p1.i[,var] %>% data.matrix(),
y=fr.missf_p1.i[,"STROKE"] %>% data.matrix(),
family="binomial",
alpha=1)
fr.missf_p1.i$lasso1<- #lasso1では、bootstrap dataから構築した新しいLasso回帰モデルを使い、そのbootstrap dataに対するリスク予測確率を格納
predict(lasso.cv.res.i,
s="lambda.min",
newx=fr.missf_p1.i[,var] %>% data.matrix(),
type="response"
)
#AUCの算出;Bootstrap回数(B=100)分のAUCを算出して結果を格納;各bootstrap dataに対するAUC
AUC.i1[i]<-roc(STROKEn~lasso1,data=fr.missf_p1.i)$auc
#bootstrapで作成した各回帰モデルを使って、オリジナルデータ(fr.missf_p1)に対するリスク予測確率を算出→fr.missf_p1のlasso2列に格納;AUC算出
fr.missf_p1$lasso2<-
predict(lasso.cv.res.i,
s="lambda.min",
newx=fr.missf_p1[,var] %>% data.matrix(),
type="response"
)
AUC.i2[i]<-roc(STROKEn~lasso2,data=fr.missf_p1)$auc #ここで得られるAUCはbootstrap dataを用いてoriginal dataに外挿したときのAUC
#print(paste(i,"th bootstrap iteration is completed.",sep=""))
}
opt1<-AUC.i1-AUC.i2
#(bootstrap samplingした各data setを使い、それぞれ導いた回帰モデルにおけるAUC)ー(bootstrap samplingした各data setを使い、original dataに外挿したときのAUC)
summary(opt1);hist(opt1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.031467 -0.002995 0.006353 0.006422 0.015910 0.034586
lam1<-mean(opt1) #estimate of the optimism
cor.AUC<-roc.lasso$auc-lam1 #bias corrected AUC estimate
cor.AUC
## [1] 0.7450327
**疑問 - 今回のモデルでは、事前に考えていた非線形性や交互作用項がモデリングに組み込まれなかったが、実際にはそれらの柔軟なモデリングをLassoに適用することはできるのか?交互作用項に関しては、ペアの変数の掛け算項を列結合すれば良さそうだが、非線形性はどのように表現すればよいのかわからない。
#k-fold CV
k <-5
AUC_CV <-data.frame(matrix(ncol=2,nrow=k))
#Randomly shuffle the data
fr.missf_p1.r<-fr.missf_p1[sample(nrow(fr.missf_p1)),]
#Create k equally size folds
folds <- cut(seq(1,nrow(fr.missf_p1.r)),breaks=k,labels=FALSE)
#Perform k fold cross validation
for(i in 1:k){
#Segment data2r by fold using the which() function
testIndexes <- which(folds==i,arr.ind=TRUE)
testData <- fr.missf_p1.r[testIndexes, ]
trainData <- fr.missf_p1.r[-testIndexes, ]
fit1<-
cv.glmnet(
x=trainData[,var] %>% data.matrix(),
y=trainData[,"STROKE"] %>% data.matrix(),
family="binomial",
alpha=1)
testData$fitted<-
predict(lasso.cv.res,
s="lambda.min",
newx=testData[,var] %>% data.matrix(),
type="response"
)
ROC <- roc(testData$STROKE, testData$fitted)
AUC_CV[i,2] <- ROC$auc
AUC_CV[i,1] <- i
#print(paste(i,"th cross-validation iteration is completed.", sep=""))
}
## Setting levels: control = 0, case = 1
## Warning in roc.default(testData$STROKE, testData$fitted): Deprecated use a
## matrix as predictor. Unexpected results may be produced, please pass a numeric
## vector.
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Warning in roc.default(testData$STROKE, testData$fitted): Deprecated use a
## matrix as predictor. Unexpected results may be produced, please pass a numeric
## vector.
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Warning in roc.default(testData$STROKE, testData$fitted): Deprecated use a
## matrix as predictor. Unexpected results may be produced, please pass a numeric
## vector.
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Warning in roc.default(testData$STROKE, testData$fitted): Deprecated use a
## matrix as predictor. Unexpected results may be produced, please pass a numeric
## vector.
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Warning in roc.default(testData$STROKE, testData$fitted): Deprecated use a
## matrix as predictor. Unexpected results may be produced, please pass a numeric
## vector.
## Setting direction: controls < cases
names(AUC_CV)[2] <- "AUC_cv"
names(AUC_CV)[1] <- "k"
print(summary(AUC_CV$AUC_cv))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7144 0.7307 0.7632 0.7497 0.7695 0.7705
ここでは、Lasso modelとの比較可能性を高めるために、2つの回帰モデルを考える 1. 交互作用項、非線形項を含まない線形の全変数モデル 2. 交互作用項、非線形項を含む全変数モデル(full model)
用いる変数はである
lin_form<-paste("STROKE~",paste(full_var,collapse="+"))
lin_model<-glm(as.formula(lin_form),
data=fr.missf_p1,
family=binomial(link="logit"))
rms::vif(lin_model)
## SEX2 CURSMOKE1 DIABETES1 BPMEDS1 PREVCHD1 PREVAP1 PREVMI1 PREVSTRK1
## 1.245566 2.439088 1.694071 1.107002 9.598226 6.717491 2.379642 1.000000
## PREVHYP1 TOTCHOL AGE SYSBP DIABP CIGPDAY BMI HEARTRTE
## 1.937207 1.067710 1.317387 3.700669 3.017425 2.568418 1.177581 1.100995
## GLUCOSE
## 1.723184
glm(STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVAP +
PREVMI + PREVSTRK + PREVHYP + TOTCHOL + AGE + SYSBP + DIABP +
CIGPDAY + BMI + HEARTRTE + GLUCOSE,
data=fr.missf_p1,
family=binomial(link="logit")) %>%
rms::vif()
## SEX2 CURSMOKE1 DIABETES1 BPMEDS1 PREVAP1 PREVMI1 PREVSTRK1 PREVHYP1
## 1.244364 2.439228 1.693826 1.106665 1.187531 1.164856 1.000000 1.935830
## TOTCHOL AGE SYSBP DIABP CIGPDAY BMI HEARTRTE GLUCOSE
## 1.067423 1.316767 3.695881 3.010815 2.568423 1.177247 1.100259 1.722415
lin_form2<-
as.formula(STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVAP +
PREVMI + PREVSTRK + PREVHYP + TOTCHOL + AGE + SYSBP + DIABP +
CIGPDAY + BMI + HEARTRTE + GLUCOSE)
lin_model2<-glm(lin_form2,
data=fr.missf_p1,
family=binomial(link="logit"))
step(lin_model2,
direction="both") %>%
summary()
