Statistical analysis

Litter decomposition

Author

Marcelo Araya-Salas & Andrea Vincent

Published

July 22, 2025

Source code and data found at https://github.com/maRce10/litter_decomposition_EFFEX

Purpose

  • Evaluate role of nutrient availability on litter decomposition

 

Code
cols <- viridis(10, alpha = 0.7)
fill_color <- viridis(10)[7]

# brms models
chains <- 4
iters <- 40000
prior <- c(prior(normal(0, 10), "b"), prior(normal(0, 50), "Intercept"),
    prior(student_t(3, 0, 20), "sd"))

# set ggplot2 them
ggplot2::theme_set(theme_classic(base_size = 20))


# standard error
se <- function(x) sd(x)/sqrt(length(x))

1 Site characteristics

Code
soil <- read.csv("./data/raw/soils_effex.csv")
Code
preds <- names(soil)[7:17]

soil$pool.n <- factor(soil$pool.n)

levels(soil$pool.n) <- c("no.n", "n")

for (i in preds) {
    form <- as.formula(paste(i, "~ pool.n + pool.p"))
    print(i)

    mod <- brm(form, data = soil, chains = chains, family = gaussian(),
        iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
        cores = chains, prior = c(prior(normal(0, 10), "b"), prior(normal(0,
            50), "Intercept")), file = paste0("./data/processed/",
            i, "_pooled_model"), file_refit = "on_change")
}
Code
preds <- names(soil)[7:17]

for (i in preds) {
    extended_summary(read.file = paste0("./data/processed/", i, "_pooled_model.rds"),
        gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
        remove.intercepts = TRUE)
}

1.1 ph.h2o_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 ph.h2o ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 57373.74 48309 1664004957
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn 0.084 -0.006 0.175 1 59038.57 48309.0
pool.pp 0.104 0.015 0.194 1 57373.74 48318.2

1.2 resin.p_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 resin.p ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 30.9) 40000 4 1 20000 0 (0%) 0 57961.13 52214.16 1531674567
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn 1.930 -12.400 16.063 1 64784.65 53121.93
pool.pp 16.442 0.626 31.023 1 57961.13 52214.16

1.3 resin.p.no.outlier_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 resin.p.no.outlier ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 27) 40000 4 1 20000 0 (0%) 0 44847.3 46327.93 2096696539
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn 0.203 -13.264 13.647 1 59378.99 52345.57
pool.pp 21.152 5.045 35.404 1 44847.30 46327.93

1.4 tc.g.kg.18_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 tc.g.kg.18 ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 4.5) 40000 4 1 20000 0 (0%) 0 63121.58 49927.59 1374186359
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn -2.342 -6.678 2.002 1 63521.49 49927.59
pool.pp 0.285 -4.121 4.627 1 63121.58 50046.02

1.5 tn.g.kg.18_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 tn.g.kg.18 ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 58531.45 46374.4 772312416
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn -0.150 -0.565 0.267 1 59926.93 49974.06
pool.pp 0.026 -0.392 0.440 1 58531.45 46374.40

1.6 tp.g.kg.18_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 tp.g.kg.18 ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 565.6) 40000 4 1 20000 0 (0%) 0 68442.12 53031.23 532966702
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn 0.003 -19.623 19.494 1 68442.12 53031.23
pool.pp 0.045 -19.340 19.697 1 69481.22 54683.43

1.7 tp.g.kg.18.no.outlier_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 tp.g.kg.18.no.outlier ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 478.9) 40000 4 1 20000 0 (0%) 0 69342.37 53547.36 1716433649
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn 0.075 -19.547 19.574 1 69342.37 53547.36
pool.pp 0.078 -19.538 19.763 1 70066.34 56200.05

1.8 CN_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 CN ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 55930.11 48759.38 675162061
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn -0.157 -0.633 0.318 1 55930.11 48759.38
pool.pp -0.015 -0.488 0.459 1 58599.54 50110.82

