class: center, middle, inverse, title-slide .title[ # Burnout Assessment Tool ] .subtitle[ ## Validity Evidence from Students and Workers of Singapore ] .author[ ### Jorge Sinval, Minglee Yong, & Wilmar B. Schaufeli ] .date[ ### 2024-03-20 ] --- exclude: true # BAT Symposium 2024 Map <iframe src = "assets/html/bat_symposium_2024_map.html" width = "150%" height = "100%" frameborder="0"></iframe> <style> .orange { color: #EB811B; } .white { color: #FFFFFF; } .red { color: #FF0000; } .green { color: #00FF00; } .kbd { display: inline-block; padding: .2em .5em; font-size: 0.75em; line-height: 1.75; color: #555; vertical-align: middle; background-color: #fcfcfc; border: solid 1px #ccc; border-bottom-color: #bbb; border-radius: 3px; box-shadow: inset 0 -1px 0 #bbb } </style>
--- class: full-slide-fig layout: false --- class: inverse, center, middle # .white[Introduction] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Introduction: Burnout .red[Burnout] is a state of chronic stress and exhaustion related to prolonged occupational activities (work or academic), resulting in decreased performance and disinterest in work/academic tasks. -- Burnout impacts mental and physical health, performance, and can lead to higher turnover/dropout rates. Addressing this issue promotes overall well-being, enabling the development of balanced lifestyles and effective working/academic environments. -- While burnout is traditionally a job context concept, several studies have explored its occurrence in academic settings (Schaufeli, Desart, and De Witte, 2020). --- # Introduction: BAT Burnout Assessment Tool (BAT-12) is a 12-item self-report measure of burnout (Schaufeli Desart et al., 2020). -- The BAT-12 has four first-order dimensions (_exhaustion_, _mental distance_, _cognitive impairment_, and _emotional impaiment_) nested under a second-order dimension, _burnout_ (core symptoms). -- The BAT-12 has been adapted in several languages and countries, including Japan, China, Republic of Korea, the Netherlands, Portugal and Brazil (Schaufeli Desart et al., 2020). --- # Introduction: Goal Assess the psychometric properties of the BAT-12 with one sample of undergraduate students and one sample of workers in Singapore. -- Explore how burnout is associated with the sociocultural variables as the fear of losing out and group conformity. --- class: inverse, center, middle # .white[Method] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Method ## Sampling ### Students Full-time undergraduate students from a public university in Singapore were invited to participate in the study. ### Workers Recent graduates from the same university, who are now employed, were also invited to participate. ## Procedure Participants were invited via institutional emails to complete an online Qualtrics survey containing sociodemographic, academic questions, and psychometric instruments, and received a reimbursement of `\(S$ \ 10\)` (students) or `\(S$ \ 15\)` (workers), with data sourced from an ethically approved project (IRB-2022-591). --- # Method ## Psychometric instruments Burnout (BAT-12) (Maggiori, Rossier, and Savickas, 2017). Fear of Losing Out (FoLO-4) (Wee, Cheng, Choi, and Goh, 2022). Conformity Scale (Mehrabian and Stefl, 1995). Multidimensional Scale of Perceived Social Support — Revised (MSPSS) (Zimet, Dahlem, Zimet, and Farley, 1988). Life Orientation Test — Revised (LOT) (Scheier, Carver, and Bridges, 1994). ## Data Analysis Software: _R_ and _RStudio_ (R Core Team, 2023; Posit Team, 2023) Descriptive statistics CFA Reliability `\((\alpha; \omega; AVE)\)` Measurement invariance (MGCFA) Multidimensional polytomous Rasch model (Briggs and Wilson, 2003) as a specific application of the multidimensional random coefficients multinomial logit model (MRCMLM) (Adams, Wilson, and Wang, 1997). Full SEM --- # Burnout Assessment Tool - 12 <table> <caption>BAT-12 Student Version</caption> <thead> <tr> <th style="text-align:left;"> Items </th> <th style="text-align:center;"> Core Symptoms </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> At school, I feel mentally exhausted. </td> <td style="text-align:center;"> Exhaustion </td> </tr> <tr> <td style="text-align:left;"> After a day at school, I find it hard to recover my energy. </td> <td style="text-align:center;"> Exhaustion </td> </tr> <tr> <td style="text-align:left;"> At school, I feel physically exhausted. </td> <td style="text-align:center;"> Exhaustion </td> </tr> <tr> <td style="text-align:left;"> I struggle to find any enthusiasm for school. </td> <td style="text-align:center;"> Mental Distance </td> </tr> <tr> <td style="text-align:left;"> I feel a strong aversion towards my school. </td> <td style="text-align:center;"> Mental Distance </td> </tr> <tr> <td style="text-align:left;"> I’m cynical about what my school means to others. </td> <td style="text-align:center;"> Mental Distance </td> </tr> <tr> <td style="text-align:left;"> At school, I feel unable to control my emotions. </td> <td style="text-align:center;"> Emotional Impairment </td> </tr> <tr> <td style="text-align:left;"> I do not recognize myself in the way I react emotionally at school. </td> <td style="text-align:center;"> Emotional Impairment </td> </tr> <tr> <td style="text-align:left;"> At school, I may overreact unintentionally. </td> <td style="text-align:center;"> Emotional Impairment </td> </tr> <tr> <td style="text-align:left;"> At school, I have trouble staying focused. </td> <td style="text-align:center;"> Cognitive Impairment </td> </tr> <tr> <td style="text-align:left;"> When I’m at school, I have trouble concentrating. </td> <td style="text-align:center;"> Cognitive Impairment </td> </tr> <tr> <td style="text-align:left;"> I make mistakes at school because I have my mind on other things. </td> <td style="text-align:center;"> Cognitive Impairment </td> </tr> </tbody> </table> --- # Burnout Assessment Tool - 12 <table> <caption>BAT-12 Work Version</caption> <thead> <tr> <th style="text-align:left;"> Items </th> <th style="text-align:center;"> Core Symptoms </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> At work, I feel mentally exhausted </td> <td style="text-align:center;"> Exhaustion </td> </tr> <tr> <td style="text-align:left;"> After a day at work, I find it hard to recover my energy. </td> <td style="text-align:center;"> Exhaustion </td> </tr> <tr> <td style="text-align:left;"> At work, I feel physically exhausted. </td> <td style="text-align:center;"> Exhaustion </td> </tr> <tr> <td style="text-align:left;"> I struggle to find any enthusiasm for my work. </td> <td style="text-align:center;"> Mental Distance </td> </tr> <tr> <td style="text-align:left;"> I feel a strong aversion towards my job. </td> <td style="text-align:center;"> Mental Distance </td> </tr> <tr> <td style="text-align:left;"> I’m cynical about what my work means to others. </td> <td style="text-align:center;"> Mental Distance </td> </tr> <tr> <td style="text-align:left;"> At work, I feel unable to control my emotions. </td> <td style="text-align:center;"> Emotional Impairment </td> </tr> <tr> <td style="text-align:left;"> I do not recognize myself in the way I react emotionally at work. </td> <td style="text-align:center;"> Emotional Impairment </td> </tr> <tr> <td style="text-align:left;"> At work, I may overreact unintentionally. </td> <td style="text-align:center;"> Emotional Impairment </td> </tr> <tr> <td style="text-align:left;"> At work, I have trouble staying focused. </td> <td style="text-align:center;"> Cognitive Impairment </td> </tr> <tr> <td style="text-align:left;"> When I’m working, I have trouble concentrating. </td> <td style="text-align:center;"> Cognitive Impairment </td> </tr> <tr> <td style="text-align:left;"> I make mistakes in my work because I have my mind on other things. </td> <td style="text-align:center;"> Cognitive Impairment </td> </tr> </tbody> </table> --- class: inverse, center, middle # .white[Results] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- class: inverse, center, middle # .white[Sample Characterization] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- class: inverse, center, middle # .white[Students] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Sample Characterization .scroll-box-26[ <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> Female </th> <th style="text-align:center;"> Male </th> <th style="text-align:center;"> Overall </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> </td> <td style="text-align:center;"> (N=784) </td> <td style="text-align:center;"> (N=561) </td> <td style="text-align:center;"> (N=1345) </td> </tr> <tr> <td style="text-align:left;"> Age (years) </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> Mean (SD) </td> <td style="text-align:center;"> 21.9 (1.31) </td> <td style="text-align:center;"> 23.5 (1.72) </td> <td style="text-align:center;"> 22.5 (1.68) </td> </tr> <tr> <td style="text-align:left;"> Median [Min, Max] </td> <td style="text-align:center;"> 21.5 [19.3, 30.3] </td> <td style="text-align:center;"> 23.3 [19.3, 31.4] </td> <td style="text-align:center;"> 22.3 [19.3, 31.4] </td> </tr> <tr> <td style="text-align:left;"> Missing </td> <td style="text-align:center;"> 5 (0.6%) </td> <td style="text-align:center;"> 2 (0.4%) </td> <td style="text-align:center;"> 7 (0.5%) </td> </tr> <tr> <td