## Start: AIC=2356.87
## STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVAP + PREVMI +
## PREVSTRK + PREVHYP + TOTCHOL + AGE + SYSBP + DIABP + CIGPDAY +
## BMI + HEARTRTE + GLUCOSE
##
## Df Deviance AIC
## - PREVAP 1 2322.9 2354.9
## - PREVMI 1 2322.9 2354.9
## - SYSBP 1 2322.9 2354.9
## - SEX 1 2323.1 2355.1
## - CIGPDAY 1 2323.4 2355.4
## - GLUCOSE 1 2323.5 2355.5
## - TOTCHOL 1 2323.6 2355.6
## - BMI 1 2324.6 2356.6
## <none> 2322.9 2356.9
## - BPMEDS 1 2326.4 2358.4
## - CURSMOKE 1 2326.5 2358.5
## - HEARTRTE 1 2327.9 2359.9
## - DIABETES 1 2329.9 2361.9
## - DIABP 1 2331.5 2363.5
## - PREVHYP 1 2333.0 2365.0
## - AGE 1 2412.6 2444.6
## - PREVSTRK 1 2438.7 2470.7
##
## Step: AIC=2354.87
## STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVMI + PREVSTRK +
## PREVHYP + TOTCHOL + AGE + SYSBP + DIABP + CIGPDAY + BMI +
## HEARTRTE + GLUCOSE
##
## Df Deviance AIC
## - PREVMI 1 2322.9 2352.9
## - SYSBP 1 2322.9 2352.9
## - SEX 1 2323.1 2353.1
## - CIGPDAY 1 2323.4 2353.4
## - GLUCOSE 1 2323.5 2353.5
## - TOTCHOL 1 2323.6 2353.6
## - BMI 1 2324.6 2354.6
## <none> 2322.9 2354.9
## - BPMEDS 1 2326.4 2356.4
## - CURSMOKE 1 2326.5 2356.5
## + PREVAP 1 2322.9 2356.9
## - HEARTRTE 1 2328.0 2358.0
## - DIABETES 1 2329.9 2359.9
## - DIABP 1 2331.5 2361.5
## - PREVHYP 1 2333.0 2363.0
## - AGE 1 2413.8 2443.8
## - PREVSTRK 1 2438.8 2468.8
##
## Step: AIC=2352.88
## STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVSTRK + PREVHYP +
## TOTCHOL + AGE + SYSBP + DIABP + CIGPDAY + BMI + HEARTRTE +
## GLUCOSE
##
## Df Deviance AIC
## - SYSBP 1 2322.9 2350.9
## - SEX 1 2323.1 2351.1
## - CIGPDAY 1 2323.4 2351.4
## - GLUCOSE 1 2323.5 2351.5
## - TOTCHOL 1 2323.6 2351.6
## - BMI 1 2324.6 2352.6
## <none> 2322.9 2352.9
## - BPMEDS 1 2326.4 2354.4
## - CURSMOKE 1 2326.5 2354.5
## + PREVMI 1 2322.9 2354.9
## + PREVAP 1 2322.9 2354.9
## - HEARTRTE 1 2328.0 2356.0
## - DIABETES 1 2329.9 2357.9
## - DIABP 1 2331.5 2359.5
## - PREVHYP 1 2333.0 2361.0
## - AGE 1 2414.8 2442.8
## - PREVSTRK 1 2439.4 2467.4
##
## Step: AIC=2350.94
## STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVSTRK + PREVHYP +
## TOTCHOL + AGE + DIABP + CIGPDAY + BMI + HEARTRTE + GLUCOSE
##
## Df Deviance AIC
## - SEX 1 2323.2 2349.2
## - CIGPDAY 1 2323.5 2349.5
## - GLUCOSE 1 2323.5 2349.5
## - TOTCHOL 1 2323.7 2349.7
## - BMI 1 2324.7 2350.7
## <none> 2322.9 2350.9
## - CURSMOKE 1 2326.6 2352.6
## - BPMEDS 1 2326.6 2352.6
## + SYSBP 1 2322.9 2352.9
## + PREVMI 1 2322.9 2352.9
## + PREVAP 1 2322.9 2352.9
## - HEARTRTE 1 2328.0 2354.0
## - DIABETES 1 2330.0 2356.0
## - PREVHYP 1 2334.9 2360.9
## - DIABP 1 2339.6 2365.6
## - AGE 1 2427.5 2453.5
## - PREVSTRK 1 2439.5 2465.5
##
## Step: AIC=2349.15
## STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVSTRK + PREVHYP +
## TOTCHOL + AGE + DIABP + CIGPDAY + BMI + HEARTRTE + GLUCOSE
##
## Df Deviance AIC
## - GLUCOSE 1 2323.7 2347.7
## - CIGPDAY 1 2323.9 2347.9
## - TOTCHOL 1 2324.1 2348.1
## - BMI 1 2324.9 2348.9
## <none> 2323.2 2349.2
## - BPMEDS 1 2326.7 2350.7
## - CURSMOKE 1 2326.8 2350.8
## + SEX 1 2322.9 2350.9
## + SYSBP 1 2323.1 2351.1
## + PREVMI 1 2323.1 2351.1
## + PREVAP 1 2323.2 2351.2
## - HEARTRTE 1 2328.5 2352.5
## - DIABETES 1 2330.3 2354.3
## - PREVHYP 1 2335.1 2359.1
## - DIABP 1 2339.9 2363.9
## - AGE 1 2427.9 2451.9
## - PREVSTRK 1 2439.8 2463.8
##
## Step: AIC=2347.72
## STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVSTRK + PREVHYP +
## TOTCHOL + AGE + DIABP + CIGPDAY + BMI + HEARTRTE
##
## Df Deviance AIC
## - CIGPDAY 1 2324.5 2346.5
## - TOTCHOL 1 2324.6 2346.6
## - BMI 1 2325.4 2347.4
## <none> 2323.7 2347.7
## + GLUCOSE 1 2323.2 2349.2
## - BPMEDS 1 2327.2 2349.2
## - CURSMOKE 1 2327.3 2349.3
## + SEX 1 2323.5 2349.5
## + PREVMI 1 2323.7 2349.7
## + SYSBP 1 2323.7 2349.7
## + PREVAP 1 2323.7 2349.7
## - HEARTRTE 1 2329.4 2351.4
## - DIABETES 1 2331.7 2353.7
## - PREVHYP 1 2335.6 2357.6
## - DIABP 1 2340.7 2362.7
## - AGE 1 2428.0 2450.0
## - PREVSTRK 1 2440.1 2462.1
##
## Step: AIC=2346.51
## STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVSTRK + PREVHYP +
## TOTCHOL + AGE + DIABP + BMI + HEARTRTE
##
## Df Deviance AIC
## - TOTCHOL 1 2325.4 2345.4
## - BMI 1 2326.2 2346.2
## <none> 2324.5 2346.5
## + CIGPDAY 1 2323.7 2347.7
## - BPMEDS 1 2327.9 2347.9
## + GLUCOSE 1 2323.9 2347.9
## + SEX 1 2324.1 2348.1
## + PREVMI 1 2324.5 2348.5
## + SYSBP 1 2324.5 2348.5
## + PREVAP 1 2324.5 2348.5
## - HEARTRTE 1 2330.0 2350.0
## - DIABETES 1 2332.4 2352.4
## - PREVHYP 1 2336.3 2356.3
## - CURSMOKE 1 2339.1 2359.1
## - DIABP 1 2341.6 2361.6
## - AGE 1 2428.0 2448.0
## - PREVSTRK 1 2440.6 2460.6
##
## Step: AIC=2345.44
## STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVSTRK + PREVHYP +
## AGE + DIABP + BMI + HEARTRTE
##
## Df Deviance AIC
## - BMI 1 2327.1 2345.1
## <none> 2325.4 2345.4
## + TOTCHOL 1 2324.5 2346.5
## + CIGPDAY 1 2324.6 2346.6
## - BPMEDS 1 2328.7 2346.7
## + SEX 1 2324.8 2346.8
## + GLUCOSE 1 2324.8 2346.8
## + PREVMI 1 2325.4 2347.4
## + PREVAP 1 2325.4 2347.4
## + SYSBP 1 2325.4 2347.4
## - HEARTRTE 1 2331.4 2349.4
## - DIABETES 1 2333.3 2351.3
## - PREVHYP 1 2337.1 2355.1
## - CURSMOKE 1 2340.3 2358.3
## - DIABP 1 2342.4 2360.4
## - AGE 1 2428.2 2446.2
## - PREVSTRK 1 2442.3 2460.3
##
## Step: AIC=2345.13
## STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVSTRK + PREVHYP +
## AGE + DIABP + HEARTRTE
##
## Df Deviance AIC
## <none> 2327.1 2345.1
## + BMI 1 2325.4 2345.4
## + TOTCHOL 1 2326.2 2346.2
## + CIGPDAY 1 2326.3 2346.3
## - BPMEDS 1 2330.3 2346.3
## + SEX 1 2326.5 2346.5
## + GLUCOSE 1 2326.6 2346.6
## + PREVMI 1 2327.1 2347.1
## + PREVAP 1 2327.1 2347.1
## + SYSBP 1 2327.1 2347.1
## - HEARTRTE 1 2333.0 2349.0
## - DIABETES 1 2335.8 2351.8
## - PREVHYP 1 2339.5 2355.5
## - CURSMOKE 1 2340.9 2356.9
## - DIABP 1 2347.3 2363.3
## - AGE 1 2429.3 2445.3
## - PREVSTRK 1 2443.8 2459.8
##
## Call:
## glm(formula = STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVSTRK +
## PREVHYP + AGE + DIABP + HEARTRTE, family = binomial(link = "logit"),
## data = fr.missf_p1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3340 -0.4512 -0.3184 -0.2316 2.9566
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -7.767033 0.667549 -11.635 < 2e-16 ***