1.9 CP.no.outlier_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 CP.no.outlier ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 10.7) 40000 4 1 20000 0 (0%) 0 62823.22 49458.11 257447415
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn -2.136 -9.002 4.745 1 62823.22 49552.82
pool.pp -5.966 -12.841 1.029 1 63184.44 49458.11

1.10 NP.no.outlier_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 NP.no.outlier ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 59651.87 47775.52 2143149156
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn -0.175 -0.861 0.508 1 62165.12 50442.73
pool.pp -0.593 -1.292 0.105 1 59651.87 47775.52

1.11 litter.mg.C.ha.yr_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 litter.mg.C.ha.yr ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 56795.19 48364.42 308107221
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn 0.420 -0.936 1.779 1 56795.19 49532.70
pool.pp 0.235 -1.112 1.568 1 57467.82 48364.42

1.12 Microbial CNP

Code
soil_master <- read.csv("./data/raw/strimastersoils.csv")

2 Nutrient change

2.1 Nitrogen

Content

Code
nutr <- read.csv("./data/raw/litter-nutrients-mas.csv")

nutr$plot.f <- as.factor(nutr$plot)

nutr$days.sc <- scale(nutr$days)

nutr$litter.n.content.prop.initial <- nutr$litter.n.content.perc.initial/100

nutr$litter.n.content.prop.initial <- ifelse(nutr$litter.n.content.prop.initial >=
    1, 0.99999, nutr$litter.n.content.prop.initial)

# remove plot 9
sub.nutr <- nutr[nutr$plot != 9, ]

agg_n <- aggregate(litter.n.content.perc.initial ~ colecta + treat +
    days, nutr, mean)

agg_n$sd <- aggregate(litter.n.content.perc.initial ~ colecta + treat +
    days, nutr, sd)$litter.n.content.perc.initial

agg_n$se <- aggregate(litter.n.content.perc.initial ~ colecta + treat +
    days, nutr, se)$litter.n.content.perc.initial

agg_n$treat <- factor(agg_n$treat, levels = c("C", "N", "P", "NP"))

pd <- position_dodge(15)

ggplot(agg_n, aes(x = days, y = litter.n.content.perc.initial, color = treat)) +
    geom_point(size = 2, position = pd) + geom_errorbar(aes(ymax = litter.n.content.perc.initial +
    se, ymin = litter.n.content.perc.initial - se), width = 0, position = pd) +
    geom_line(size = 1.2, position = pd) + scale_color_viridis_d(alpha = 0.5) +
    labs(x = "Time (days)", y = "Litter N content (% initial)", color = "Treatment") +
    scale_x_continuous(breaks = unique(agg_n$days), labels = unique(agg_n$days)) +
    theme(legend.position = c(0.9, 0.8))

Code
ggsave("./output/Litter_N_content.tiff", dpi = 300)

Download image

Code
fit.n <- brm(litter.n.content.prop.initial ~ treat * days.sc + (1 |
    plot.f), data = nutr, chains = chains, cores = chains, family = Beta(link = "logit"),
    iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
    prior = prior, file = "./data/processed/litter.n.content.rem_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/litter.n.content.rem_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

2.2 litter.n.content.rem_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 litter.n.content.prop.initial ~ treat * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 16887.3 31642.83 1667653932
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
treatN -1.627 -3.063 -0.482 1 16887.30 31642.83
treatNP -0.013 -1.119 1.095 1 26557.10 35114.04
treatP -0.021 -1.138 1.085 1 27450.49 35309.69
days.sc -0.583 -0.919 -0.276 1 31261.91 40822.98
treatN:days.sc -0.394 -0.836 0.058 1 37286.64 47352.96
treatNP:days.sc 0.039 -0.375 0.459 1 39912.37 49646.56
treatP:days.sc 0.042 -0.375 0.464 1 38791.04 49342.65