style="text-align:left;"> Ethnicity </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> Chinese </td> <td style="text-align:center;"> 665 (84.8%) </td> <td style="text-align:center;"> 505 (90.0%) </td> <td style="text-align:center;"> 1170 (87.0%) </td> </tr> <tr> <td style="text-align:left;"> Indian </td> <td style="text-align:center;"> 55 (7.0%) </td> <td style="text-align:center;"> 29 (5.2%) </td> <td style="text-align:center;"> 84 (6.2%) </td> </tr> <tr> <td style="text-align:left;"> Malay </td> <td style="text-align:center;"> 23 (2.9%) </td> <td style="text-align:center;"> 8 (1.4%) </td> <td style="text-align:center;"> 31 (2.3%) </td> </tr> <tr> <td style="text-align:left;"> Others </td> <td style="text-align:center;"> 41 (5.2%) </td> <td style="text-align:center;"> 19 (3.4%) </td> <td style="text-align:center;"> 60 (4.5%) </td> </tr> <tr> <td style="text-align:left;"> Cumulative GPA </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> Mean (SD) </td> <td style="text-align:center;"> 3.89 (0.665) </td> <td style="text-align:center;"> 4.06 (0.671) </td> <td style="text-align:center;"> 3.96 (0.673) </td> </tr> <tr> <td style="text-align:left;"> Median [Min, Max] </td> <td style="text-align:center;"> 3.99 [0, 5.00] </td> <td style="text-align:center;"> 4.20 [0, 5.00] </td> <td style="text-align:center;"> 4.06 [0, 5.00] </td> </tr> <tr> <td style="text-align:left;"> Missing </td> <td style="text-align:center;"> 23 (2.9%) </td> <td style="text-align:center;"> 14 (2.5%) </td> <td style="text-align:center;"> 37 (2.8%) </td> </tr> </tbody> </table> ] --- class: inverse, center, middle # .white[Workers] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Sample Characterization .scroll-box-26[ <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> Female </th> <th style="text-align:center;"> Male </th> <th style="text-align:center;"> Overall </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> </td> <td style="text-align:center;"> (N=161) </td> <td style="text-align:center;"> (N=108) </td> <td style="text-align:center;"> (N=269) </td> </tr> <tr> <td style="text-align:left;"> Age (years) </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> Mean (SD) </td> <td style="text-align:center;"> 23.7 (1.16) </td> <td style="text-align:center;"> 25.4 (1.52) </td> <td style="text-align:center;"> 24.4 (1.54) </td> </tr> <tr> <td style="text-align:left;"> Median [Min, Max] </td> <td style="text-align:center;"> 23.3 [21.3, 30.4] </td> <td style="text-align:center;"> 25.3 [21.3, 31.3] </td> <td style="text-align:center;"> 24.3 [21.3, 31.3] </td> </tr> <tr> <td style="text-align:left;"> Ethnicity </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> Chinese </td> <td style="text-align:center;"> 150 (93.2%) </td> <td style="text-align:center;"> 98 (90.7%) </td> <td style="text-align:center;"> 248 (92.2%) </td> </tr> <tr> <td style="text-align:left;"> Indian </td> <td style="text-align:center;"> 5 (3.1%) </td> <td style="text-align:center;"> 6 (5.6%) </td> <td style="text-align:center;"> 11 (4.1%) </td> </tr> <tr> <td style="text-align:left;"> Malay </td> <td style="text-align:center;"> 3 (1.9%) </td> <td style="text-align:center;"> 3 (2.8%) </td> <td style="text-align:center;"> 6 (2.2%) </td> </tr> <tr> <td style="text-align:left;"> Others </td> <td style="text-align:center;"> 3 (1.9%) </td> <td style="text-align:center;"> 1 (0.9%) </td> <td style="text-align:center;"> 4 (1.5%) </td> </tr> <tr> <td style="text-align:left;"> Course Final GPA </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> Mean (SD) </td> <td style="text-align:center;"> 4.02 (0.472) </td> <td style="text-align:center;"> 4.16 (0.595) </td> <td style="text-align:center;"> 4.08 (0.528) </td> </tr> <tr> <td style="text-align:left;"> Median [Min, Max] </td> <td style="text-align:center;"> 4.06 [2.09, 4.92] </td> <td style="text-align:center;"> 4.26 [1.50, 5.00] </td> <td style="text-align:center;"> 4.15 [1.50, 5.00] </td> </tr> <tr> <td style="text-align:left;"> Missing </td> <td style="text-align:center;"> 3 (1.9%) </td> <td style="text-align:center;"> 2 (1.9%) </td> <td style="text-align:center;"> 5 (1.9%) </td> </tr> </tbody> </table> ] --- class: inverse, center, middle # .white[Validity Evidence Based on the Internal Structure] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- class: inverse, center, middle # .white[Students] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- exclude: true # Items' distributional properties The distributional properties of the model's indicators are presented in the following table. Various summary measures, a histogram, kurtosis `\((ku)\)`, and skewness `\((sk)\)` for each of items are presented. The psychometric sensitivity and distributional properties of the items were analyzed with this information. Values of `\(|Ku|<7\)` and `\(|Sk|<3\)` were indicative of absense of severe violations of the univariate normality that would recommend against the use of structural equation modeling (Finney and DiStefano, 2013). --- exclude: true # Items' distributional properties .font80[ <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Descriptives with histogram (\(n=1350\))</caption> <thead> <tr> <th style="text-align:left;"> Item </th> <th style="text-align:right;"> \(N_{missing}\) </th> <th style="text-align:right;"> \(M\) </th> <th style="text-align:right;"> \(SD\) </th> <th style="text-align:right;"> \(Min\) </th> <th style="text-align:right;"> \(P_{25}\) </th> <th style="text-align:right;"> \(Mdn\) </th> <th style="text-align:right;"> \(P_{75}\) </th> <th style="text-align:right;"> \(Max\) </th> <th style="text-align:left;"> Histogram </th> <th style="text-align:right;"> \(SEM\) </th> <th style="text-align:right;"> \(CV\) </th> <th style="text-align:right;"> \(Mode\) </th> <th style="text-align:right;"> \(sk\) </th> <th style="text-align:right;"> \(ku\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Item 1 </td> <td style="text-align:right;"> 61 </td> <td style="text-align:right;"> 3.47 </td> <td style="text-align:right;"> 0.94 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▂▇▇▃ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.27 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> -0.20 </td> <td style="text-align:right;"> -0.25 </td> </tr> <tr> <td style="text-align:left;"> Item 2 </td> <td style="text-align:right;"> 61 </td> <td style="text-align:right;"> 3.35 </td> <td style="text-align:right;"> 1.02 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▅▇▇▃ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.31 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> -0.09 </td> <td style="text-align:right;"> -0.66 </td> </tr> <tr> <td style="text-align:left;"> Item 3 </td> <td style="text-align:right;"> 61 </td> <td style="text-align:right;"> 3.25 </td> <td style="text-align:right;"> 1.05 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▅▇▇▃ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.32 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> -0.08 </td> <td style="text-align:right;"> -0.64 </td> </tr> <tr> <td style="text-align:left;"> Item 4 </td> <td style="text-align:right;"> 61 </td> <td style="text-align:right;"> 3.04 </td> <td style="text-align:right;"> 1.04 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▅▇▅▂ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.34 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.07 </td> <td style="text-align:right;"> -0.52 </td> </tr> <tr> <td style="text-align:left;"> Item 5 </td> <td style="text-align:right;"> 61 </td> <td style="text-align:right;"> 2.46 </td> <td style="text-align:right;"> 1.07 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▅▇▇▂▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.43 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.48 </td> <td style="text-align:right;"> -0.29 </td> </tr> <tr> <td style="text-align:left;"> Item 6 </td> <td style="text-align:right;"> 61 </td> <td style="text-align:right;"> 2.40 </td> <td style="text-align:right;"> 1.12 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▅▇▆▂▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.47 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.56 </td> <td style="text-align:right;"> -0.40 </td> </tr> <tr> <td style="text-align:left;"> Item 7 </td> <td style="text-align:right;"> 61 </td> <td style="text-align:right;"> 1.87 </td> <td style="text-align:right;"> 0.95 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▇▇▃▁▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.51 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1.13 </td> <td style="text-align:right;"> 1.05 </td> </tr> <tr> <td style="text-align:left;"> Item 8 </td> <td style="text-align:right;"> 61 </td> <td style="text-align:right;"> 1.82 </td> <td style="text-align:right;"> 0.99 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▇▅▂▁▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.54 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1.18 </td> <td style="text-align:right;"> 0.86 </td> </tr> <tr> <td style="text-align:left;"> Item 9 </td> <td style="text-align:right;"> 61 </td> <td style="text-align:right;"> 1.86 </td> <td style="text-align:right;"> 0.96 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▇▆▃▁▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.51 