# Load necessary libraries
library(MASS)
library(ISLR2)
## 
## Attaching package: 'ISLR2'
## The following object is masked from 'package:MASS':
## 
##     Boston
# Load the Boston dataset
data(Boston)
# Explore the dataset
head(Boston)
##      crim zn indus chas   nox    rm  age    dis rad tax ptratio lstat medv
## 1 0.00632 18  2.31    0 0.538 6.575 65.2 4.0900   1 296    15.3  4.98 24.0
## 2 0.02731  0  7.07    0 0.469 6.421 78.9 4.9671   2 242    17.8  9.14 21.6
## 3 0.02729  0  7.07    0 0.469 7.185 61.1 4.9671   2 242    17.8  4.03 34.7
## 4 0.03237  0  2.18    0 0.458 6.998 45.8 6.0622   3 222    18.7  2.94 33.4
## 5 0.06905  0  2.18    0 0.458 7.147 54.2 6.0622   3 222    18.7  5.33 36.2
## 6 0.02985  0  2.18    0 0.458 6.430 58.7 6.0622   3 222    18.7  5.21 28.7
# Fit a simple linear regression model (medv ~ lstat)
lm.fit <- lm(medv ~ lstat, data = Boston)
# Print the summary of the linear regression model
summary(lm.fit)
## 
## Call:
## lm(formula = medv ~ lstat, data = Boston)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.168  -3.990  -1.318   2.034  24.500 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 34.55384    0.56263   61.41   <2e-16 ***
## lstat       -0.95005    0.03873  -24.53   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.216 on 504 degrees of freedom
## Multiple R-squared:  0.5441, Adjusted R-squared:  0.5432 
## F-statistic: 601.6 on 1 and 504 DF,  p-value: < 2.2e-16
# Access various components of the linear regression model
names(lm.fit)
##  [1] "coefficients"  "residuals"     "effects"       "rank"         
##  [5] "fitted.values" "assign"        "qr"            "df.residual"  
##  [9] "xlevels"       "call"          "terms"         "model"
coef(lm.fit)
## (Intercept)       lstat 
##  34.5538409  -0.9500494
confint(lm.fit)
##                 2.5 %     97.5 %
## (Intercept) 33.448457 35.6592247
## lstat       -1.026148 -0.8739505
# Make predictions with confidence intervals
predict(lm.fit, data.frame(lstat = c(5, 10, 15)), interval = "confidence")
##        fit      lwr      upr
## 1 29.80359 29.00741 30.59978
## 2 25.05335 24.47413 25.63256
## 3 20.30310 19.73159 20.87461
predict(lm.fit, data.frame(lstat = c(5, 10, 15)), interval = "prediction")
##        fit       lwr      upr
## 1 29.80359 17.565675 42.04151
## 2 25.05335 12.827626 37.27907
## 3 20.30310  8.077742 32.52846
# Diagnostic plots for the linear regression model
par(mfrow = c(2, 2))
plot(lm.fit)

# Fit a multiple linear regression model (medv ~ .)
lm.fit.all <- lm(medv ~ ., data = Boston)
summary(lm.fit.all)
## 
## Call:
## lm(formula = medv ~ ., data = Boston)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.1304  -2.7673  -0.5814   1.9414  26.2526 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  41.617270   4.936039   8.431 3.79e-16 ***
## crim         -0.121389   0.033000  -3.678 0.000261 ***
## zn            0.046963   0.013879   3.384 0.000772 ***
## indus         0.013468   0.062145   0.217 0.828520    
## chas          2.839993   0.870007   3.264 0.001173 ** 
## nox         -18.758022   3.851355  -4.870 1.50e-06 ***
## rm            3.658119   0.420246   8.705  < 2e-16 ***
## age           0.003611   0.013329   0.271 0.786595    
## dis          -1.490754   0.201623  -7.394 6.17e-13 ***
## rad           0.289405   0.066908   4.325 1.84e-05 ***
## tax          -0.012682   0.003801  -3.337 0.000912 ***
## ptratio      -0.937533   0.132206  -7.091 4.63e-12 ***
## lstat        -0.552019   0.050659 -10.897  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.798 on 493 degrees of freedom
## Multiple R-squared:  0.7343, Adjusted R-squared:  0.7278 
## F-statistic: 113.5 on 12 and 493 DF,  p-value: < 2.2e-16
# Check for multicollinearity using VIF
library(car)
## Loading required package: carData
vif(lm.fit.all)