Concentration

Code
agg_conc_n <- aggregate(perc.n ~ colecta + treat + days, nutr, mean)

agg_conc_n$sd <- aggregate(perc.n ~ colecta + treat + days, nutr,
    sd)$perc.n

agg_conc_n$se <- aggregate(perc.n ~ colecta + treat + days, nutr,
    se)$perc.n

agg_conc_n$treat <- factor(agg_conc_n$treat, levels = c("C", "N",
    "P", "NP"))

pd <- position_dodge(15)

ggplot(agg_conc_n, aes(x = days, y = perc.n, color = treat)) + geom_point(size = 2,
    position = pd) + geom_errorbar(aes(ymax = perc.n + se, ymin = perc.n -
    se), width = 0, position = pd) + geom_line(size = 1.2, position = pd) +
    scale_color_viridis_d(alpha = 0.5) + labs(x = "Time (days)", y = "Litter N concentration (%)",
    color = "Treatment") + scale_x_continuous(breaks = unique(agg_conc_n$days),
    labels = unique(agg_conc_n$days)) + theme(legend.position = c(0.3,
    0.8))

Code
ggsave("./output/Litter_N_concentration.tiff", dpi = 300)

Download image

Code
nutr$prop.n <- nutr$perc.n/100

fit.perc.n <- brm(prop.n ~ treat * days.sc + (1 | plot.f), data = nutr,
    chains = chains, core = chains, family = Beta(link = "logit"),
    iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
    prior = prior, file = "./data/processed/litter.n.perc_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/litter.n.perc_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

2.3 litter.n.perc_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 prop.n ~ treat * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 36167.17 48007.43 129583210
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
treatN -0.093 -0.228 0.040 1 60646.74 58903.66
treatNP -0.049 -0.182 0.082 1 59674.00 59089.37
treatP -0.023 -0.154 0.109 1 58600.92 57777.26
days.sc 0.134 0.045 0.222 1 36167.17 48007.43
treatN:days.sc -0.076 -0.197 0.045 1 46890.95 55436.18
treatNP:days.sc -0.031 -0.154 0.092 1 46425.46 55967.33
treatP:days.sc -0.012 -0.134 0.111 1 46558.85 57029.65

Proportion N

Code
sub.nutr$pool.p <- ifelse(sub.nutr$treat %in% c("P", "NP"), "p", "no.p")
sub.nutr$pool.n <- ifelse(sub.nutr$treat %in% c("N", "NP"), "n", "no.n")

sub.nutr$prop.n <- sub.nutr$perc.n/100

sub.nutr$pool.n <- factor(sub.nutr$pool.n)

levels(sub.nutr$pool.n) <- c("no.n", "n")

fit_np_treat_by_rem_leave <- brm(prop.n ~ pool.n * days.sc + pool.p *
    days.sc + (1 | plot), data = sub.nutr, chains = chains, iter = iters,
    family = Beta(link = "logit"), control = list(adapt_delta = 0.99,
        max_treedepth = 15), cores = chains, prior = prior, file = "./data/processed/n_perc_by_pooled_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/n_perc_by_pooled_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

2.4 n_perc_by_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 prop.n ~ pool.n * days.sc + pool.p * days.sc + (1 | plot) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 77764.23 59163.96 915417491
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn 0.070 -0.028 0.167 1 101379.00 59163.96
days.sc 0.069 -0.006 0.143 1 77764.23 60522.39
pool.pp 0.022 -0.077 0.120 1 102860.49 59576.53
pool.nn:days.sc 0.051 -0.039 0.141 1 99083.06 61667.86
days.sc:pool.pp 0.022 -0.066 0.112 1 95117.85 59856.35