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1.01 </td> <td style="text-align:right;"> 0.52 </td> </tr> <tr> <td style="text-align:left;"> Item 10 </td> <td style="text-align:right;"> 61 </td> <td style="text-align:right;"> 2.89 </td> <td style="text-align:right;"> 1.04 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▅▇▃▂ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.36 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.07 </td> <td style="text-align:right;"> -0.39 </td> </tr> <tr> <td style="text-align:left;"> Item 11 </td> <td style="text-align:right;"> 61 </td> <td style="text-align:right;"> 2.86 </td> <td style="text-align:right;"> 1.06 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▅▇▃▂ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.37 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.14 </td> <td style="text-align:right;"> -0.42 </td> </tr> <tr> <td style="text-align:left;"> Item 12 </td> <td style="text-align:right;"> 61 </td> <td style="text-align:right;"> 2.55 </td> <td style="text-align:right;"> 1.04 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▃▇▇▂▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.41 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.38 </td> <td style="text-align:right;"> -0.26 </td> </tr> </tbody> </table> ] --- exclude: true # Dimensionality <div class="pre-name">analysis.Rmd</div> ```r model_measurement <- " Ex =~ CBATS1 + CBATS2 + CBATS3 MD =~ CBATS4 + CBATS5 + CBATS6 CI =~ CBATS10 + CBATS11 + CBATS12 EI =~ CBATS7 + CBATS8 + CBATS9 Burn =~ Ex + MD + CI + EI CBATS10 ~~ CBATS11 " library(lavaan) fit_model <- cfa(model = model_measurement, data = ds, ordered = bat_std_items, estimator="wlsmv") ``` Modifications: - residual correlation among items 10 and 11 (_cognitive impairment_ dimension) --- exclude: true # Lambdas `\((\hat\lambda)\)` <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:left;"> Exhaustion </th> <th style="text-align:left;"> Mental Distance </th> <th style="text-align:left;"> Cognitive Impairment </th> <th style="text-align:left;"> Emotional Impairment </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> CBATS1 </td> <td style="text-align:left;"> 0.864 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS2 </td> <td style="text-align:left;"> 0.875 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS3 </td> <td style="text-align:left;"> 0.829 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS4 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.848 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS5 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.838 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS6 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.750 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS10 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.819 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS11 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.848 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS12 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.832 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS7 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.930 </td> </tr> <tr> <td style="text-align:left;"> CBATS8 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.905 </td> </tr> <tr> <td style="text-align:left;"> CBATS9 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.811 </td> </tr> </tbody> </table> --- exclude: true # Gamma (\\(\hat\gamma\\)) The model's structural weights are presented in the following table. <br> <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:left;"> Burnout </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Exhaustion </td> <td style="text-align:left;"> 0.778 </td> </tr> <tr> <td style="text-align:left;"> Mental Distance </td> <td style="text-align:left;"> 0.913 </td> </tr> <tr> <td style="text-align:left;"> Cognitive Impairment </td> <td style="text-align:left;"> 0.836 </td> </tr> <tr> <td style="text-align:left;"> Emotional Impairment </td> <td style="text-align:left;"> 0.680 </td> </tr> </tbody> </table> --- # Goodness-of-fit The model presented the following goodness-of-fit indices `\((\chi^2_{scaled (49)}=849.99;p< .001; CFI_{robust}=0.943;\)` `\(TLI_{robust}=0.923;NFI_{scaled}=0.984; SRMR=0.060;RMSEA_{robust}=0.108;p_{(rmsea \leq 0.05)}< .001;\)` `\(90\%CI[0.099, 0.117])\)`. --- # Diagram The diagram showing the standardized estimates.
--- exclude: true # Item Fit Note that there is much disagreement among measurement scholars about how to classify an infit our outfit statistic as “fitting” or "misfitting." However, you should be aware of commonly accepted rule-of-thumb values among Rasch researchers: > Expected value is about 1.00 when data fit the model > Less than 1.00: Responses are too predictable; they resemble a Guttman-like (deterministic) pattern ("muted") > More than 1.00: Responses are too haphazard ("noisy"); there is too much variation to suggest that the estimate is a good representation of the response pattern Some variation is expected, but noisy responses are usually more cause for concern than muted responses. Frequently used critical values for mean square fit statistics . | *Type of Instrument* | *"Acceptable Range"* | | :---: | :----: | | Multiple-choice test (high-stakes) | 0.80 – 1.20 | | Multiple-choice test (not high-stakes)| 0.70 – 1.30 | | .red[Rating scale] | .red[0.60 – 1.40] | | Clinical observation | 0.50 – 1.70 | | Judgment (when agreement is encouraged) | 0.40 – 1.20| --- # Item Fit .font80[.left-column[ <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Item Fit</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> \(Outfit\) </th> <th style="text-align:right;"> \(Infit\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> CBATS1 </td> <td style="text-align:right;"> 0.894 </td> <td style="text-align:right;"> 0.915 </td> </tr> <tr> <td style="text-align:left;"> CBATS2 </td> <td style="text-align:right;"> 0.872 </td> <td style="text-align:right;"> 0.903 </td> </tr> <tr> <td style="text-align:left;"> CBATS3 </td> <td style="text-align:right;"> 0.994 </td> <td style="text-align:right;"> 1.020 </td> </tr> <tr> <td style="text-align:left;"> CBATS4 </td> <td style="text-align:right;"> 1.014 </td> <td style="text-align:right;"> 1.020 </td> </tr> <tr> <td style="text-align:left;"> CBATS5 </td> <td style="text-align:right;"> 0.901 </td> <td style="text-align:right;"> 0.913 </td> </tr> <tr> <td style="text-align:left;"> CBATS6 </td> <td style="text-align:right;"> 1.193 </td> <td style="text-align:right;"> 1.180 </td> </tr> <tr> <td style="text-align:left;"> CBATS10 </td> <td style="text-align:right;"> 0.787 </td> <td style="text-align:right;"> 0.799 </td> </tr> <tr> <td style="text-align:left;"> CBATS11 </td> <td style="text-align:right;"> 0.728 </td> <td style="text-align:right;"> 0.743 </td> </tr> <tr> <td style="text-align:left;"> CBATS12 </td> <td style="text-align:right;"> 1.126 </td> <td style="text-align:right;"> 1.137 </td> </tr> <tr> <td style="text-align:left;"> CBATS7 </td> <td style="text-align:right;"> 0.770 </td> <td style="text-align:right;"> 0.823 </td> </tr> <tr> <td style="text-align:left;"> CBATS8 </td> <td style="text-align:right;"> 0.774 </td> <td style="text-align:right;"> 0.895 </td> </tr> <tr> <td style="text-align:left;"> CBATS9 </td> <td style="text-align:right;"> 1.018 </td> <td style="text-align:right;"> 1.059 </td> </tr> </tbody> </table> ] ] .font80[.right-column[ <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Item Fit</caption> <thead> <tr> <th style="text-align:left;"> Fit </th> <th style="text-align:right;"> \(M\) </th> <th style="text-align:right;"> \(SD\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Outfit </td> <td style="text-align:right;"> 0.923 </td> <td style="text-align:right;"> 0.149 </td> </tr> <tr> <td style="text-align:left;"> Infit </td> <td style="text-align:right;"> 0.951 </td> <td style="text-align:right;"> 0.135 </td> </tr> </tbody> </table> ] ] --- # Wright Map .center[ <img src="data:image/png;base64,#presentation_files/figure-html/unnamed-chunk-17-1.png" width="80%" /> ] --- # Reliability: Internal consistency **First-order** The model's first-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: First-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> Exhaustion </th> <th style="text-align:right;"> Mental Distance </th> <th style="text-align:right;"> Cognitive Impairment </th> <th style="text-align:right;"> Emotional Impairment </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> \(\alpha_{ord}\) </td> <td style="text-align:right;"> 0.89 </td> <td style="text-align:right;"> 0.84 </td> <td style="text-align:right;"> 0.91 </td> <td style="text-align:right;"> 0.91 </td> </tr> <tr> <td style="text-align:left;"> \(\omega_{ord}\) </td> <td style="text-align:right;"> 0.86 </td> <td style="text-align:right;"> 0.82 </td> <td style="text-align:right;"> 0.78 </td> <td style="text-align:right;"> 0.87 </td> </tr> <tr> <td style="text-align:left;"> \(AVE\) </td> <td style="text-align:right;"> 0.73 </td> <td style="text-align:right;"> 0.66 </td> <td style="text-align:right;"> 0.69 </td> <td style="text-align:right;"> 0.78 </td> </tr> </tbody> </table> --- # Reliability: Internal consistency **Second-order** The model's second-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: Second-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> \(\omega_{L1}\) </th> <th style="text-align:right;"> \(\omega_{L2}\) </th> <th style="text-align:right;"> \(\omega_{Partial~L1}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Burnout </td> <td style="text-align:right;"> 0.83 </td> <td style="text-align:right;"> 0.88 </td> <td style="text-align:right;"> 0.94 </td> </tr> </tbody> </table> --- class: inverse, center, middle # .white[Workers] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- exclude: true # Items' distributional properties The distributional properties of the model's indicators are presented in the following table. Various summary measures, a histogram, kurtosis `\((ku)\)`, and skewness `\((sk)\)` for each of items are presented. The psychometric sensitivity and distributional properties of the items were analyzed with this information. Values of `\(|Ku|<7\)` and `\(|Sk|<3\)` were indicative of absense of severe violations of the univariate normality that would recommend against the use of structural equation modeling (Finney and DiStefano, 2013). --- exclude: true # Items' distributional properties .font80[ <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Descriptives with histogram (\(n=269\))</caption> <thead> <tr> <th style="text-align:left;"> Item </th> <th style="text-align:right;"> \(N_{missing}\) </th> <th style="text-align:right;"> \(M\) </th> <th style="text-align:right;"> \(SD\) </th> <th style="text-align:right;"> \(Min\) </th> <th style="text-align:right;"> \(P_{25}\) </th> <th style="text-align:right;"> \(Mdn\) </th> <th style="text-align:right;"> \(P_{75}\) </th> <th style="text-align:right;"> \(Max\) </th> <th style="text-align:left;"> Histogram </th> <th style="text-align:right;"> \(SEM\) </th> <th style="text-align:right;"> \(CV\) </th> <th style="text-align:right;"> \(Mode\) </th> <th style="text-align:right;"> \(sk\) </th> <th style="text-align:right;"> \(ku\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Item 1 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 3.30 </td> <td style="text-align:right;"> 0.85 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▂▇▆▁ </td> <td style="text-align:right;"> 0.05 </td> <td style="text-align:right;"> 0.26 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> -0.01 </td> <td style="text-align:right;"> -0.20 </td> </tr> <tr> <td style="text-align:left;"> Item 2 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 3.25 </td> <td style="text-align:right;"> 0.95 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▃▇▅▂ </td> <td style="text-align:right;"> 0.06 </td> <td style="text-align:right;"> 0.29 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.16 </td> <td style="text-align:right;"> -0.38 </td> </tr> <tr> <td style="text-align:left;"> Item 3 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 3.18 </td> <td style="text-align:right;"> 0.95 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▃▇▅▂ </td> <td style="text-align:right;"> 0.06 </td> <td style="text-align:right;"> 0.30 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> -0.31 </td> </tr> <tr> <td style="text-align:left;"> Item 4 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 2.97 </td> <td style="text-align:right;"> 1.00 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▇▇▅▂ </td> <td style="text-align:right;"> 0.06 </td> <td style="text-align:right;"> 0.34 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.30 </td> <td style="text-align:right;"> -0.48 </td> </tr> <tr> <td style="text-align:left;"> Item 5 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 2.56 </td> <td style="text-align:right;"> 0.99 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▃▇▇▂▁ </td> <td style="text-align:right;"> 0.06 </td> <td style="text-align:right;"> 0.39 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.34 </td> <td style="text-align:right;"> -0.16 </td> </tr> <tr> <td style="text-align:left;"> Item 6 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 2.57 </td> <td style="text-align:right;"> 1.02 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▃▇▇▂▁ </td> <td style="text-align:right;"> 0.06 </td> <td style="text-align:right;"> 0.40 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.37 </td> <td style="text-align:right;"> -0.15 </td> </tr> <tr> <td style="text-align:left;"> Item 7 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 2.03 </td> <td style="text-align:right;"> 0.90 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▅▇▃▁▁ </td> <td style="text-align:right;"> 0.06 </td> <td style="text-align:right;"> 0.44 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.82 </td> <td style="text-align:right;"> 0.70 </td> </tr> <tr> <td style="text-align:left;"> Item 8 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 2.08 </td> <td style="text-align:right;"> 1.03 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▆▇▃▁▁ </td> <td style="text-align:right;"> 0.06 </td> <td style="text-align:right;"> 0.49 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.96 </td> <td style="text-align:right;"> 0.58 </td> </tr> <tr> <td style="text-align:left;"> Item 9 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 2.11 </td> <td style="text-align:right;"> 0.98 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▆▇▃▂▁ </td> <td style="text-align:right;"> 0.06 </td> <td style="text-align:right;"> 0.46 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.76 </td> <td style="text-align:right;"> 0.19 </td> </tr> <tr> <td style="text-align:left;"> Item 10 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 2.63 </td> <td style="text-align:right;"> 0.89 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▇▇▂▁ </td> <td style="text-align:right;"> 0.06 </td> <td style="text-align:right;"> 0.34 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.49 </td> <td style="text-align:right;"> 0.39 </td> </tr> <tr> <td style="text-align:left;"> Item 11 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 2.60 </td> <td style="text-align:right;"> 0.89 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▇▇▂▁ </td> <td style="text-align:right;"> 0.06 </td> <td style="text-align:right;"> 0.34 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.39 </td> <td style="text-align:right;"> 0.25 </td> </tr> <tr> <td style="text-align:left;"> Item 12 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 2.38 </td> <td style="text-align:right;"> 0.94 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▃▇▆▂▁ </td> <td style="text-align:right;"> 0.06 </td> <td style="text-align:right;"> 0.39 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.55 </td> <td style="text-align:right;"> 0.22 </td> </tr> </tbody> </table> ] --- exclude: true # Dimensionality <div class="pre-name">analysis.Rmd</div> ```r model_measurement <- " Ex =~ CBATS1 + CBATS2 + CBATS3 MD =~ CBATS4 + CBATS5 + CBATS6 CI =~ CBATS10 + CBATS11 + CBATS12 EI =~ CBATS7 + CBATS8 + CBATS9 Burn =~ Ex + MD + CI + EI CBATS10 ~~ CBATS11 " library(lavaan) fit_model <- cfa(model = model_measurement, data = ds, ordered = bat_std_items, estimator="wlsmv") ``` Modifications: - residual correlation among items 10 and 11 (_cognitive impairment_ dimension) --- exclude: true # Lambdas `\((\hat\lambda)\)` <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:left;"> Exhaustion </th> <th style="text-align:left;"> Mental Distance </th> <th style="text-align:left;"> Cognitive Impairment </th> <th style="text-align:left;"> Emotional Impairment </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> CBATS1 </td> <td style="text-align:left;"> 0.864 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS2 </td> <td style="text-align:left;"> 0.875 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS3 </td> <td style="text-align:left;"> 0.829 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS4 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.848 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS5 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.838 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS6 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.750 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS10 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.819 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS11 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.848 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS12 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.832 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> CBATS7 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.930 </td> </tr> <tr> <td style="text-align:left;"> CBATS8 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.905 </td> </tr> <tr> <td style="text-align:left;"> CBATS9 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.811 </td> </tr> </tbody> </table> --- exclude: true # Gamma (\\(\hat\gamma\\)) The model's structural weights are presented in the following table. <br> <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:left;"> Burnout </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Exhaustion </td> <td style="text-align:left;"> 0.778 </td> </tr> <tr> <td style="text-align:left;"> Mental Distance </td> <td style="text-align:left;"> 0.913 </td> </tr> <tr> <td style="text-align:left;"> Cognitive Impairment </td> <td style="text-align:left;"> 0.836 </td> </tr> <tr> <td style="text-align:left;"> Emotional Impairment </td> <td style="text-align:left;"> 0.680 </td> </tr> </tbody> </table> --- # Goodness-of-fit The model presented the following goodness-of-fit indices `\((\chi^2_{scaled (49)}=849.99;p< .001; CFI_{robust}=0.943;\)` `\(TLI_{robust}=0.923;NFI_{scaled}=0.984; SRMR=0.060;RMSEA_{robust}=0.108;p_{(rmsea \leq 0.05)}< .001;\)` `\(90\%CI[0.099, 0.117])\)`. --- # Diagram The diagram showing the standardized estimates.