##     crim       zn    indus     chas      nox       rm      age      dis 
## 1.767486 2.298459 3.987181 1.071168 4.369093 1.912532 3.088232 3.954037 
##      rad      tax  ptratio    lstat 
## 7.445301 9.002158 1.797060 2.870777
# Fit a model without the 'age' variable
lm.fit1 <- lm(medv ~ . - age, data = Boston)
summary(lm.fit1)
## 
## Call:
## lm(formula = medv ~ . - age, data = Boston)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.1851  -2.7330  -0.6116   1.8555  26.3838 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  41.525128   4.919684   8.441 3.52e-16 ***
## crim         -0.121426   0.032969  -3.683 0.000256 ***
## zn            0.046512   0.013766   3.379 0.000785 ***
## indus         0.013451   0.062086   0.217 0.828577    
## chas          2.852773   0.867912   3.287 0.001085 ** 
## nox         -18.485070   3.713714  -4.978 8.91e-07 ***
## rm            3.681070   0.411230   8.951  < 2e-16 ***
## dis          -1.506777   0.192570  -7.825 3.12e-14 ***
## rad           0.287940   0.066627   4.322 1.87e-05 ***
## tax          -0.012653   0.003796  -3.333 0.000923 ***
## ptratio      -0.934649   0.131653  -7.099 4.39e-12 ***
## lstat        -0.547409   0.047669 -11.483  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.794 on 494 degrees of freedom
## Multiple R-squared:  0.7343, Adjusted R-squared:  0.7284 
## F-statistic: 124.1 on 11 and 494 DF,  p-value: < 2.2e-16
# Interaction terms in regression
summary(lm(medv ~ lstat * age, data = Boston))
## 
## Call:
## lm(formula = medv ~ lstat * age, data = Boston)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.806  -4.045  -1.333   2.085  27.552 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 36.0885359  1.4698355  24.553  < 2e-16 ***
## lstat       -1.3921168  0.1674555  -8.313 8.78e-16 ***
## age         -0.0007209  0.0198792  -0.036   0.9711    
## lstat:age    0.0041560  0.0018518   2.244   0.0252 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.149 on 502 degrees of freedom
## Multiple R-squared:  0.5557, Adjusted R-squared:  0.5531 
## F-statistic: 209.3 on 3 and 502 DF,  p-value: < 2.2e-16
# Log transformation
summary(lm(medv ~ log(rm), data = Boston))
## 
## Call:
## lm(formula = medv ~ log(rm), data = Boston)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -19.487  -2.875  -0.104   2.837  39.816 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -76.488      5.028  -15.21   <2e-16 ***
## log(rm)       54.055      2.739   19.73   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.915 on 504 degrees of freedom
## Multiple R-squared:  0.4358, Adjusted R-squared:  0.4347 
## F-statistic: 389.3 on 1 and 504 DF,  p-value: < 2.2e-16
# Load the Carseats dataset
data(Carseats)
# Fit a multiple linear regression model with interactions
lm.fit.carseats <- lm(Sales ~ . + Income:Advertising + Price:Age, data = Carseats)
summary(lm.fit.carseats)
## 
## Call:
## lm(formula = Sales ~ . + Income:Advertising + Price:Age, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9208 -0.7503  0.0177  0.6754  3.3413 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         6.5755654  1.0087470   6.519 2.22e-10 ***
## CompPrice           0.0929371  0.0041183  22.567  < 2e-16 ***
## Income              0.0108940  0.0026044   4.183 3.57e-05 ***
## Advertising         0.0702462  0.0226091   3.107 0.002030 ** 
## Population          0.0001592  0.0003679   0.433 0.665330    
## Price              -0.1008064  0.0074399 -13.549  < 2e-16 ***
## ShelveLocGood       4.8486762  0.1528378  31.724  < 2e-16 ***
## ShelveLocMedium     1.9532620  0.1257682  15.531  < 2e-16 ***
## Age                -0.0579466  0.0159506  -3.633 0.000318 ***
## Education          -0.0208525  0.0196131  -1.063 0.288361    
## UrbanYes            0.1401597  0.1124019   1.247 0.213171    
## USYes              -0.1575571  0.1489234  -1.058 0.290729    
## Income:Advertising  0.0007510  0.0002784   2.698 0.007290 ** 
## Price:Age           0.0001068  0.0001333   0.801 0.423812    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.011 on 386 degrees of freedom
## Multiple R-squared:  0.8761, Adjusted R-squared:  0.8719 
## F-statistic:   210 on 13 and 386 DF,  p-value: < 2.2e-16
# Contrasts for the ShelveLoc variable
attach(Carseats)