Content N

Code
sub.nutr$pool.p <- ifelse(sub.nutr$treat %in% c("P", "NP"), "p", "no.p")
sub.nutr$pool.n <- ifelse(sub.nutr$treat %in% c("N", "NP"), "n", "no.n")

sub.nutr$prop.n <- sub.nutr$perc.n/100

sub.nutr$pool.n <- factor(sub.nutr$pool.n)

levels(sub.nutr$pool.n) <- c("no.n", "n")



fit_np_treat_by_rem_leave <- brm(litter.n.content.prop.initial ~ pool.n *
    days.sc + pool.p * days.sc + (1 | plot), data = sub.nutr, chains = chains,
    family = Beta(link = "logit"), iter = iters, control = list(adapt_delta = 0.99,
        max_treedepth = 15), cores = chains, prior = prior, file = "./data/processed/n_content_by_pooled_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/n_content_by_pooled_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

2.5 n_content_by_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 litter.n.content.prop.initial ~ pool.n * days.sc + pool.p * days.sc + (1 | plot) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 16821.19 27214.59 1616033078
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn 0.748 0.036 1.690 1 18161.65 28858.56
days.sc -0.869 -1.146 -0.598 1 49509.94 53142.84
pool.pp 0.763 0.045 1.724 1 16821.19 27214.59
pool.nn:days.sc 0.130 -0.203 0.457 1 52482.79 53569.79
days.sc:pool.pp 0.201 -0.130 0.526 1 48625.91 54786.25

2.6 Phosphorus

Content

Code
nutr$litter.p.content.prop.initial <- nutr$litter.p.content.perc.initial/100

# excluding plot 9
agg_p <- aggregate(litter.p.content.perc.initial ~ colecta + treat +
    days, sub.nutr, mean)

agg_p$sd <- aggregate(litter.p.content.perc.initial ~ colecta + treat +
    days, sub.nutr, sd)$litter.p.content.perc.initial

agg_p$se <- aggregate(litter.p.content.perc.initial ~ colecta + treat +
    days, sub.nutr, se)$litter.p.content.perc.initial


agg_p$treat <- factor(agg_p$treat, levels = c("C", "N", "P", "NP"))


pd <- position_dodge(15)

ggplot(agg_p, aes(x = days, y = litter.p.content.perc.initial, color = treat)) +
    geom_point(size = 2, position = pd) + geom_errorbar(aes(ymax = litter.p.content.perc.initial +
    se, ymin = litter.p.content.perc.initial - se), width = 0, position = pd) +
    geom_line(size = 1.2, position = pd) + scale_color_viridis_d(alpha = 0.5) +
    labs(x = "Time (days)", y = "Litter P content (% initial)", color = "Treatment") +
    scale_x_continuous(breaks = unique(agg_p$days), labels = unique(agg_p$days)) +
    theme(legend.position = c(0.9, 0.8))

Code
ggsave("./output/Litter_P_content.tiff", dpi = 300)

Download image

Code
fit.p <- brm(litter.p.content.prop.initial ~ treat * days.sc + (1 |
    plot.f), data = nutr[nutr$litter.p.content.prop.initial < 1, ],
    chains = chains, prior = prior, cores = chains, iter = iters,
    family = Beta(link = "logit"), control = list(adapt_delta = 0.99,
        max_treedepth = 15), file = "./data/processed/litter.p.content.rem_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/litter.p.content.rem_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

2.7 litter.p.content.rem_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 litter.p.content.prop.initial ~ treat * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 31950.41 37831.69 915208762
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
treatN -0.430 -1.067 0.189 1 33103.34 40082.39
treatNP 0.006 -0.623 0.619 1 31950.41 38576.21
treatP 0.405 -0.212 1.059 1 32589.88 37831.69
days.sc -0.625 -0.915 -0.353 1 35031.81 44577.87
treatN:days.sc -0.053 -0.448 0.344 1 43834.54 52654.69
treatNP:days.sc 0.131 -0.241 0.505 1 41935.57 51406.50
treatP:days.sc -0.009 -0.409 0.388 1 44888.81 53895.67