## CURSMOKE1 0.427568 0.115490 3.702 0.000214 ***
## DIABETES1 0.750248 0.241140 3.111 0.001863 **
## BPMEDS1 0.407887 0.222002 1.837 0.066163 .
## PREVSTRK1 17.571864 238.184327 0.074 0.941190
## PREVHYP1 0.516553 0.146211 3.533 0.000411 ***
## AGE 0.071498 0.007278 9.823 < 2e-16 ***
## DIABP 0.023741 0.005264 4.510 6.49e-06 ***
## HEARTRTE -0.011267 0.004715 -2.389 0.016872 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2756.0 on 4433 degrees of freedom
## Residual deviance: 2327.1 on 4425 degrees of freedom
## AIC: 2345.1
##
## Number of Fisher Scoring iterations: 14
stepwise_results<-
glm(formula = STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVSTRK +
PREVHYP + AGE + DIABP + HEARTRTE, family = binomial(link = "logit"),
data = fr.missf_p1) %>%
summary() %>%
.$coefficients %>%
as.data.frame() %>%
rownames_to_column() %>%
rename("var"="rowname") %>%
mutate(OR=exp(Estimate),
Lower=exp(Estimate-1.96*`Std. Error`),
Upper=exp(Estimate+1.96*`Std. Error`)) %>%
select(var,OR,Lower,Upper,"p"="Pr(>|z|)") %>%
#すべての変数を丸める
mutate_if(is.numeric,~round(.,3))
#結果を表示
stepwise_results
## var OR Lower Upper p
## 1 (Intercept) 0.00000e+00 0.000 2.000000e-03 0.000
## 2 CURSMOKE1 1.53400e+00 1.223 1.923000e+00 0.000
## 3 DIABETES1 2.11800e+00 1.320 3.397000e+00 0.002
## 4 BPMEDS1 1.50400e+00 0.973 2.323000e+00 0.066
## 5 PREVSTRK1 4.27921e+07 0.000 2.387569e+210 0.941
## 6 PREVHYP1 1.67600e+00 1.259 2.233000e+00 0.000
## 7 AGE 1.07400e+00 1.059 1.090000e+00 0.000
## 8 DIABP 1.02400e+00 1.014 1.035000e+00 0.000
## 9 HEARTRTE 9.89000e-01 0.980 9.980000e-01 0.017
#plot
stepwise_results %>%
#filter(!var=="PREVSTRK1") %>% #これだけ非常にCIが大きくグラフ化すると視認性が悪いので一時的に削除
ggplot(aes(y=var,x=OR))+
geom_point()+
geom_errorbar(aes(xmin=Lower,xmax=Upper),width=0.2)+
geom_vline(xintercept=1,color="red")
-
変数選択の結果残った変数のうち、PREVSTRKのORが非常に大きくなり、推定が不安定になっている
- アウトカムとPREVSTROKEの関係を詳しく見てみると、分割表において、 4019,
383, 0, 32
であり、STROKE=0のとき、PREVSTRK=1に該当する患者が0であることがわかった→これがsparse
biasの原因である
xtabs(~STROKE+PREVSTRK,
data=fr.missf_p1)
## PREVSTRK
## STROKE 0 1
## 0 4019 0
## 1 383 32
ここで、すべてのカテゴリカル変数に対して同様にアウトカムとの分割表を考えてみる
f<-
function(x){
form<-as.formula(paste("~STROKE+",x))
xtabs(form,data=fr.missf_p1)
}
for(i in fac_var[-1]){
print(f(i))
}
## SEX
## STROKE 1 2
## 0 1751 2268
## 1 193 222
## CURSMOKE
## STROKE 0 1
## 0 2037 1982
## 1 216 199
## DIABETES
## STROKE 0 1
## 0 3926 93
## 1 387 28
## BPMEDS
## STROKE 0 1
## 0 3917 102
## 1 373 42
## educ
## STROKE 1 2 3 4
## 0 1659 1206 676 478
## 1 224 104 52 35
## PREVCHD
## STROKE 0 1
## 0 3862 157
## 1 378 37
## PREVAP
## STROKE 0 1
## 0 3899 120
## 1 388 27
## PREVMI
## STROKE 0 1
## 0 3949 70
## 1 399 16
## PREVSTRK
## STROKE 0 1
## 0 4019 0
## 1 383 32
## PREVHYP
## STROKE 0 1
## 0 2840 1179
## 1 164 251
## PERIOD
## STROKE 1 2 3
## 0 4019 0 0
## 1 415 0 0
## DEATH
## STROKE 0 1
## 0 2746 1273
## 1 138 277
## ANGINA
## STROKE 0 1
## 0 3394 625
## 1 315 100
## HOSPMI
## STROKE 0 1
## 0 3636 383
## 1 344 71
## MI_FCHD
## STROKE 0 1
## 0 3398 621
## 1 305 110
## ANYCHD
## STROKE 0 1
## 0 2958 1061
## 1 236 179
## STROKE
## 0 1
## 4019 415
## CVD
## STROKE 0 1
## 0 3277 742
## 1 0 415
## HYPERTEN
## STROKE 0 1
## 0 1142 2877
## 1 40 375
PREVSTROKEを除外したモデルにおいて、VIFから再度検討する
glm(
STROKE~ SEX+CURSMOKE+DIABETES+BPMEDS+PREVCHD+PREVAP+PREVMI+PREVHYP+TOTCHOL+AGE+SYSBP+DIABP+CIGPDAY+BMI+HEARTRTE+GLUCOSE,
data=fr.missf_p1,
family=binomial(link="logit")) %>%
rms::vif()
## SEX2 CURSMOKE1 DIABETES1 BPMEDS1 PREVCHD1 PREVAP1 PREVMI1 PREVHYP1
## 1.240065 2.456395 1.705096 1.112819 8.979822 5.835302 2.735766 1.922086
## TOTCHOL AGE SYSBP DIABP CIGPDAY BMI HEARTRTE GLUCOSE
## 1.066603 1.317287 3.664247 2.980477 2.583968 1.182116 1.101576 1.730470
#ココでも同様にPREVCHDのVIFが高いため、除外して再度VIFを算出
glm(
STROKE~ SEX+CURSMOKE+DIABETES+BPMEDS+PREVAP+PREVMI+PREVHYP+TOTCHOL+AGE+SYSBP+DIABP+CIGPDAY+BMI+HEARTRTE+GLUCOSE,
data=fr.missf_p1,
family=binomial(link="logit")) %>%
rms::vif()
## SEX2 CURSMOKE1 DIABETES1 BPMEDS1 PREVAP1 PREVMI1 PREVHYP1 TOTCHOL
## 1.240237 2.456599 1.705139 1.112127 1.179417 1.159379 1.919544 1.065887
## AGE SYSBP DIABP CIGPDAY BMI HEARTRTE GLUCOSE
## 1.316273 3.658322 2.971481 2.583932 1.181654 1.100465 1.729751
#いい感じ→これを初期モデルとする
lin_model3<-
glm(STROKE~ SEX+CURSMOKE+DIABETES+BPMEDS+PREVAP+PREVMI+PREVHYP+TOTCHOL+AGE+SYSBP+DIABP+CIGPDAY+BMI+HEARTRTE+GLUCOSE,
data=fr.missf_p1,
family=binomial(link="logit"))
step(lin_model3,
direction="both") %>%
summary()
## Start: AIC=2470.74
## STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVAP + PREVMI +
## PREVHYP + TOTCHOL + AGE + SYSBP + DIABP + CIGPDAY + BMI +
## HEARTRTE + GLUCOSE
##
## Df Deviance AIC
## - PREVAP 1 2438.8 2468.8
## - SYSBP 1 2438.8 2468.8
## - SEX 1 2439.0 2469.0
## - CIGPDAY 1 2439.1 2469.1
## - GLUCOSE 1 2439.1 2469.1
## - PREVMI 1 2439.4 2469.4
## - TOTCHOL 1 2440.2 2470.2
## - BMI 1 2440.3 2470.3
## <none> 2438.7 2470.7
## - CURSMOKE 1 2442.3 2472.3
## - DIABETES 1 2445.2 2475.2
## - HEARTRTE 1 2445.4 2475.4
## - BPMEDS 1 2445.7 2475.7
## - DIABP 1 2446.6 2476.6
## - PREVHYP 1 2453.2 2483.2
## - AGE 1 2532.4 2562.4
##
## Step: AIC=2468.82
## STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVMI + PREVHYP +
## TOTCHOL + AGE + SYSBP + DIABP + CIGPDAY + BMI + HEARTRTE +
## GLUCOSE
##
## Df Deviance AIC
## - SYSBP 1 2438.9 2466.9
## - SEX 1 2439.1 2467.1
## - CIGPDAY 1 2439.1 2467.1
## - GLUCOSE 1 2439.1 2467.1
## - PREVMI 1 2439.4 2467.4
## - TOTCHOL 1 2440.3 2468.3
## - BMI 1 2440.4 2468.4
## <none> 2438.8 2468.8
## - CURSMOKE 1 2442.4 2470.4
## + PREVAP 1 2438.7 2470.7
## - DIABETES 1 2445.2 2473.2
## - HEARTRTE 1 2445.5 2473.5
## - BPMEDS 1 2445.7 2473.7
## - DIABP 1 2446.7 2474.7
## - PREVHYP 1 2453.3 2481.3
## - AGE 1 2533.2 2561.2
##
## Step: AIC=2466.91
## STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVMI + PREVHYP +
## TOTCHOL + AGE + DIABP + CIGPDAY + BMI + HEARTRTE + GLUCOSE
##
## Df Deviance AIC
## - SEX 1 2439.1 2465.1
## - GLUCOSE 1 2439.2 2465.2
## - CIGPDAY 1 2439.2 2465.2
## - PREVMI 1 2439.5 2465.5
## - TOTCHOL 1 2440.4 