--- exclude: true # Item Fit Note that there is much disagreement among measurement scholars about how to classify an infit our outfit statistic as “fitting” or "misfitting." However, you should be aware of commonly accepted rule-of-thumb values among Rasch researchers: > Expected value is about 1.00 when data fit the model > Less than 1.00: Responses are too predictable; they resemble a Guttman-like (deterministic) pattern ("muted") > More than 1.00: Responses are too haphazard ("noisy"); there is too much variation to suggest that the estimate is a good representation of the response pattern Some variation is expected, but noisy responses are usually more cause for concern than muted responses. Frequently used critical values for mean square fit statistics . | *Type of Instrument* | *"Acceptable Range"* | | :---: | :----: | | Multiple-choice test (high-stakes) | 0.80 – 1.20 | | Multiple-choice test (not high-stakes)| 0.70 – 1.30 | | .red[Rating scale] | .red[0.60 – 1.40] | | Clinical observation | 0.50 – 1.70 | | Judgment (when agreement is encouraged) | 0.40 – 1.20| --- # Item Fit .font80[.left-column[ <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Item Fit</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> \(Outfit\) </th> <th style="text-align:right;"> \(Infit\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> CBATS1 </td> <td style="text-align:right;"> 0.894 </td> <td style="text-align:right;"> 0.915 </td> </tr> <tr> <td style="text-align:left;"> CBATS2 </td> <td style="text-align:right;"> 0.872 </td> <td style="text-align:right;"> 0.903 </td> </tr> <tr> <td style="text-align:left;"> CBATS3 </td> <td style="text-align:right;"> 0.994 </td> <td style="text-align:right;"> 1.020 </td> </tr> <tr> <td style="text-align:left;"> CBATS4 </td> <td style="text-align:right;"> 1.014 </td> <td style="text-align:right;"> 1.020 </td> </tr> <tr> <td style="text-align:left;"> CBATS5 </td> <td style="text-align:right;"> 0.901 </td> <td style="text-align:right;"> 0.913 </td> </tr> <tr> <td style="text-align:left;"> CBATS6 </td> <td style="text-align:right;"> 1.193 </td> <td style="text-align:right;"> 1.180 </td> </tr> <tr> <td style="text-align:left;"> CBATS10 </td> <td style="text-align:right;"> 0.787 </td> <td style="text-align:right;"> 0.799 </td> </tr> <tr> <td style="text-align:left;"> CBATS11 </td> <td style="text-align:right;"> 0.728 </td> <td style="text-align:right;"> 0.743 </td> </tr> <tr> <td style="text-align:left;"> CBATS12 </td> <td style="text-align:right;"> 1.126 </td> <td style="text-align:right;"> 1.137 </td> </tr> <tr> <td style="text-align:left;"> CBATS7 </td> <td style="text-align:right;"> 0.770 </td> <td style="text-align:right;"> 0.823 </td> </tr> <tr> <td style="text-align:left;"> CBATS8 </td> <td style="text-align:right;"> 0.774 </td> <td style="text-align:right;"> 0.895 </td> </tr> <tr> <td style="text-align:left;"> CBATS9 </td> <td style="text-align:right;"> 1.018 </td> <td style="text-align:right;"> 1.059 </td> </tr> </tbody> </table> ] ] .font80[.right-column[ <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Item Fit</caption> <thead> <tr> <th style="text-align:left;"> Fit </th> <th style="text-align:right;"> \(M\) </th> <th style="text-align:right;"> \(SD\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Outfit </td> <td style="text-align:right;"> 0.923 </td> <td style="text-align:right;"> 0.149 </td> </tr> <tr> <td style="text-align:left;"> Infit </td> <td style="text-align:right;"> 0.951 </td> <td style="text-align:right;"> 0.135 </td> </tr> </tbody> </table> ] ] --- # Wright Map .center[ <img src="data:image/png;base64,#presentation_files/figure-html/unnamed-chunk-32-1.png" width="80%" /> ] --- # Reliability: Internal consistency **First-order** The model's first-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: First-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> Exhaustion </th> <th style="text-align:right;"> Mental Distance </th> <th style="text-align:right;"> Cognitive Impairment </th> <th style="text-align:right;"> Emotional Impairment </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> \(\alpha_{ord}\) </td> <td style="text-align:right;"> 0.89 </td> <td style="text-align:right;"> 0.84 </td> <td style="text-align:right;"> 0.91 </td> <td style="text-align:right;"> 0.91 </td> </tr> <tr> <td style="text-align:left;"> \(\omega_{ord}\) </td> <td style="text-align:right;"> 0.86 </td> <td style="text-align:right;"> 0.82 </td> <td style="text-align:right;"> 0.78 </td> <td style="text-align:right;"> 0.87 </td> </tr> <tr> <td style="text-align:left;"> \(AVE\) </td> <td style="text-align:right;"> 0.73 </td> <td style="text-align:right;"> 0.66 </td> <td style="text-align:right;"> 0.69 </td> <td style="text-align:right;"> 0.78 </td> </tr> </tbody> </table> --- # Reliability: Internal consistency **Second-order** The model's second-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: Second-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> \(\omega_{L1}\) </th> <th style="text-align:right;"> \(\omega_{L2}\) </th> <th style="text-align:right;"> \(\omega_{Partial~L1}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Burnout </td> <td style="text-align:right;"> 0.83 </td> <td style="text-align:right;"> 0.88 </td> <td style="text-align:right;"> 0.94 </td> </tr> </tbody> </table> --- class: inverse, center, middle # .white[Measurement Invariance] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- exclude: true # Students vs. Workers Following Wu and Estabrook Wu and Estabrook (2016) recommendations. **Configural model**: .orange[no constraints] across groups or repeated measures .scroll-box-20[ ```r model_measurement <- " Ex =~ bat1 + bat2 + bat3 MD =~ bat4 + bat5 + bat6 CI =~ bat10 + bat11 + bat12 EI =~ bat7 + bat8 + bat9 Burn =~ Ex + MD + CI + EI bat10 ~~ bat11 " syntax.config <- measEq.syntax(configural.model = model_measurement, # NOTE: data provides info about numbers of # groups and thresholds data = ds_mi, ordered = T, parameterization = "theta", ID.fac = "ul", ID.cat = "Wu.Estabrook.2016", group = "occupational_status") ## print lavaan syntax to the Console fixMeans.c <- ' MD ~ c(0, 0)*1 CI ~ c(0, 0)*1 EI ~ c(0, 0)*1 Burn ~ c(0, 0)*1 ' syntax.config <- update(syntax.config, change.syntax = fixMeans.c) #cat(as.character(syntax.config)) ## print a summary of model features #lavaan::summary(syntax.config) ## Fit a model to the data either in a subsequent step (recommended): mod.config <- as.character(syntax.config) fit.config <- cfa(mod.config, data = ds_mi, group = "occupational_status", ordered = T, parameterization = "theta") ``` ] --- exclude: true # Students vs. Workers **Threshold invariance model**: equal .orange[thresholds] across groups or repeated measures .scroll-box-20[ ```r ## Threshold invariance: syntax.thresh <- semTools::measEq.syntax(configural.model = model_measurement, data = ds_mi, ordered = T, parameterization = "theta", ID.fac = "ul", ID.cat = "Wu.Estabrook.2016", group = "occupational_status", group.equal = c("thresholds")) fixMeans.th <- ' MD ~ c(0, NA)*1 CI ~ c(0, NA)*1 EI ~ c(0, NA)*1 Burn ~ c(0, NA)*1 ' syntax.thresh <- update(syntax.thresh, change.syntax = fixMeans.th) #cat(as.character(syntax.thresh)) # save as text mod.thresh <- as.character(syntax.thresh) ## fit model to data fit.thresh <- cfa(model = mod.thresh, data = ds_mi, group = "occupational_status", ordered = T, parameterization = "theta") ``` ] --- exclude: true # Students vs. Workers **Metric (first-order) invariance model**: equal thresholds and .orange[loadings] across groups or repeated measures .scroll-box-20[ ```r ## test equivalence of loadings, given equivalence of thresholds syntax.metric_1l <- measEq.syntax(configural.model = model_measurement, data = ds_mi, ordered = T, parameterization = "theta", ID.fac = "ul", ID.cat = "Wu.Estabrook.2016", group = "occupational_status", group.equal = c("thresholds","loadings")) syntax.metric_1l <- update(syntax.metric_1l, change.syntax = fixMeans.th) #summary(syntax.metric_1l) # summarize model features #cat(as.character(syntax.metric_1l)) # print/view lavaan syntax mod.metric_1l <- syntax.metric_1l |> as.character() ## fit model to data fit.metric_1l <- cfa(model = mod.metric_1l, data = ds_mi, group = "occupational_status", ordered = T, parameterization = "theta") ``` ] --- exclude: true # Students vs. Workers **Metric (second-order) invariance model**: equal thresholds, loadings and .orange[structural weights] across groups or repeated measures .scroll-box-20[ ```r ##### Equal regressions (metric second-order) syntax.metric_2l <- semTools::measEq.syntax(configural.model = model_measurement, data = ds_mi, ordered = T, parameterization = "theta", ID.fac = "ul", ID.cat = "Wu.Estabrook.2016", group = "occupational_status", group.equal = c("thresholds","loadings", "regressions")) syntax.metric_2l <- update(object = syntax.metric_2l, change.syntax = fixMeans.th) #summary(syntax.metric_2l) # summarize model features #cat(as.character(syntax.metric_2l)) # save as text mod.metric_2l <- syntax.metric_2l |> as.character() # save as tex ## fit model to data fit.metric_2l <- cfa(model = mod.metric_2l, data = ds_mi, group = "occupational_status", ordered = T, parameterization = "theta") ## test equivalence of loadings, given equivalence of thresholds #anova(fit.config, fit.thresh, fit.metric_1l, fit.metric_2l) ``` ] --- exclude: true # Students vs. Workers **Scalar (second-order) invariance model**: equal thresholds, loadings, structural weights and .orange[intercepts (of first-order latent factors)] across groups or repeated measures .scroll-box-20[ ```r ## scalar invariance syntax.scalar <- semTools::measEq.syntax(configural.model = model_measurement, data = ds_mi, ordered = T, parameterization = "theta", ID.fac = "ul", ID.cat = "Wu.Estabrook.2016", group = "occupational_status", group.equal = c("thresholds","loadings", "regressions","intercepts")) syntax.scalar <- update(syntax.scalar, change.syntax = fixMeans.th) #summary(syntax.scalar) # summarize model features #cat(as.character(syntax.scalar)) # save as text mod.scalar <- syntax.scalar |> as.character() mod.scalar <- " ## LOADINGS: Ex =~ c(1, 1)*bat1 + c(lambda.1_1, lambda.1_1)*bat1 Ex =~ c(NA, NA)*bat2 + c(lambda.2_1, lambda.2_1)*bat2 Ex =~ c(NA, NA)*bat3 + c(lambda.3_1, lambda.3_1)*bat3 MD =~ c(1, 1)*bat4 + c(lambda.4_2, lambda.4_2)*bat4 MD =~ c(NA, NA)*bat5 + c(lambda.5_2, lambda.5_2)*bat5 MD =~ c(NA, NA)*bat6 + c(lambda.6_2, lambda.6_2)*bat6 CI =~ c(1, 1)*bat7 + c(lambda.7_3, lambda.7_3)*bat7 CI =~ c(NA, NA)*bat8 + c(lambda.8_3, lambda.8_3)*bat8 CI =~ c(NA, NA)*bat9 + c(lambda.9_3, lambda.9_3)*bat9 EI =~ c(1, 1)*bat10 + c(lambda.10_4, lambda.10_4)*bat10 EI =~ c(NA, NA)*bat11 + c(lambda.11_4, lambda.11_4)*bat11 EI =~ c(NA, NA)*bat12 + c(lambda.12_4, lambda.12_4)*bat12 Burn =~ c(1, 1)*Ex + c(beta.1_5, beta.1_5)*Ex Burn =~ c(NA, NA)*MD + c(beta.2_5, beta.2_5)*MD Burn =~ c(NA, NA)*CI + c(beta.3_5, beta.3_5)*CI Burn =~ c(NA, NA)*EI + c(beta.4_5, beta.4_5)*EI ## THRESHOLDS: bat1 | c(NA, NA)*t1 + c(bat1.thr1, bat1.thr1)*t1 bat1 | c(NA, NA)*t2 + c(bat1.thr2, bat1.thr2)*t2 bat1 | c(NA, NA)*t3 + c(bat1.thr3, bat1.thr3)*t3 bat1 | c(NA, NA)*t4 + c(bat1.thr4, bat1.thr4)*t4 bat2 | c(NA, NA)*t1 + c(bat2.thr1, bat2.thr1)*t1 bat2 | c(NA, NA)*t2 + c(bat2.thr2, bat2.thr2)*t2 bat2 | c(NA, NA)*t3 + c(bat2.thr3, bat2.thr3)*t3 bat2 | c(NA, NA)*t4 + c(bat2.thr4, bat2.thr4)*t4 bat3 | c(NA, NA)*t1 + c(bat3.thr1, bat3.thr1)*t1 bat3 | c(NA, NA)*t2 + c(bat3.thr2, bat3.thr2)*t2 bat3 | c(NA, NA)*t3 + c(bat3.thr3, bat3.thr3)*t3 bat3 | c(NA, NA)*t4 + c(bat3.thr4, bat3.thr4)*t4 bat4 | c(NA, NA)*t1 + c(bat4.thr1, bat4.thr1)*t1 bat4 | c(NA, NA)*t2 + c(bat4.thr2, bat4.thr2)*t2 bat4 | c(NA, NA)*t3 + c(bat4.thr3, bat4.thr3)*t3 bat4 | c(NA, NA)*t4 + c(bat4.thr4, bat4.thr4)*t4 bat5 | c(NA, NA)*t1 + c(bat5.thr1, bat5.thr1)*t1 bat5 | c(NA, NA)*t2 + c(bat5.thr2, bat5.thr2)*t2 bat5 | c(NA, NA)*t3 + c(bat5.thr3, bat5.thr3)*t3 bat5 | c(NA, NA)*t4 + c(bat5.thr4, bat5.thr4)*t4 bat6 | c(NA, NA)*t1 + c(bat6.thr1, bat6.thr1)*t1 bat6 | c(NA, NA)*t2 + c(bat6.thr2, bat6.thr2)*t2 bat6 | c(NA, NA)*t3 + c(bat6.thr3, bat6.thr3)*t3 bat6 | c(NA, NA)*t4 + c(bat6.thr4, bat6.thr4)*t4 bat7 | c(NA, NA)*t1 + c(bat7.thr1, bat7.thr1)*t1 bat7 | c(NA, NA)*t2 + c(bat7.thr2, bat7.thr2)*t2 bat7 | c(NA, NA)*t3 + c(bat7.thr3, bat7.thr3)*t3 bat7 | c(NA, NA)*t4 + c(bat7.thr4, bat7.thr4)*t4 bat8 | c(NA, NA)*t1 + c(bat8.thr1, bat8.thr1)*t1 bat8 | c(NA, NA)*t2 + c(bat8.thr2, bat8.thr2)*t2 bat8 | c(NA, NA)*t3 + c(bat8.thr3, bat8.thr3)*t3 bat8 | c(NA, NA)*t4 + c(bat8.thr4, bat8.thr4)*t4 bat9 | c(NA, NA)*t1 + c(bat9.thr1, bat9.thr1)*t1 bat9 | c(NA, NA)*t2 + c(bat9.thr2, bat9.thr2)*t2 bat9 | c(NA, NA)*t3 + c(bat9.thr3, bat9.thr3)*t3 bat9 | c(NA, NA)*t4 + c(bat9.thr4, bat9.thr4)*t4 bat10 | c(NA, NA)*t1 + c(bat10.thr1, bat10.thr1)*t1 bat10 | c(NA, NA)*t2 + c(bat10.thr2, bat10.thr2)*t2 bat10 | c(NA, NA)*t3 + c(bat10.thr3, bat10.thr3)*t3 bat10 | c(NA, NA)*t4 + c(bat10.thr4, bat10.thr4)*t4 bat11 | c(NA, NA)*t1 + c(bat11.thr1, bat11.thr1)*t1 bat11 | c(NA, NA)*t2 + c(bat11.thr2, bat11.thr2)*t2 bat11 | c(NA, NA)*t3 + c(bat11.thr3, bat11.thr3)*t3 bat11 | c(NA, NA)*t4 + c(bat11.thr4, bat11.thr4)*t4 bat12 | c(NA, NA)*t1 + c(bat12.thr1, bat12.thr1)*t1 bat12 | c(NA, NA)*t2 + c(bat12.thr2, bat12.thr2)*t2 bat12 | c(NA, NA)*t3 + c(bat12.thr3, bat12.thr3)*t3 bat12 | c(NA, NA)*t4 + c(bat12.thr4, bat12.thr4)*t4 ## INTERCEPTS: bat1 ~ c(0, 0)*1 + c(nu.1, nu.1)*1 bat2 ~ c(0, 0)*1 + c(nu.2, nu.2)*1 bat3 ~ c(0, 0)*1 + c(nu.3, nu.3)*1 bat4 ~ c(0, 0)*1 + c(nu.4, nu.4)*1 bat5 ~ c(0, 0)*1 + c(nu.5, nu.5)*1 bat6 ~ c(0, 0)*1 + c(nu.6, nu.6)*1 bat7 ~ c(0, 0)*1 + c(nu.7, nu.7)*1 bat8 ~ c(0, 0)*1 + c(nu.8, nu.8)*1 bat9 ~ c(0, 0)*1 + c(nu.9, nu.9)*1 bat10 ~ c(0, 0)*1 + c(nu.10, nu.10)*1 bat11 ~ c(0, 0)*1 + c(nu.11, nu.11)*1 bat12 ~ c(0, 0)*1 + c(nu.12, nu.12)*1 ## UNIQUE-FACTOR VARIANCES: bat1 ~~ c(1, NA)*bat1 + c(theta.1_1.g1, theta.1_1.g2)*bat1 bat2 ~~ c(1, NA)*bat2 + c(theta.2_2.g1, theta.2_2.g2)*bat2 bat3 ~~ c(1, NA)*bat3 + c(theta.3_3.g1, theta.3_3.g2)*bat3 bat4 ~~ c(1, NA)*bat4 + c(theta.4_4.g1, theta.4_4.g2)*bat4 bat5 ~~ c(1, NA)*bat5 + c(theta.5_5.g1, theta.5_5.g2)*bat5 bat6 ~~ c(1, NA)*bat6 + c(theta.6_6.g1, theta.6_6.g2)*bat6 bat7 ~~ c(1, NA)*bat7 + c(theta.7_7.g1, theta.7_7.g2)*bat7 bat8 ~~ c(1, NA)*bat8 + c(theta.8_8.g1, theta.8_8.g2)*bat8 bat9 ~~ c(1, NA)*bat9 + c(theta.9_9.g1, theta.9_9.g2)*bat9 bat10 ~~ c(1, NA)*bat10 + c(theta.10_10.g1, theta.10_10.g2)*bat10 bat11 ~~ c(1, NA)*bat11 + c(theta.11_11.g1, theta.11_11.g2)*bat11 bat12 ~~ c(1, NA)*bat12 + c(theta.12_12.g1, theta.12_12.g2)*bat12 ## UNIQUE-FACTOR COVARIANCES: bat10 ~~ c(NA, NA)*bat11 + c(theta.11_10.g1, theta.11_10.g2)*bat11 ## LATENT MEANS/INTERCEPTS: Ex ~ c(0, 0)*1 + c(alpha.1.g1, alpha.1.g2)*1 MD ~ c(0, NA)*1 + c(alpha.2.g1, alpha.2.g2)*1 CI ~ c(0, NA)*1 + c(alpha.3.g1, alpha.3.g2)*1 EI ~ c(0, NA)*1 + c(alpha.4.g1, alpha.4.g2)*1 Burn ~ c(0, NA)*1 + c(alpha.5.g1, alpha.5.g2)*1 ## COMMON-FACTOR VARIANCES: Ex ~~ c(NA, NA)*Ex + c(psi.1_1.g1, psi.1_1.g2)*Ex MD ~~ c(NA, NA)*MD + c(psi.2_2.g1, psi.2_2.g2)*MD CI ~~ c(NA, NA)*CI + c(psi.3_3.g1, psi.3_3.g2)*CI EI ~~ c(NA, NA)*EI + c(psi.4_4.g1, psi.4_4.g2)*EI Burn ~~ c(NA, NA)*Burn + c(psi.5_5.g1, psi.5_5.g2)*Burn ## COMMON-FACTOR COVARIANCES: Ex ~~ c(0, 0)*MD + c(psi.2_1.g1, psi.2_1.g2)*MD Ex ~~ c(0, 0)*CI + c(psi.3_1.g1, psi.3_1.g2)*CI Ex ~~ c(0, 0)*EI + c(psi.4_1.g1, psi.4_1.g2)*EI Ex ~~ c(0, 0)*Burn + c(psi.5_1.g1, psi.5_1.g2)*Burn MD ~~ c(0, 0)*CI + c(psi.3_2.g1, psi.3_2.g2)*CI MD ~~ c(0, 0)*EI + c(psi.4_2.g1, psi.4_2.g2)*EI MD ~~ c(0, 0)*Burn + c(psi.5_2.g1, psi.5_2.g2)*Burn CI ~~ c(0, 0)*EI + c(psi.4_3.g1, psi.4_3.g2)*EI CI ~~ c(0, 0)*Burn + c(psi.5_3.g1, psi.5_3.g2)*Burn EI ~~ c(0, 0)*Burn + c(psi.5_4.g1, psi.5_4.g2)*Burn " ## fit model to data fit.scalar <- cfa(model = mod.scalar, data = ds_mi, group = "occupational_status", ordered = T, parameterization = "theta") ## test equivalence of intercepts, given equal thresholds & loadings #anova(fit.config, fit.thresh ,fit.metric_1l, fit.metric_2l, fit.scalar) #summary(fit.scalar, std=T) ``` ] --- exclude: true # Students vs. Workers **Means invariance model**: equal thresholds, loadings, structural weights, intercepts (of first-order latent factors) and .orange[means] across groups or repeated measures .scroll-box-20[ ```r syntax.means <- semTools::measEq.syntax(configural.model = model_measurement, data = ds_mi, ordered = T, parameterization = "theta", ID.fac = "ul", ID.cat = "Wu.Estabrook.2016", group = "occupational_status", group.equal = c("thresholds","loadings", "regressions","intercepts", "means")) syntax.means <- update(syntax.means, change.syntax = fixMeans.c) #summary(syntax.means) # summarize model features #cat(as.character(syntax.means)) # save as text mod.means <- syntax.means |> as.character()# save as text ## fit model to data fit.means <- cfa(model = mod.means, data = ds_mi, group = "occupational_status", ordered = T, parameterization = "theta") ``` ] --- exclude: true # Students vs. Workers **Strict (second-order) invariance model**: equal thresholds, loadings, structural weights, intercepts (of first-order latent factors), means and .orange[disturbances] across groups or repeated measures .scroll-box-20[ ```r ## strict invariance syntax.strict_2l <- measEq.syntax(configural.model = model_measurement, data = ds_mi, ordered = T, parameterization = "theta", ID.fac = "ul", ID.cat = "Wu.Estabrook.2016", group = "occupational_status", group.equal = c("thresholds","loadings", "regressions","intercepts")) fixMeans.th <- ' MD ~ c(0, NA)*1 CI ~ c(0, NA)*1 EI ~ c(0, NA)*1 Burn ~ c(0, NA)*1 ' syntax.strict_2l <- update(object = syntax.strict_2l, change.syntax = fixMeans.th) fixDist <- ' Ex ~~ c(1, 1)*Ex + c(psi.1_1.g1, psi.1_1.g2)*Ex MD ~~ c(1, 1)*MD + c(psi.2_2.g1, psi.2_2.g2)*MD CI ~~ c(1, 1)*CI + c(psi.3_3.g1, psi.3_3.g2)*CI EI ~~ c(1, 1)*EI + c(psi.4_4.g1, psi.4_4.g2)*EI Burn ~~ c(NA, NA)*Burn + c(psi.5_5.g1, psi.5_5.g2)*Burn ' syntax.strict_2l <- update(object = syntax.strict_2l, change.syntax = fixDist) #summary(syntax.strict_2l) # summarize model features #cat(as.character(syntax.strict_2l)) # save as text mod.strict_2l <- syntax.strict_2l |> as.character()# save as text ## fit model to data fit.strict_2l <- cfa(model = mod.strict_2l, data = ds_mi, group = "occupational_status", ordered = T, parameterization = "theta") ``` ] --- exclude: true # Students vs. Workers **Strict (first-order) invariance model**: equal thresholds, loadings, structural weights, intercepts (of first-order latent factors), means, disturbances and .orange[residuals] across groups or repeated measures .scroll-box-20[ ```r ## strict invariance syntax.strict_1l <- semTools::measEq.syntax(configural.model = model_measurement, data = ds_mi, ordered = T, parameterization = "theta", ID.fac = "ul", ID.cat = "Wu.Estabrook.2016", group = "occupational_status", group.equal = c("thresholds","loadings", "regressions","intercepts", "residuals")) syntax.strict_1l <- update(object = syntax.strict_1l, change.syntax = fixMeans.th) syntax.strict_1l <- update(object = syntax.strict_1l, change.syntax = fixDist) #summary(syntax.strict_1l) # summarize model features #cat(as.character(syntax.strict_1l)) # save as text mod.strict_1l <- syntax.strict_1l |> as.character() # save as text ## fit model to data fit.strict_1l <- cfa(model = mod.strict_1l, data = ds_mi, group = "occupational_status", ordered = T, parameterization = "theta") ## test equivalence of intercepts, given equal thresholds & loadings #anova(fit.config, fit.thresh ,fit.metric_1l, fit.metric_2l, fit.scalar, fit.means, fit.strict_2l, fit.strict_1l) ``` ] --- # Students vs. Workers <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:left;"> \(\chi^2_{scaled}\) </th> <th style="text-align:right;"> \(df_{scaled}\) </th> <th style="text-align:left;"> \(p_{\Delta\chi^2}\) </th> <th style="text-align:left;"> \(CFI_{scaled}\) </th> <th style="text-align:left;"> \(\Delta CFI_{scaled}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Configural </td> <td style="text-align:left;"> 1,050.018 </td> <td style="text-align:right;"> 98 </td> <td style="text-align:left;"> - </td> <td style="text-align:left;"> 0.984 </td> <td style="text-align:left;"> - </td> </tr> <tr> <td style="text-align:left;"> Thresholds </td> <td style="text-align:left;"> 1,045.546 </td> <td style="text-align:right;"> 118 </td> <td style="text-align:left;"> .034 </td> <td style="text-align:left;"> 0.984 </td> <td style="text-align:left;"> 0.000 </td> </tr> <tr> <td style="text-align:left;"> Factor loadings </td> <td style="text-align:left;"> 1,010.177 </td> <td style="text-align:right;"> 126 </td> <td style="text-align:left;"> .045 </td> <td style="text-align:left;"> 0.985 </td> <td style="text-align:left;"> 0.001 </td> </tr> <tr> <td style="text-align:left;"> Structural weights </td> <td style="text-align:left;"> 925.097 </td> <td style="text-align:right;"> 129 </td> <td style="text-align:left;"> .015 </td> <td style="text-align:left;"> 0.986 </td> <td style="text-align:left;"> 0.001 </td> </tr> <tr> <td style="text-align:left;"> Intercepts (first-order) </td> <td style="text-align:left;"> 967.161 </td> <td style="text-align:right;"> 141 </td> <td style="text-align:left;"> < .001 </td> <td style="text-align:left;"> 0.986 </td> <td style="text-align:left;"> -0.001 </td> </tr> <tr> <td style="text-align:left;"> Latent means </td> <td style="text-align:left;"> 877.750 </td> <td style="text-align:right;"> 145 </td> <td style="text-align:left;"> < .001 </td> <td style="text-align:left;"> 0.988 </td> <td style="text-align:left;"> 0.002 </td> </tr> <tr> <td style="text-align:left;"> Disturbances </td> <td style="text-align:left;"> 1,157.145 </td> <td style="text-align:right;"> 149 </td> <td style="text-align:left;"> < .001 </td> <td style="text-align:left;"> 0.983 </td> <td style="text-align:left;"> -0.005 </td> </tr> <tr> <td style="text-align:left;"> Residuals </td> <td style="text-align:left;"> 1,063.605 </td> <td style="text-align:right;"> 161 </td> <td style="text-align:left;"> < .001 </td> <td style="text-align:left;"> 0.985 </td> <td style="text-align:left;"> 0.002 </td> </tr> </tbody> <tfoot> <tr> <td style="padding: 0; border:0;" colspan="100%"> <sup>a</sup> The `\chi_{text{scaled}}^{2}` column contains the robust test. The `p_{Deltachi^2}` column contains the robust difference test which is a function of two standard (not robust) statistics.</td> </tr> </tfoot> </table> --- # Sex <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:left;"> \(\chi^2_{scaled}\) </th> <th style="text-align:right;"> \(df_{scaled}\) </th> <th style="text-align:left;"> \(p_{\Delta\chi^2}\) </th> <th style="text-align:left;"> \(CFI_{scaled}\) </th> <th style="text-align:left;"> \(\Delta CFI_{scaled}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Configural </td> <td style="text-align:left;"> 957.010 </td> <td style="text-align:right;"> 98 </td> <td style="text-align:left;"> - </td> <td style="text-align:left;"> 0.985 </td> <td style="text-align:left;"> - </td> </tr> <tr> <td style="text-align:left;"> Thresholds </td> <td style="text-align:left;"> 964.056 </td> <td style="text-align:right;"> 118 </td> <td style="text-align:left;"> .204 </td> <td style="text-align:left;"> 0.985 </td> <td style="text-align:left;"> 0.000 </td> </tr> <tr> <td style="text-align:left;"> Factor loadings </td> <td style="text-align:left;"> 942.516 </td> <td style="text-align:right;"> 126 </td> <td style="text-align:left;"> .832 </td> <td style="text-align:left;"> 0.985 </td> <td style="text-align:left;"> 0.001 </td> </tr> <tr> <td style="text-align:left;"> Structural weights </td> <td style="text-align:left;"> 811.051 </td> <td style="text-align:right;"> 129 </td> <td style="text-align:left;"> .618 </td> <td style="text-align:left;"> 0.988 </td> <td style="text-align:left;"> 0.002 </td> </tr> <tr> <td style="text-align:left;"> Intercepts (first-order) </td> <td style="text-align:left;"> 859.780 </td> <td style="text-align:right;"> 141 </td> <td style="text-align:left;"> < .001 </td> <td style="text-align:left;"> 0.987 </td> <td style="text-align:left;"> -0.001 </td> </tr> <tr> <td style="text-align:left;"> Latent means </td> <td style="text-align:left;"> 739.950 </td> <td style="text-align:right;"> 145 </td> <td style="text-align:left;"> < .001 </td> <td style="text-align:left;"> 0.989 </td> <td style="text-align:left;"> 0.002 </td> </tr> <tr> <td style="text-align:left;"> Disturbances </td> <td style="text-align:left;"> 983.354 </td> <td style="text-align:right;"> 149 </td> <td style="text-align:left;"> .003 </td> <td style="text-align:left;"> 0.985 </td> <td style="text-align:left;"> -0.004 </td> </tr> <tr> <td style="text-align:left;"> Residuals </td> <td style="text-align:left;"> 980.413 </td> <td style="text-align:right;"> 161 </td> <td style="text-align:left;"> < .001 </td> <td style="text-align:left;"> 0.985 </td> <td style="text-align:left;"> 0.000 </td> </tr> </tbody> <tfoot> <tr> <td style="padding: 0; border:0;" colspan="100%"> <sup>a</sup> The `\chi_{text{scaled}}^{2}` column contains the robust test. The `p_{Deltachi^2}` column contains the robust difference test which is a function of two standard (not robust) statistics.</td> </tr> </tfoot> </table> --- class: inverse, center, middle # .white[Validity Evidence based on the Relations to Other Variables] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- class: inverse, center, middle # .white[Students] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Latent Correlations The model presented the following goodness-of-fit indices `\((\chi^2_{scaled (751)}=3,012.52;p< .001; CFI_{scaled}=0.989;\)` `\(TLI_{scaled}=0.987;NFI_{scaled}=0.985; SRMR=0.052;RMSEA_{scaled}=0.048;p_{(rmsea \leq 0.05)}= .920;\)` `\(90\%CI[0.047, 0.050])\)`. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Latent Correlations</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> 1 </th> <th style="text-align:right;"> 2 </th> <th style="text-align:right;"> 3 </th> <th style="text-align:right;"> 4 </th> <th style="text-align:right;"> 5 </th> <th style="text-align:right;"> 6 </th> <th style="text-align:left;"> 7 </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Burnout (1) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> .15 </td> <td style="text-align:right;"> .13 </td> <td style="text-align:right;"> -.31 </td> <td style="text-align:right;"> .34 </td> <td style="text-align:right;"> -.19 </td> <td style="text-align:left;"> -.25 </td> </tr> <tr> <td style="text-align:left;"> Kiasuism (2) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> .18 </td> <td style="text-align:right;"> -.07 </td> <td style="text-align:right;"> .23 </td> <td style="text-align:right;"> .04 </td> <td style="text-align:left;"> .08 </td> </tr> <tr> <td style="text-align:left;"> Conformism (3) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> -.13 </td> <td style="text-align:right;"> .08 </td> <td style="text-align:right;"> .00 </td> <td style="text-align:left;"> -.04 </td> </tr> <tr> <td style="text-align:left;"> Optimism (4) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> -.70 </td> <td style="text-align:right;"> .50 </td> <td style="text-align:left;"> .01 </td> </tr> <tr> <td style="text-align:left;"> Pessimism (5) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> -.30 </td> <td style="text-align:left;"> -.11 </td> </tr> <tr> <td style="text-align:left;"> Support (6) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:left;"> .06 </td> </tr> <tr> <td style="text-align:left;"> Cumulative GPA (7) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:left;"> </td> </tr> </tbody> </table> --- exclude: true # Reliabillity ## First-order The model's first-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: First-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> Ex </th> <th style="text-align:right;"> Md </th> <th style="text-align:right;"> Ci </th> <th style="text-align:right;"> Ei </th> <th style="text-align:right;"> Kiasuism </th> <th style="text-align:right;"> Conformism </th> <th style="text-align:right;"> Opt </th> <th style="text-align:right;"> Pess </th> <th style="text-align:right;"> Sup_fam </th> <th style="text-align:right;"> Sup_frd </th> <th style="text-align:right;"> Sup_oth </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> \(\omega_{ord}\) </td> <td style="text-align:right;"> 0.86 </td> <td style="text-align:right;"> 0.82 </td> <td style="text-align:right;"> 0.79 </td> <td style="text-align:right;"> 0.87 </td> <td style="text-align:right;"> 0.88 </td> <td style="text-align:right;"> 0.76 </td> <td style="text-align:right;"> 0.68 </td> <td style="text-align:right;"> 0.72 </td> <td style="text-align:right;"> 0.91 </td> <td style="text-align:right;"> 0.92 </td> <td style="text-align:right;"> 0.97 </td> </tr> </tbody> </table> ## Second-order The model's second-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: Second-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> \(\omega_{L1}\) </th> <th style="text-align:right;"> \(\omega_{L2}\) </th> <th style="text-align:right;"> \(\omega_{Partial~L1}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Burnout </td> <td style="text-align:right;"> 0.83 </td> <td style="text-align:right;"> 0.88 </td> <td style="text-align:right;"> 0.95 </td> </tr> <tr> <td style="text-align:left;"> Social Support </td> <td style="text-align:right;"> 0.74 </td> <td style="text-align:right;"> 0.75 </td> <td style="text-align:right;"> 0.97 </td> </tr> </tbody> </table> --- class: inverse, center, middle # .white[Workers] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Latent Correlations The model presented the following goodness-of-fit indices `\((\chi^2_{scaled (751)}=1,047.85;p< .001; CFI_{scaled}=0.993;\)` `\(TLI_{scaled}=0.992;NFI_{scaled}=0.976; SRMR=0.062;RMSEA_{scaled}=0.039; p_{(rmsea \leq 0.05)}> .999;\)` `\(90\%CI[0.033, 0.045])\)`. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Latent Correlations</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> 1 </th> <th style="text-align:right;"> 2 </th> <th style="text-align:right;"> 3 </th> <th style="text-align:right;"> 4 </th> <th style="text-align:right;"> 5 </th> <th style="text-align:right;"> 6 </th> <th style="text-align:left;"> 7 </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Burnout (1) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> Kiasuism (2) </td> <td style="text-align:right;"> .18 </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> Conformism (3) </td> <td style="text-align:right;"> .14 </td> <td style="text-align:right;"> .10 </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> Optimism (4) </td> <td style="text-align:right;"> -.20 </td> <td style="text-align:right;"> -.01 </td> <td style="text-align:right;"> -.17 </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> Pessimism (5) </td> <td style="text-align:right;"> .35 </td> <td style="text-align:right;"> .14 </td> <td style="text-align:right;"> .11 </td> <td style="text-align:right;"> -.62 </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> Support (6) </td> <td style="text-align:right;"> -.15 </td> <td style="text-align:right;"> .18 </td> <td style="text-align:right;"> .07 </td> <td style="text-align:right;"> .42 </td> <td style="text-align:right;"> -.22 </td> <td style="text-align:right;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> Final course GPA (7) </td> <td style="text-align:right;"> -.03 </td> <td style="text-align:right;"> .01 </td> <td style="text-align:right;"> -.01 </td> <td style="text-align:right;"> .10 </td> <td style="text-align:right;"> -.28 </td> <td style="text-align:right;"> .12 </td> <td style="text-align:left;"> </td> </tr> </tbody> </table> --- exclude: true # Reliability ## First-order The model's first-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: First-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> Ex </th> <th style="text-align:right;"> Md </th> <th style="text-align:right;"> Ci </th> <th style="text-align:right;"> Ei </th> <th style="text-align:right;"> Kiasuism </th> <th style="text-align:right;"> Conformism </th> <th style="text-align:right;"> Opt </th> <th style="text-align:right;"> Pess </th> <th style="text-align:right;"> Sup_fam </th> <th style="text-align:right;"> Sup_frd </th> <th style="text-align:right;"> Sup_oth </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> \(\omega_{ord}\) </td> <td style="text-align:right;"> 0.81 </td> <td style="text-align:right;"> 0.8 </td> <td style="text-align:right;"> 0.65 </td> <td style="text-align:right;"> 0.86 </td> <td style="text-align:right;"> 0.89 </td> <td style="text-align:right;"> 0.75 </td> <td style="text-align:right;"> 0.64 </td> <td style="text-align:right;"> 0.74 </td> <td style="text-align:right;"> 0.9 </td> <td style="text-align:right;"> 0.92 </td> <td style="text-align:right;"> 0.98 </td> </tr> </tbody> </table> ## Second-order The model's second-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: Second-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> \(\omega_{L1}\) </th> <th style="text-align:right;"> \(\omega_{L2}\) </th> <th style="text-align:right;"> \(\omega_{Partial~L1}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Burnout </td> <td style="text-align:right;"> 0.84 </td> <td style="text-align:right;"> 0.90 </td> <td style="text-align:right;"> 0.93 </td> </tr> <tr> <td style="text-align:left;"> Social Support </td> <td style="text-align:right;"> 0.69 </td> <td style="text-align:right;"> 0.71 </td> <td style="text-align:right;"> 0.96 </td> </tr> </tbody> </table> --- # Discussion BAT-12 demonstrated strong validity evidence, aligning with the expected dimensions of burnout core symptoms, including Exhaustion, Mental Distance, Cognitive Impairment and Emotional Impairment. -- Good reliability (in terms of internal consistency) was observed for all factors. -- Measurement invariance was found for occupational status and sex. --- # Discussion Convergent validity was supported through negative correlations with optimism, and social support, as well as positive correlations with pessimism,fear of losing out and conformism (for both groups). -- Cumulative GPA was negatively correlated with burnout (only for students). -- Cultural aspects (vertical conformity and kiasuism). --- # Conclusion The BAT-12 was found to have good psychometric properties for assessing burnout among Singaporean undergraduate students and workers. -- The study highlighted the importance of considering sociocultural context variables when examining occupational health constructs and offered valuable insights into the applicability of the BAT-12 in populations of undergraduates and of workers. --- # References Adams, R. J., M. Wilson, et al. (1997). "The multidimensional random coefficients multinomial logit model". In: _Applied Psychological Measurement_ 21.1, pp. 1-23. ISSN: 0146-6216. DOI: [10.1177/0146621697211001](https://doi.org/10.1177%2F0146621697211001). eprint: 0803973233. Briggs, D. C. and M. Wilson (2003). "An introduction to multidimensional measurement using Rasch models.". In: _Journal of Applied Measurement_ 4.1, pp. 87-100. ISSN: 1529-7713. Finney, S. J. and C. DiStefano (2013). "Non-normal and categorical data in structural equation modeling". In: _Structural equation modeling: A second course_. Ed. by G. R. Hancock and R. O. Mueller. 2nd ed. Charlotte, NC: Information Age Publishing. Chap. 11, pp. 439-492. Maggiori, C., J. Rossier, et al. (2017). "Career Adapt-Abilities Scale–Short Form (CAAS-SF): Construction and validation". In: _Journal of Career Assessment_ 25.2, pp. 312-325. ISSN: 1069-0727. DOI: [10.1177/1069072714565856](https://doi.org/10.1177%2F1069072714565856). Mehrabian, A. and C. A. Stefl (1995). "Basic temperament components of loneliness, shyness, and conformity". In: _Social Behavior and Personality: an international journal_ 23.3, pp. 253-263. ISSN: 0301-2212. DOI: [10.2224/sbp.1995.23.3.253](https://doi.org/10.2224%2Fsbp.1995.23.3.253). --- # References Mehrabian, A. and C. A. Stefl (1995). "Basic temperament components of loneliness, shyness, and conformity". In: _Social Behavior and Personality: an international journal_ 23.3, pp. 253-263. ISSN: 0301-2212. DOI: [10.2224/sbp.1995.23.3.253](https://doi.org/10.2224%2Fsbp.1995.23.3.253). Posit Team (2023). _RStudio: Integrated development for R (version 2023.3.0.386) [Computer software]_. Boston, MA. URL: [http://www.posit.co/](http://www.posit.co/). --- # Next Steps, Questions and Comments 1. **The burnout-depression conundrum** - The relationship between burnout and depression. 2. **Longitudinal Analysis** - Importance of tracking burnout, depression, and anxiety over time. 3. **Singapore's Context** - Relevance of BAT for Singapore's students and workers. .can-edit.key-measurement[ - ... ]