Code
sub.nutr$pool.p <- ifelse(sub.nutr$treat %in% c("P", "NP"), "p", "no.p")
sub.nutr$pool.n <- ifelse(sub.nutr$treat %in% c("N", "NP"), "n", "no.n")

sub.nutr$prop.n <- sub.nutr$perc.n/100


sub.nutr$pool.n <- factor(sub.nutr$pool.n)

levels(sub.nutr$pool.n) <- c("no.n", "n")

sub.nutr$litter.p.content.prop.initial <- sub.nutr$litter.p.content.perc.initial/100

fit.p <- brm(litter.p.content.prop.initial ~ pool.n * days.sc + pool.p *
    days.sc + (1 | plot.f), data = sub.nutr[sub.nutr$litter.p.content.prop.initial <
    1, ], family = Beta(link = "logit"), chains = chains, prior = prior,
    cores = chains, iter = iters, control = list(adapt_delta = 0.99,
        max_treedepth = 15), file = "./data/processed/litter.p.content.perc.initial_pooled_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/litter.p.content.perc.initial_pooled_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

2.8 litter.p.content.perc.initial_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 litter.p.content.prop.initial ~ pool.n * days.sc + pool.p * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 42824.2 43352.43 43891969
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn 0.286 -0.048 0.626 1 44160.93 45169.46
days.sc -0.611 -0.835 -0.392 1 48922.56 55655.18
pool.pp 0.309 -0.029 0.644 1 42824.20 43352.43
pool.nn:days.sc -0.089 -0.351 0.171 1 63850.90 60149.59
days.sc:pool.pp 0.066 -0.193 0.324 1 60491.19 56399.36

Concentration

Code
agg_conc_p <- aggregate(perc.p ~ colecta + treat + days, sub.nutr,
    mean)

agg_conc_p$sd <- aggregate(perc.p ~ colecta + treat + days, sub.nutr,
    sd)$perc.p

agg_conc_p$se <- aggregate(perc.p ~ colecta + treat + days, sub.nutr,
    se)$perc.p

agg_conc_p$treat <- factor(agg_conc_p$treat, levels = c("C", "N",
    "P", "NP"))

pd <- position_dodge(15)

ggplot(agg_conc_p, aes(x = days, y = perc.p, color = treat)) + geom_point(size = 2,
    position = pd) + geom_errorbar(aes(ymax = perc.p + se, ymin = perc.p -
    se), width = 0, position = pd) + geom_line(size = 1.2, position = pd) +
    scale_color_viridis_d(alpha = 0.5) + labs(x = "Time (days)", y = "Litter P concentration (%)",
    color = "Treatment") + scale_x_continuous(breaks = unique(agg_conc_p$days),
    labels = unique(agg_conc_p$days)) + theme(legend.position = c(0.9,
    0.8))

Code
ggsave("./output/Litter_P_concentration.tiff", dpi = 300)

Download image

Code
# convert to proportions to use beta distribution
sub.nutr$prop.p <- sub.nutr$perc.p/100

fit.perc.p <- brm(prop.p ~ treat * days.sc + (1 | plot.f), data = sub.nutr,
    chains = chains, cores = chains, family = Beta(), iter = iters,
    control = list(adapt_delta = 0.99, max_treedepth = 15), prior = prior,
    file = "./data/processed/litter.p.perc_model", file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/litter.p.perc_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

2.9 litter.p.perc_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 prop.p ~ pool.n * days.sc + pool.p * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 20) 40000 4 1 20000 0 (0%) 0 49287.17 57423.14 838385675
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn 0.079 -0.283 0.436 1 80454.38 61093.74
days.sc -0.033 -0.325 0.254 1 49287.17 57423.14
pool.pp 0.109 -0.250 0.466 1 79902.64 61281.60
pool.nn:days.sc -0.004 -0.343 0.332 1 64208.70 60773.47
days.sc:pool.pp 0.037 -0.299 0.374 1 63313.29 61284.53