2466.4
## - BMI 1 2440.5 2466.5
## <none> 2438.9 2466.9
## - CURSMOKE 1 2442.5 2468.5
## + SYSBP 1 2438.8 2468.8
## + PREVAP 1 2438.8 2468.8
## - DIABETES 1 2445.4 2471.4
## - HEARTRTE 1 2445.6 2471.6
## - BPMEDS 1 2446.0 2472.0
## - DIABP 1 2454.4 2480.4
## - PREVHYP 1 2456.1 2482.1
## - AGE 1 2546.7 2572.7
##
## Step: AIC=2465.12
## STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVMI + PREVHYP + TOTCHOL +
## AGE + DIABP + CIGPDAY + BMI + HEARTRTE + GLUCOSE
##
## Df Deviance AIC
## - GLUCOSE 1 2439.4 2463.4
## - CIGPDAY 1 2439.6 2463.6
## - PREVMI 1 2439.8 2463.8
## - BMI 1 2440.7 2464.7
## - TOTCHOL 1 2440.8 2464.8
## <none> 2439.1 2465.1
## - CURSMOKE 1 2442.7 2466.7
## + SEX 1 2438.9 2466.9
## + PREVAP 1 2439.1 2467.1
## + SYSBP 1 2439.1 2467.1
## - DIABETES 1 2445.7 2469.7
## - BPMEDS 1 2446.1 2470.1
## - HEARTRTE 1 2446.2 2470.2
## - DIABP 1 2454.8 2478.8
## - PREVHYP 1 2456.2 2480.2
## - AGE 1 2546.9 2570.9
##
## Step: AIC=2463.41
## STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVMI + PREVHYP + TOTCHOL +
## AGE + DIABP + CIGPDAY + BMI + HEARTRTE
##
## Df Deviance AIC
## - CIGPDAY 1 2439.9 2461.9
## - PREVMI 1 2440.1 2462.1
## - BMI 1 2441.0 2463.0
## - TOTCHOL 1 2441.1 2463.1
## <none> 2439.4 2463.4
## - CURSMOKE 1 2443.0 2465.0
## + GLUCOSE 1 2439.1 2465.1
## + SEX 1 2439.2 2465.2
## + PREVAP 1 2439.4 2465.4
## + SYSBP 1 2439.4 2465.4
## - BPMEDS 1 2446.3 2468.3
## - HEARTRTE 1 2446.7 2468.7
## - DIABETES 1 2447.4 2469.4
## - DIABP 1 2455.2 2477.2
## - PREVHYP 1 2456.5 2478.5
## - AGE 1 2547.0 2569.0
##
## Step: AIC=2461.93
## STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVMI + PREVHYP + TOTCHOL +
## AGE + DIABP + BMI + HEARTRTE
##
## Df Deviance AIC
## - PREVMI 1 2440.6 2460.6
## - BMI 1 2441.5 2461.5
## - TOTCHOL 1 2441.6 2461.6
## <none> 2439.9 2461.9
## + CIGPDAY 1 2439.4 2463.4
## + SEX 1 2439.5 2463.5
## + GLUCOSE 1 2439.6 2463.6
## + PREVAP 1 2439.9 2463.9
## + SYSBP 1 2439.9 2463.9
## - BPMEDS 1 2446.7 2466.7
## - HEARTRTE 1 2447.1 2467.1
## - DIABETES 1 2447.9 2467.9
## - CURSMOKE 1 2453.0 2473.0
## - DIABP 1 2455.8 2475.8
## - PREVHYP 1 2456.9 2476.9
## - AGE 1 2547.0 2567.0
##
## Step: AIC=2460.57
## STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVHYP + TOTCHOL + AGE +
## DIABP + BMI + HEARTRTE
##
## Df Deviance AIC
## - BMI 1 2442.1 2460.1
## - TOTCHOL 1 2442.3 2460.3
## <none> 2440.6 2460.6
## + PREVMI 1 2439.9 2461.9
## + CIGPDAY 1 2440.1 2462.1
## + SEX 1 2440.1 2462.1
## + GLUCOSE 1 2440.3 2462.3
## + SYSBP 1 2440.6 2462.6
## + PREVAP 1 2440.6 2462.6
## - BPMEDS 1 2447.4 2465.4
## - HEARTRTE 1 2447.8 2465.8
## - DIABETES 1 2448.8 2466.8
## - CURSMOKE 1 2454.1 2472.1
## - DIABP 1 2456.3 2474.3
## - PREVHYP 1 2457.8 2475.8
## - AGE 1 2550.6 2568.6
##
## Step: AIC=2460.12
## STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVHYP + TOTCHOL + AGE +
## DIABP + HEARTRTE
##
## Df Deviance AIC
## - TOTCHOL 1 2443.8 2459.8
## <none> 2442.1 2460.1
## + BMI 1 2440.6 2460.6
## + PREVMI 1 2441.5 2461.5
## + CIGPDAY 1 2441.6 2461.6
## + SEX 1 2441.6 2461.6
## + GLUCOSE 1 2441.9 2461.9
## + SYSBP 1 2442.1 2462.1
## + PREVAP 1 2442.1 2462.1
## - BPMEDS 1 2449.0 2465.0
## - HEARTRTE 1 2449.2 2465.2
## - DIABETES 1 2451.1 2467.1
## - CURSMOKE 1 2454.6 2470.6
## - PREVHYP 1 2460.2 2476.2
## - DIABP 1 2461.0 2477.0
## - AGE 1 2551.7 2567.7
##
## Step: AIC=2459.81
## STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVHYP + AGE + DIABP +
## HEARTRTE
##
## Df Deviance AIC
## <none> 2443.8 2459.8
## + TOTCHOL 1 2442.1 2460.1
## + BMI 1 2442.3 2460.3
## + SEX 1 2443.0 2461.0
## + PREVMI 1 2443.2 2461.2
## + CIGPDAY 1 2443.2 2461.2
## + GLUCOSE 1 2443.6 2461.6
## + SYSBP 1 2443.8 2461.8
## + PREVAP 1 2443.8 2461.8
## - BPMEDS 1 2450.4 2464.4
## - HEARTRTE 1 2451.6 2465.6
## - DIABETES 1 2452.7 2466.7
## - CURSMOKE 1 2456.7 2470.7
## - PREVHYP 1 2461.6 2475.6
## - DIABP 1 2462.5 2476.5
## - AGE 1 2551.7 2565.7
##
## Call:
## glm(formula = STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVHYP +
## AGE + DIABP + HEARTRTE, family = binomial(link = "logit"),
## data = fr.missf_p1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3955 -0.4649 -0.3255 -0.2367 2.9230
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -7.459839 0.645143 -11.563 < 2e-16 ***
## CURSMOKE1 0.401439 0.112012 3.584 0.000339 ***
## DIABETES1 0.739673 0.235375 3.143 0.001675 **
## BPMEDS1 0.547228 0.207449 2.638 0.008342 **
## PREVHYP1 0.597373 0.141426 4.224 2.40e-05 ***
## AGE 0.071244 0.007065 10.085 < 2e-16 ***
## DIABP 0.021968 0.005071 4.332 1.48e-05 ***
## HEARTRTE -0.012629 0.004590 -2.751 0.005933 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2756.0 on 4433 degrees of freedom
## Residual deviance: 2443.8 on 4426 degrees of freedom
## AIC: 2459.8
##
## Number of Fisher Scoring iterations: 6
-Backwardsで最良のモデルとして選ばれたのは glm(formula = STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVHYP + AGE + DIABP + HEARTRTE, family = binomial(link = “logit”), data = fr.missf_p1)
stepwise_results<-
glm(formula = STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVHYP +
AGE + DIABP + HEARTRTE, family = binomial(link = "logit"),
data = fr.missf_p1) %>%
summary() %>%
.$coefficients %>%
as.data.frame() %>%
rownames_to_column() %>%
rename("var"="rowname") %>%
mutate(OR=exp(Estimate),
Lower=exp(Estimate-1.96*`Std. Error`),
Upper=exp(Estimate+1.96*`Std. Error`)) %>%
select(var,OR,Lower,Upper,"p"="Pr(>|z|)") %>%
#すべての変数を丸める
mutate_if(is.numeric,~round(.,3))
#結果を表示
stepwise_results
## var OR Lower Upper p
## 1 (Intercept) 0.001 0.000 0.002 0.000
## 2 CURSMOKE1 1.494 1.199 1.861 0.000
## 3 DIABETES1 2.095 1.321 3.323 0.002
## 4 BPMEDS1 1.728 1.151 2.596 0.008
## 5 PREVHYP1 1.817 1.377 2.398 0.000
## 6 AGE 1.074 1.059 1.089 0.000
## 7 DIABP 1.022 1.012 1.032 0.000
## 8 HEARTRTE 0.987 0.979 0.996 0.006
#plot
stepwise_results %>%
ggplot(aes(y=var,x=OR))+
geom_point()+
geom_errorbar(aes(xmin=Lower,xmax=Upper),width=0.2)+
geom_vline(xintercept=1,color="red")
- ORが発散することなくとてもいい感じの推定ができたので、このモデルを 1.