contrasts(ShelveLoc)
##        Good Medium
## Bad       0      0
## Good      1      0
## Medium    0      1
#Detach the dataset
detach(Carseats)



#exercise 8
# Load required libraries
library(ISLR2)
# Load the Auto dataset
data(Auto)
# (a) Perform simple linear regression
lm.fit <- lm(mpg ~ horsepower, data = Auto)
# Display the summary of the linear regression model
summary(lm.fit)
## 
## Call:
## lm(formula = mpg ~ horsepower, data = Auto)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13.5710  -3.2592  -0.3435   2.7630  16.9240 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 39.935861   0.717499   55.66   <2e-16 ***
## horsepower  -0.157845   0.006446  -24.49   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.906 on 390 degrees of freedom
## Multiple R-squared:  0.6059, Adjusted R-squared:  0.6049 
## F-statistic: 599.7 on 1 and 390 DF,  p-value: < 2.2e-16
# (b) Plot the response and the predictor
plot(Auto$horsepower, Auto$mpg, xlab = "Horsepower", ylab = "MPG", main = "Scatterplot of MPG vs Horsepower")
abline(lm.fit, col = "red")
# (c) Diagnostic plots
par(mfrow = c(2, 2))

plot(lm.fit)

# (d) Predicted mpg associated with a horsepower of 98
horsepower_98 <- data.frame(horsepower = 98)
predicted_mpg <- predict(lm.fit, newdata = horsepower_98)
# Confidence and prediction intervals
intervals <- predict(lm.fit, newdata = horsepower_98, interval = "confidence")
# Display results
cat("Predicted MPG for horsepower = 98:", predicted_mpg, "\n")
## Predicted MPG for horsepower = 98: 24.46708
cat("95% Confidence Interval:", intervals[, 2], "to", intervals[, 3], "\n")
## 95% Confidence Interval: 23.97308 to 24.96108
#exercise10
# Load required libraries
library(ISLR2)
# Load the Carseats dataset
data(Carseats)
# (a) Fit a multiple regression model
lm.fit <- lm(Sales ~ Price + Urban + US, data = Carseats)
# (b) Interpretation of coefficients
summary(lm.fit)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16
# (c) Write out the model in equation form
# Sales = b0 + b1 * Price + b2 * Urban_Yes + b3 * US_Yes + epsilon
# (d) Hypothesis testing for each predictor
# Use summary(lm.fit) and look for "Pr(>|t|)" values.
# (e) Fit a smaller model
lm.fit_smaller <- lm(Sales ~ Price + Urban + US, data = Carseats)
# (f) Model fit comparison
summary(lm.fit)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16
summary(lm.fit_smaller)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16
# (g) 95% confidence intervals for coefficients
confint(lm.fit_smaller)
##                   2.5 %      97.5 %
## (Intercept) 11.76359670 14.32334118
## Price       -0.06476419 -0.04415351
## UrbanYes    -0.55597316  0.51214085
## USYes        0.69130419  1.70984121
# (h) Check for outliers or high leverage observations
par(mfrow = c(2, 2))
plot(lm.fit_smaller)

#exercise14
# (a) Create the linear model
set.seed(1)
x1 <- runif(100)
x2 <- 0.5 * x1 + rnorm(100) / 10
y <- 2 + 2 * x1 + 0.3 * x2 + rnorm(100)
# (b) Correlation and scatterplot
cor(x1, x2)
## [1] 0.8351212
plot(x1, x2, main = "Scatterplot of x1 and x2", xlab = "x1", ylab = "x2")
# (c) Fit least squares regression to predict y using x1 and x2
lm.fit <- lm(y ~ x1 + x2)
summary(lm.fit)
## 
## Call:
## lm(formula = y ~ x1 + x2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8311 -0.7273 -0.0537  0.6338  2.3359 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.1305     0.2319   9.188 7.61e-15 ***
## x1            1.4396     0.7212   1.996   0.0487 *  
## x2            1.0097     1.1337   0.891   0.3754    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.056 on 97 degrees of freedom
## Multiple R-squared:  0.2088, Adjusted R-squared:  0.1925 
## F-statistic:  12.8 on 2 and 97 DF,  p-value: 1.164e-05
# (d) Fit least squares regression to predict y using only x1
lm.fit_x1 <- lm(y ~ x1)