交互作用項、非線形項を含まない線形の全変数モデル(lin_model)における最終モデル(lin_final_model)とする
lin_final_formula<-as.formula(STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVHYP + AGE + DIABP + HEARTRTE)
lin_final_model<-
glm(formula = lin_final_formula,
family = binomial(link = "logit"),
#x=T,y=T,
data = fr.missf_p1)
# risk prediction fitting
fr.missf_p1$fitted.lin.fin<-
predict(lin_final_model,
type="response")
# ROC AUC
roc.lin.final<-
roc(STROKE~fitted.lin.fin,
data=fr.missf_p1,
ci=T)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
roc.lin.final
##
## Call:
## roc.formula(formula = STROKE ~ fitted.lin.fin, data = fr.missf_p1, ci = T)
##
## Data: fitted.lin.fin in 4019 controls (STROKE 0) < 415 cases (STROKE 1).
## Area under the curve: 0.7504
## 95% CI: 0.7265-0.7742 (DeLong)
roc.lin.final %>%
ggroc(legacy.axes=T)+
geom_segment(aes(x = 0, xend = 1, y = 0, yend = 1), color="grey", linetype="dashed")
- ROCは0.7503518であり、中等度の予測性能と考えられる
#calibration plot
cal.lin.final<-
val.prob(
p=fr.missf_p1$fitted.lin.fin,
y=fr.missf_p1$STROKEn,
g=10,
cex=0.5)
- calibration plotからみても予測性能は高い
B<-100 #number of resampling
N<-dim(fr.missf_p1)[1] #dataのdimentionを返す→4434行x39列→そのうち一番目(4434)を取得しNとする
AUC.i1<-AUC.i2<-numeric(B)
for(i in 1:B){
#bootstrap random sampling
bs.i<-sample(1:N,N,replace=TRUE) #重複を許して1~4434までの数を4434回サンプリングする
#bootstrap samplingに基づき、dataから集団を再構成 →data.iとする
fr.missf_p1.i<-fr.missf_p1[bs.i,]
#bootstrapしたデータセットごとで回帰モデル構築→各bootstrap dataからリスク予測確率の算出→data2.1のprob_1列に格納
lin.fin.cv.res.i<-
glm(formula = lin_final_formula,
family = binomial(link = "logit"),
data = fr.missf_p1.i)
fr.missf_p1.i$lin.fin.1<- #lin.fin.1では、bootstrap dataから構築した新しいロジスティク回帰モデルを使い、そのbootstrap dataに対するリスク予測確率を格納
predict(lin.fin.cv.res.i,
data=fr.missf_p1.i,
type="response")
#AUCの算出;Bootstrap回数(B=100)分のAUCを算出して結果を格納;各bootstrap dataに対するAUC
AUC.i1[i]<-roc(STROKE~lin.fin.1,data=fr.missf_p1.i)$auc
#bootstrapで作成した各回帰モデルを使って、オリジナルデータ(fr.missf_p1)に対するリスク予測確率を算出→fr.missf_p1のlin.fin.2列に格納;AUC算出
fr.missf_p1$lin.fin.2<-
predict(lin.fin.cv.res.i,
newdata=fr.missf_p1, ##dataではなくnewdataにする必要がある!!!!
type="response")
AUC.i2[i]<-roc(STROKE~lin.fin.2,data=fr.missf_p1)$auc #ここで得られるAUCはbootstrap dataを用いてoriginal dataに外挿したときのAUC
#print(paste(i,"th bootstrap iteration is completed.",sep=""))
}
opt2<-AUC.i1-AUC.i2
#(bootstrap samplingした各data setを使い、それぞれ導いた回帰モデルにおけるAUC)ー(bootstrap samplingした各data setを使い、original dataに外挿したときのAUC)
summary(opt2);hist(opt2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.024696 -0.005136 0.006434 0.004972 0.014323 0.033388
lam2<-mean(opt2) #estimate of the optimism
lin.cor.AUC<-roc.lin.final$auc-lam2 #bias corrected AUC estimate
lin.cor.AUC
## [1] 0.74538
#k-fold CV
k <-5
AUC_CV <-data.frame(matrix(ncol=2,nrow=k))
lin_final_formula<-as.formula(STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVHYP + AGE + DIABP + HEARTRTE)
lin_final_model<-
glm(formula = lin_final_formula,
family = binomial(link = "logit"),
data = fr.missf_p1)
#Randomly shuffle the data
fr.missf_p1.r<-fr.missf_p1[sample(nrow(fr.missf_p1)),]
#Create k equally size folds
folds <- cut(seq(1,nrow(fr.missf_p1.r)),breaks=k,labels=FALSE)
#Perform k fold cross validation
for(i in 1:k){
#Segment data2r by fold using the which() function
testIndexes <- which(folds==i,arr.ind=TRUE)
testData <- fr.missf_p1.r[testIndexes, ]
trainData <- fr.missf_p1.r[-testIndexes, ]
fit1<-glm(formula = lin_final_formula, family = binomial(link = "logit"), data = trainData)
testData$fitted<-predict(fit1,testData,type="response")
ROC <- roc(testData$STROKE, testData$fitted)
AUC_CV[i,2] <- ROC$auc
AUC_CV[i,1] <- i
#print(paste(i,"th cross-validation iteration is completed.", sep=""))
}
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
names(AUC_CV)[2] <- "AUC_cv"
names(AUC_CV)[1] <- "k"
print(summary(AUC_CV$AUC_cv))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7312 0.7332 0.7342 0.7463 0.7659 0.7671
用いる変数はである
fullmodel
## [1] "STROKE~SEX+CURSMOKE+DIABETES+BPMEDS+PREVCHD+PREVAP+PREVMI+PREVHYP+TOTCHOL+AGE+SYSBP+DIABP+CIGPDAY+rcs(BMI,4)+rcs(HEARTRTE,4)+rcs(GLUCOSE,4)+SEX:PREVCHD+SEX:PREVAP+SEX:PREVMI+SEX:PREVHYP+SEX:DIABP+CURSMOKE:HEARTRTE+DIABETES:TOTCHOL+DIABETES:SYSBP+BPMEDS:PREVCHD+BPMEDS:TOTCHOL+BPMEDS:AGE+PREVCHD:GLUCOSE+PREVHYP:BMI+TOTCHOL:AGE+HEARTRTE:GLUCOSE"
glm(as.formula(fullmodel),data=fr.missf_p1,
family = binomial(link = "logit"))
##
## Call: glm(formula = as.formula(fullmodel), family = binomial(link = "logit"),
## data = fr.missf_p1)
##
## Coefficients:
## (Intercept) SEX2
## -5.2535723 -1.1953373
## CURSMOKE1 DIABETES1
## -1.2365073 4.0207549
## BPMEDS1 PREVCHD1
## 5.2898809 1.1035782
## PREVAP1 PREVMI1
## -0.3720497 0.0550895
## PREVHYP1 TOTCHOL
## 1.5148234 0.0066005
## AGE SYSBP
## 0.1010951 0.0013414
## DIABP CIGPDAY
## 0.0127927 0.0026360
## rcs(BMI, 4)BMI rcs(BMI, 4)BMI'
## -0.0862948 0.2278817
## rcs(BMI, 4)BMI'' rcs(HEARTRTE, 4)HEARTRTE
## -0.5949000 0.0094925
## rcs(HEARTRTE, 4)HEARTRTE' rcs(HEARTRTE, 4)HEARTRTE''
## -0.2123066 0.5429251
## rcs(GLUCOSE, 4)GLUCOSE rcs(GLUCOSE, 4)GLUCOSE'
## -0.0611513 0.1259855
## rcs(GLUCOSE, 4)GLUCOSE'' SEX2:PREVCHD1
## -0.3977397 -0.4496324
## SEX2:PREVAP1 SEX2:PREVMI1
## 0.9761805 1.3096815
## SEX2:PREVHYP1 SEX2:DIABP
## 0.0700994 0.0122176
## CURSMOKE0:HEARTRTE CURSMOKE1:HEARTRTE
## -0.0207419 NA
## DIABETES1:TOTCHOL DIABETES1:SYSBP
## -0.0066810 -0.0112544
## BPMEDS1:PREVCHD1 BPMEDS1:TOTCHOL
## -0.8348873 -0.0085763
## BPMEDS1:AGE PREVCHD0:GLUCOSE
## -0.0439211 0.0103560
## PREVCHD1:GLUCOSE PREVHYP0:BMI
## NA 0.0374607
## PREVHYP1:BMI TOTCHOL:AGE
## NA -0.0001260
## HEARTRTE:GLUCOSE
## 0.0003235
##
## Degrees of Freedom: 4433 Total (i.e. Null); 4396 Residual
## Null Deviance: 2756
## Residual Deviance: 2395 AIC: 2471
fullmodel2<-
STROKE~SEX+CURSMOKE+DIABETES+BPMEDS+PREVAP+PREVMI+PREVHYP+TOTCHOL+AGE+SYSBP+DIABP+CIGPDAY+
rcs(BMI,4)+rcs(HEARTRTE,4)+rcs(GLUCOSE,4)+
SEX:PREVAP+SEX:PREVMI+SEX:PREVHYP+SEX:DIABP+CURSMOKE:HEARTRTE+DIABETES:TOTCHOL+DIABETES:SYSBP+BPMEDS:TOTCHOL+
BPMEDS:AGE+PREVHYP:BMI+TOTCHOL:AGE+HEARTRTE:GLUCOSE
fullmodel3<-STROKE~SEX+CURSMOKE+DIABETES+BPMEDS+PREVAP+PREVMI+PREVHYP+TOTCHOL+AGE+SYSBP+DIABP+CIGPDAY+
rcs(BMI,4)+rcs(HEARTRTE,4)+rcs(GLUCOSE,4)+SEX:PREVHYP+SEX:PREVMI
#dfが大きいのでGVIFを算出するcar::vifを用いる
glm(as.formula(fullmodel3),data=fr.missf_p1,
family = binomial(link = "logit")) %>%
car::vif(type="predictor")
## Warning in vif.lm(., type = "predictor"): type = 'predictor' is available only for unweighted linear models;
## type = 'terms' will be used
## GVIF Df GVIF^(1/(2*Df))
## SEX 2.570312 1 1.603219
## CURSMOKE 2.463038 1 1.569407
## DIABETES 1.751968 1 1.323619
## BPMEDS 1.134620 1 1.065186
## PREVAP 1.204167 1 1.097345
## PREVMI 1.687747 1 1.299133
## PREVHYP 2.854402 1 1.689498
## TOTCHOL 1.089812 1 1.043941
## AGE 1.329260 1 1.152935
## SYSBP 3.727491 1 1.930671
## DIABP 2.981403 1 1.726674
## CIGPDAY 2.594084 1 1.610616
## rcs(BMI, 4) 1.323785 3 1.047859
## rcs(HEARTRTE, 4) 1.150514 3 1.023643
## rcs(GLUCOSE, 4) 1.866674 3 1.109630
## SEX:PREVHYP 3.811174 1 1.952223
## SEX:PREVMI 1.557143 1 1.247855
glm(as.formula(fullmodel3),data=fr.missf_p1,
family = binomial(link = "logit")) %>%
step(direction="both") %>%
summary()
## Start: AIC=2472.26
## STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVAP + PREVMI +
## PREVHYP + TOTCHOL + AGE + SYSBP + DIABP + CIGPDAY + rcs(BMI,
## 4) + rcs(HEARTRTE, 4) + rcs(GLUCOSE, 4) + SEX:PREVHYP + SEX:PREVMI
##
## Df Deviance AIC
## - rcs(BMI, 4) 3 2426.7 2468.7
## - PREVAP 1 2424.3 2470.3
## - SYSBP 1 2424.3 2470.3
## - CIGPDAY 1 2424.5 2470.5
## - rcs(GLUCOSE, 4) 3 2428.9 2470.9
## - SEX:PREVHYP 1 2425.2 2471.2
## - TOTCHOL 1 2425.4 2471.4
## <none> 2424.3 2472.3
## - SEX:PREVMI 1 2426.5 2472.5
## - CURSMOKE 1 2428.0 2474.0
## - DIABETES 1 2429.0 2475.0
## - BPMEDS 1 2430.7 2476.7
## - rcs(HEARTRTE, 4) 3 2436.6 2478.6
## - DIABP 1 2433.4 2479.4
## - AGE 1 2515.0 2561.0
##
## Step: AIC=2468.74
## STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVAP + PREVMI +
## PREVHYP + TOTCHOL + AGE + SYSBP + DIABP + CIGPDAY + rcs(HEARTRTE,
## 4) + rcs(GLUCOSE, 4) + SEX:PREVHYP + SEX:PREVMI
##
## Df Deviance AIC
## - SYSBP 1 2426.7 2466.7
## - PREVAP 1 2426.7 2466.7
## - CIGPDAY 1 2427.0 2467.0
## - rcs(GLUCOSE, 4) 3 2431.6 2467.6
## - SEX:PREVHYP 1 2427.9 2467.9
## - TOTCHOL 1 2428.1 2468.1
## <none> 2426.7 2468.7
## - SEX:PREVMI 1 2429.0 2469.0
## - CURSMOKE 1 2430.2 2470.2
## - DIABETES 1 2432.0 2472.0
## + rcs(BMI, 4) 3 2424.3 2472.3
## - BPMEDS 1 2433.3 2473.3
## - rcs(HEARTRTE, 4) 3 2438.9 2474.9
## - DIABP 1 2437.6 2477.6
## - AGE 1 2517.8 2557.8
##
## Step: AIC=2466.74
## STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVAP + PREVMI +
## PREVHYP + TOTCHOL + AGE + DIABP + CIGPDAY + rcs(HEARTRTE,
## 4) + rcs(GLUCOSE, 4) + SEX:PREVHYP + SEX:PREVMI
##
## Df Deviance AIC
## - PREVAP 1 2426.7 2464.7
## - CIGPDAY 1 2427.0 2465.0
## - rcs(GLUCOSE, 4) 3 2431.6 2465.6
## - SEX:PREVHYP 1 2427.9 2465.9
## - TOTCHOL 1 2428.1 2466.1
## <none> 2426.7 2466.7
## - SEX:PREVMI 1 2429.0 2467.0
## - CURSMOKE 1 2430.2 2468.2
## + SYSBP 1 2426.7 2468.7
## - DIABETES 1 2432.0 2470.0
## + rcs(BMI, 4) 3 2424.3 2470.3
## - BPMEDS 1 2433.3 2471.3
## - rcs(HEARTRTE, 4) 3 2438.9 2472.9
## - DIABP 1 2445.8 2483.8
## - AGE 1 2527.5 2565.5
##
## Step: AIC=2464.74
## STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVMI + PREVHYP +
## TOTCHOL + AGE + DIABP + CIGPDAY + rcs(HEARTRTE, 4) + rcs(GLUCOSE,
## 4) + SEX:PREVHYP + SEX:PREVMI
##
## Df Deviance AIC
## - CIGPDAY 1 2427.0 2463.0
## - rcs(GLUCOSE, 4) 3 2431.6 2463.6
## - SEX:PREVHYP 1 2427.9 2463.9
## - TOTCHOL 1 2428.1 2464.1
## <none> 2426.7 2464.7
## - SEX:PREVMI 1 2429.0 2465.0
## - CURSMOKE 1 2430.2 2466.2
## + PREVAP 1 2426.7 2466.7
## + SYSBP 1 2426.7 2466.7
## - DIABETES 1 2432.0 2468.0
## + rcs(BMI, 4) 3 2424.3 2468.3
## - BPMEDS 1 2433.4 2469.4
## - rcs(HEARTRTE, 4) 3 2438.9 2470.9
## - DIABP 1 2445.8 2481.8
## - AGE 1 2529.1 2565.1
##
## Step: AIC=2462.99
## STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVMI + PREVHYP +
## TOTCHOL + AGE + DIABP + rcs(HEARTRTE, 4) + rcs(GLUCOSE, 4) +
## SEX:PREVHYP + SEX:PREVMI
##
## Df Deviance AIC
## - rcs(GLUCOSE, 4) 3 2431.9 2461.9
## - SEX:PREVHYP 1 2428.2 2462.2
## - TOTCHOL 1 