summary(lm.fit_x1)
## 
## Call:
## lm(formula = y ~ x1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.89495 -0.66874 -0.07785  0.59221  2.45560 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.1124     0.2307   9.155 8.27e-15 ***
## x1            1.9759     0.3963   4.986 2.66e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.055 on 98 degrees of freedom
## Multiple R-squared:  0.2024, Adjusted R-squared:  0.1942 
## F-statistic: 24.86 on 1 and 98 DF,  p-value: 2.661e-06
# (e) Fit least squares regression to predict y using only x2
lm.fit_x2 <- lm(y ~ x2)
summary(lm.fit_x2)
## 
## Call:
## lm(formula = y ~ x2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.62687 -0.75156 -0.03598  0.72383  2.44890 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.3899     0.1949   12.26  < 2e-16 ***
## x2            2.8996     0.6330    4.58 1.37e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.072 on 98 degrees of freedom
## Multiple R-squared:  0.1763, Adjusted R-squared:  0.1679 
## F-statistic: 20.98 on 1 and 98 DF,  p-value: 1.366e-05
# (f) Interpretation of results
# Compare coefficients and hypothesis testing results from (c), (d), and (e)
# (g) Add one mismeasured observation
x1 <- c(x1, 0.1)
x2 <- c(x2, 0.8)
y <- c(y, 6)
# Re-fit the linear models
lm.fit_new <- lm(y ~ x1 + x2)
summary(lm.fit_new)
## 
## Call:
## lm(formula = y ~ x1 + x2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.73348 -0.69318 -0.05263  0.66385  2.30619 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.2267     0.2314   9.624 7.91e-16 ***
## x1            0.5394     0.5922   0.911  0.36458    
## x2            2.5146     0.8977   2.801  0.00614 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.075 on 98 degrees of freedom
## Multiple R-squared:  0.2188, Adjusted R-squared:  0.2029 
## F-statistic: 13.72 on 2 and 98 DF,  p-value: 5.564e-06
lm.fit_x1_new <- lm(y ~ x1)
summary(lm.fit_x1_new)
## 
## Call:
## lm(formula = y ~ x1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8897 -0.6556 -0.0909  0.5682  3.5665 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.2569     0.2390   9.445 1.78e-15 ***
## x1            1.7657     0.4124   4.282 4.29e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.111 on 99 degrees of freedom
## Multiple R-squared:  0.1562, Adjusted R-squared:  0.1477 
## F-statistic: 18.33 on 1 and 99 DF,  p-value: 4.295e-05
lm.fit_x2_new <- lm(y ~ x2)
summary(lm.fit_x2_new)
## 
## Call:
## lm(formula = y ~ x2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.64729 -0.71021 -0.06899  0.72699  2.38074 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.3451     0.1912  12.264  < 2e-16 ***
## x2            3.1190     0.6040   5.164 1.25e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.074 on 99 degrees of freedom
## Multiple R-squared:  0.2122, Adjusted R-squared:  0.2042 
## F-statistic: 26.66 on 1 and 99 DF,  p-value: 1.253e-06
# Check the influence of the new observation
influencePlot(lm.fit_new)
##        StudRes        Hat       CookD
## 11  -0.2489926 0.06007045 0.001333503
## 55  -2.2721101 0.04102604 0.070619547
## 82  -2.6440366 0.01803646 0.040336698
## 101  2.1134793 0.41472837 1.019021038
influencePlot(lm.fit_x1_new)
##        StudRes        Hat       CookD
## 27   0.4791689 0.04437352 0.005372491
## 47   1.0630915 0.04301726 0.025367592
## 55  -2.3782673 0.03693100 0.103577409
## 82  -2.7027733 0.01534390 0.053508995
## 101  3.4384051 0.03347156 0.184539234
influencePlot(lm.fit_x2_new)

##       StudRes        Hat      CookD
## 6   -1.395202 0.05673185 0.05798336
## 21   2.299499 0.03005459 0.07852116
## 55  -2.332104 0.03700440 0.10001086
## 82  -2.545873 0.01028483 0.03190995
## 101  1.140964 0.10131060 0.07315390