2428.3 2462.3
## <none> 2427.0 2463.0
## - SEX:PREVMI 1 2429.3 2463.3
## + CIGPDAY 1 2426.7 2464.7
## + PREVAP 1 2427.0 2465.0
## + SYSBP 1 2427.0 2465.0
## - DIABETES 1 2432.2 2466.2
## + rcs(BMI, 4) 3 2424.5 2466.5
## - BPMEDS 1 2433.6 2467.6
## - rcs(HEARTRTE, 4) 3 2439.0 2469.0
## - CURSMOKE 1 2437.6 2471.6
## - DIABP 1 2446.1 2480.1
## - AGE 1 2529.2 2563.2
##
## Step: AIC=2461.88
## STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVMI + PREVHYP +
## TOTCHOL + AGE + DIABP + rcs(HEARTRTE, 4) + SEX:PREVHYP +
## SEX:PREVMI
##
## Df Deviance AIC
## - TOTCHOL 1 2433.4 2461.4
## - SEX:PREVHYP 1 2433.4 2461.4
## <none> 2431.9 2461.9
## - SEX:PREVMI 1 2433.9 2461.9
## + rcs(GLUCOSE, 4) 3 2427.0 2463.0
## + CIGPDAY 1 2431.6 2463.6
## + PREVAP 1 2431.9 2463.9
## + SYSBP 1 2431.9 2463.9
## + rcs(BMI, 4) 3 2429.1 2465.1
## - BPMEDS 1 2438.7 2466.7
## - DIABETES 1 2438.9 2466.9
## - rcs(HEARTRTE, 4) 3 2443.6 2467.6
## - CURSMOKE 1 2442.6 2470.6
## - DIABP 1 2450.7 2478.7
## - AGE 1 2536.6 2564.6
##
## Step: AIC=2461.38
## STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVMI + PREVHYP +
## AGE + DIABP + rcs(HEARTRTE, 4) + SEX:PREVHYP + SEX:PREVMI
##
## Df Deviance AIC
## - SEX:PREVHYP 1 2434.8 2460.8
## <none> 2433.4 2461.4
## - SEX:PREVMI 1 2435.4 2461.4
## + TOTCHOL 1 2431.9 2461.9
## + rcs(GLUCOSE, 4) 3 2428.3 2462.3
## + CIGPDAY 1 2433.2 2463.2
## + PREVAP 1 2433.4 2463.4
## + SYSBP 1 2433.4 2463.4
## + rcs(BMI, 4) 3 2430.3 2464.3
## - BPMEDS 1 2439.9 2465.9
## - DIABETES 1 2440.3 2466.3
## - rcs(HEARTRTE, 4) 3 2445.5 2467.5
## - CURSMOKE 1 2444.2 2470.2
## - DIABP 1 2451.9 2477.9
## - AGE 1 2536.6 2562.6
##
## Step: AIC=2460.77
## STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVMI + PREVHYP +
## AGE + DIABP + rcs(HEARTRTE, 4) + SEX:PREVMI
##
## Df Deviance AIC
## <none> 2434.8 2460.8
## - SEX:PREVMI 1 2437.0 2461.0
## + SEX:PREVHYP 1 2433.4 2461.4
## + TOTCHOL 1 2433.4 2461.4
## + rcs(GLUCOSE, 4) 3 2429.4 2461.4
## + CIGPDAY 1 2434.5 2462.5
## + SYSBP 1 2434.8 2462.8
## + PREVAP 1 2434.8 2462.8
## + rcs(BMI, 4) 3 2431.4 2463.4
## - BPMEDS 1 2441.8 2465.8
## - DIABETES 1 2441.9 2465.9
## - rcs(HEARTRTE, 4) 3 2446.9 2466.9
## - CURSMOKE 1 2445.4 2469.4
## - PREVHYP 1 2451.8 2475.8
## - DIABP 1 2453.6 2477.6
## - AGE 1 2542.1 2566.1
##
## Call:
## glm(formula = STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVMI +
## PREVHYP + AGE + DIABP + rcs(HEARTRTE, 4) + SEX:PREVMI, family = binomial(link = "logit"),
## data = fr.missf_p1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3035 -0.4660 -0.3275 -0.2321 2.9086
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -9.297986 1.317164 -7.059 1.68e-12 ***
## SEX2 -0.118785 0.115042 -1.033 0.30182
## CURSMOKE1 0.376133 0.115624 3.253 0.00114 **
## DIABETES1 0.672881 0.240467 2.798 0.00514 **
## BPMEDS1 0.569736 0.209547 2.719 0.00655 **
## PREVMI1 -0.052790 0.369570 -0.143 0.88641
## PREVHYP1 0.586447 0.141663 4.140 3.48e-05 ***
## AGE 0.071503 0.007106 10.062 < 2e-16 ***
## DIABP 0.022128 0.005091 4.347 1.38e-05 ***
## rcs(HEARTRTE, 4)HEARTRTE 0.018041 0.018255 0.988 0.32303
## rcs(HEARTRTE, 4)HEARTRTE' -0.184369 0.084305 -2.187 0.02875 *
## rcs(HEARTRTE, 4)HEARTRTE'' 0.488790 0.213925 2.285 0.02232 *
## SEX2:PREVMI1 1.017895 0.670499 1.518 0.12899
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2756.0 on 4433 degrees of freedom
## Residual deviance: 2434.8 on 4421 degrees of freedom
## AIC: 2460.8
##
## Number of Fisher Scoring iterations: 6
stepwise_results<-
glm(formula = STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVMI +
PREVHYP + AGE + DIABP + rcs(HEARTRTE, 4) + SEX:PREVMI, family = binomial(link = "logit"),
data = fr.missf_p1) %>%
summary() %>%
.$coefficients %>%
as.data.frame() %>%
rownames_to_column() %>%
rename("var"="rowname") %>%
mutate(OR=exp(Estimate),
Lower=exp(Estimate-1.96*`Std. Error`),
Upper=exp(Estimate+1.96*`Std. Error`)) %>%
select(var,OR,Lower,Upper,"p"="Pr(>|z|)") %>%
#すべての変数を丸める
mutate_if(is.numeric,~round(.,3))
#結果を表示
stepwise_results
## var OR Lower Upper p
## 1 (Intercept) 0.000 0.000 0.001 0.000
## 2 SEX2 0.888 0.709 1.113 0.302
## 3 CURSMOKE1 1.457 1.161 1.827 0.001
## 4 DIABETES1 1.960 1.223 3.140 0.005
## 5 BPMEDS1 1.768 1.172 2.666 0.007
## 6 PREVMI1 0.949 0.460 1.957 0.886
## 7 PREVHYP1 1.798 1.362 2.373 0.000
## 8 AGE 1.074 1.059 1.089 0.000
## 9 DIABP 1.022 1.012 1.033 0.000
## 10 rcs(HEARTRTE, 4)HEARTRTE 1.018 0.982 1.055 0.323
## 11 rcs(HEARTRTE, 4)HEARTRTE' 0.832 0.705 0.981 0.029
## 12 rcs(HEARTRTE, 4)HEARTRTE'' 1.630 1.072 2.480 0.022
## 13 SEX2:PREVMI1 2.767 0.744 10.299 0.129
#plot
stepwise_results %>%
ggplot(aes(y=var,x=OR))+
geom_point()+
geom_errorbar(aes(xmin=Lower,xmax=Upper),width=0.2)+
geom_vline(xintercept=1,color="red")
- 交互作用項のORが増大しており発散気味だが、このまま計算を進める
#複雑なロジスティク回帰モデル
step_final_model<-
glm(formula = STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVMI +
PREVHYP + AGE + DIABP + rcs(HEARTRTE, 4) + SEX:PREVMI, family = binomial(link = "logit"),
data = fr.missf_p1)
# risk prediction fitting
fr.missf_p1$fitted.step.fin<-
predict(step_final_model,
type="response")
# ROC AUC
roc.step.final<-
roc(STROKE~fitted.step.fin,
data=fr.missf_p1,
ci=T)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
roc.step.final
##
## Call:
## roc.formula(formula = STROKE ~ fitted.step.fin, data = fr.missf_p1, ci = T)
##
## Data: fitted.step.fin in 4019 controls (STROKE 0) < 415 cases (STROKE 1).
## Area under the curve: 0.7533
## 95% CI: 0.7292-0.7774 (DeLong)
roc.step.final %>%
ggroc(legacy.axes=T)+
geom_segment(aes(x = 0, xend = 1, y = 0, yend = 1), color="grey", linetype="dashed")
#calibration plot
cal.step.final<-
val.prob(
p=fr.missf_p1$fitted.step.fin,
y=fr.missf_p1$STROKEn,
g=10,
cex=0.5)
B<-100 #number of resampling
N<-dim(fr.missf_p1)[1] #dataのdimentionを返す→4434行x39列→そのうち一番目(4434)を取得しNとする
AUC.i1<-AUC.i2<-numeric(B)
for(i in 1:B){
#bootstrap random sampling
bs.i<-sample(1:N,N,replace=TRUE) #重複を許して1~4434までの数を4434回サンプリングする
#bootstrap samplingに基づき、dataから集団を再構成 →data.iとする
fr.missf_p1.i<-fr.missf_p1[bs.i,]
#bootstrapしたデータセットごとで回帰モデル構築→各bootstrap dataからリスク予測確率の算出→data2.1のprob_1列に格納
step.fin.cv.res.i<-
glm(formula = STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVMI +
PREVHYP + AGE + DIABP + rcs(HEARTRTE, 4) + SEX:PREVMI, family = binomial(link = "logit"),
data = fr.missf_p1.i)
fr.missf_p1.i$step.fin.1<- #step.fin.1では、bootstrap dataから構築した新しいロジスティク回帰モデルを使い、そのbootstrap dataに対するリスク予測確率を格納
predict(step.fin.cv.res.i,
data=fr.missf_p1.i,
type="response")
#AUCの算出;Bootstrap回数(B=100)分のAUCを算出して結果を格納;各bootstrap dataに対するAUC
AUC.i1[i]<-roc(STROKE~step.fin.1,data=fr.missf_p1.i)$auc
#bootstrapで作成した各回帰モデルを使って、オリジナルデータ(fr.missf_p1)に対するリスク予測確率を算出→fr.missf_p1のlin.fin.2列に格納;AUC算出
fr.missf_p1$step.fin.2<-
predict(step.fin.cv.res.i,
newdata=fr.missf_p1,
type="response")
AUC.i2[i]<-roc(STROKE~step.fin.2,data=fr.missf_p1)$auc #ここで得られるAUCはbootstrap dataを用いてoriginal dataに外挿したときのAUC
#print(paste(i,"th bootstrap iteration is completed.",sep=""))
}
opt3<-AUC.i1-AUC.i2
#(bootstrap samplingした各data setを使い、それぞれ導いた回帰モデルにおけるAUC)ー(bootstrap samplingした各data setを使い、original dataに外挿したときのAUC)
summary(opt3);hist(opt3)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.026013 -0.001946 0.006097 0.005969 0.015236 0.036204
lam3<-mean(opt3) #estimate of the optimism
step.cor.AUC<-roc.step.final$auc-lam3 #bias corrected AUC estimate
step.cor.AUC
## [1] 0.7473308
#k-fold CV
k <-5
AUC_CV <-data.frame(matrix(ncol=2,nrow=k))
#Randomly shuffle the data
fr.missf_p1.r<-fr.missf_p1[sample(nrow(fr.missf_p1)),]
#Create k equally size folds
folds <- cut(seq(1,nrow(fr.missf_p1.r)),breaks=k,labels=FALSE)
#Perform k fold cross validation
for(i in 1:k){
#Segment data2r by fold using the which() function
testIndexes <- which(folds==i,arr.ind=TRUE)
testData <- fr.missf_p1.r[testIndexes, ]
trainData <- fr.missf_p1.r[-testIndexes, ]
fit1<-
glm(formula = STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVMI +
PREVHYP + AGE + DIABP + rcs(HEARTRTE, 4) + SEX:PREVMI, family = binomial(link = "logit"),
data = trainData)
testData$fitted<-predict(fit1,testData,type="response")
ROC <- roc(testData$STROKE, testData$fitted)
AUC_CV[i,2] <- ROC$auc
AUC_CV[i,1] <- i
#print(paste(i,"th cross-validation iteration is completed.", sep=""))
}
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
names(AUC_CV)[2] <- "AUC_cv"
names(AUC_CV)[1] <- "k"
print(summary(AUC_CV$AUC_cv))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7133 0.7226 0.7453 0.7458 0.7583 0.7894
STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVHYP + AGE + DIABP + HEARTRTE
lin_final_formula<-as.formula(STROKE ~ CURSMOKE + DIABETES + BPMEDS + PREVHYP + AGE + DIABP + HEARTRTE)
lin_final_model.lrm<-
lrm(lin_final_formula,
x=T,
y=T,
data=fr.missf_p1)
boot<-validate(lin_final_model.lrm,
bw=FALSE,
B=100,
method="boot")
boot
## index.orig training test optimism index.corrected n
## Dxy 0.5007 0.5085 0.4966 0.0119 0.4888 100
## R2 0.1469 0.1532 0.1438 0.0094 0.1375 100
## Intercept 0.0000 0.0000 -0.0611 0.0611 -0.0611 100
## Slope 1.0000 1.0000 0.9687 0.0313 0.9687 100
## Emax 0.0000 0.0000 0.0187 0.0187 0.0187 100
## D 0.0702 0.0734 0.0687 0.0047 0.0654 100
## U -0.0005 -0.0005 0.0001 -0.0005 0.0001 100
## Q 0.0706 0.0738 0.0686 0.0053 0.0653 100
## B 0.0780 0.0777 0.0783 -0.0006 0.0786 100
## g 1.0429 1.0670 1.0295 0.0375 1.0055 100
## gp 0.0837 0.0852 0.0828 0.0025 0.0812 100
corrected.AUC<-boot[1,5]*0.5 + 0.5 #corrected AUC=Somer's D/2 + 0.5
formula = STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVMI + PREVHYP + AGE + DIABP + rcs(HEARTRTE, 4) + SEX:PREVMI
step_final_model.lrm<-
lrm(STROKE ~ SEX + CURSMOKE + DIABETES + BPMEDS + PREVMI +
PREVHYP + AGE + DIABP + rcs(HEARTRTE, 4) + SEX:PREVMI,
x=T,
y=T,
data=fr.missf_p1
)
boot2<-validate(step_final_model.lrm,
bw=FALSE,
B=100,
method="boot")
##
## Divergence or singularity in 4 samples
boot2
## index.orig training test optimism index.corrected n
## Dxy 0.5066 0.5141 0.5000 0.0141 0.4925 96
## R2 0.1510 0.1577 0.1454 0.0123 0.1387 96
## Intercept 0.0000 0.0000 -0.0874 0.0874 -0.0874 96
## Slope 1.0000 1.0000 0.9540 0.0460 0.9540 96
## Emax 0.0000 0.0000 0.0272 0.0272 0.0272 96
## D 0.0722 0.0756 0.0695 0.0061 0.0661 96
## U -0.0005 -0.0005 0.0002 -0.0006 0.0002 96
## Q 0.0727 0.0761 0.0693 0.0068 0.0659 96
## B 0.0778 0.0773 0.0782 -0.0010 0.0788 96
## g 1.0623 1.0869 1.0344 0.0525 1.0098 96
## gp 0.0846 0.0861 0.0829 0.0032 0.0814 96
corrected.AUC2<-boot2[1,5]*0.5 + 0.5 #AUC=Somer's D/2 + 0.5
corrected.AUC2
## [1] 0.7462438