Pooled P

Code
sub.nutr$pool.p <- ifelse(sub.nutr$treat %in% c("P", "NP"), "p", "no.p")
sub.nutr$pool.n <- ifelse(sub.nutr$treat %in% c("N", "NP"), "n", "no.n")

sub.nutr$pool.n <- factor(sub.nutr$pool.n)

levels(sub.nutr$pool.n) <- c("no.n", "n")


fit.perc.p <- brm(prop.p ~ pool.n * days.sc + pool.p * days.sc + (1 |
    plot.f), data = sub.nutr, chains = chains, cores = chains, family = Beta(),
    iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
    prior = prior, file = "./data/processed/litter.p.perc_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/litter.p.perc_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

2.10 litter.p.perc_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 prop.p ~ pool.n * days.sc + pool.p * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 20) 40000 4 1 20000 0 (0%) 0 49287.17 57423.14 838385675
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn 0.079 -0.283 0.436 1 80454.38 61093.74
days.sc -0.033 -0.325 0.254 1 49287.17 57423.14
pool.pp 0.109 -0.250 0.466 1 79902.64 61281.60
pool.nn:days.sc -0.004 -0.343 0.332 1 64208.70 60773.47
days.sc:pool.pp 0.037 -0.299 0.374 1 63313.29 61284.53

Takeaways

  • Litter P content is significantly lower in plus N treatment plots than in control plot, after accounting for variation explained by time

 

2.11 Remaining litter

Download image

Download image

Code
fit <- brm(prop.litter.rem ~ trat * days.sc + (1 | plot.f), data = dat,
    chains = chains, family = Beta(), iter = iters, control = list(adapt_delta = 0.99,
        max_treedepth = 15), cores = chains, prior = prior, file = "./data/processed/prop.litter.rem_model",
    file_refit = "on_change")

# dat$days.fc <- as.numeric(as.factor(dat$days)) # monotonic
# effect of time fit_mo <- brm(prop.litter.rem ~ trat *
# mo(days.fc) + (1 | plot.f), data = dat, chains = chains,
# family = Beta(), iter = iters, control =
# list(adapt_delta=0.99, max_treedepth=15), cores = chains,
# prior = prior, file =
# './data/processed/prop.litter.rem_model_monotonic', file_refit
# = 'on_change')
Code
extended_summary(read.file = "./data/processed/prop.litter.rem_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

2.12 prop.litter.rem_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 prop.wood.rem ~ trat * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 20) 20000 4 1 10000 0 (0%) 0 16872.71 23764.8 1828689869
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
tratN 0.118 -0.128 0.366 1 25420.93 24370.70
tratNP 0.254 0.012 0.496 1 24798.43 26473.85
tratP 0.197 -0.045 0.438 1 25725.64 25244.62
days.sc -0.910 -1.094 -0.737 1 16872.71 23764.80
tratN:days.sc -0.006 -0.244 0.234 1 20661.18 27810.64
tratNP:days.sc 0.097 -0.140 0.333 1 20685.17 28019.73
tratP:days.sc 0.175 -0.058 0.412 1 20811.62 27760.94

Code
dat$pool.n <- factor(dat$pool.n)

levels(dat$pool.n) <- c("no.n", "n")

fit <- brm(prop.litter.rem ~ pool.n * days.sc + pool.p * days.sc +
    (1 | plot.f), data = dat, chains = chains, family = Beta(), iter = iters,
    control = list(adapt_delta = 0.99, max_treedepth = 15), cores = chains,
    prior = prior, file = "./data/processed/prop.litter.rem_pooled_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/prop.litter.rem_pooled_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

2.13 prop.litter.rem_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 prop.litter.rem ~ pool.n * days.sc + pool.p * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 20) 40000 4 1 20000 0 (0%) 0 62101.61 57460.4 1782064894
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn -0.005 -0.116 0.106 1 83216.49 57460.40
days.sc -0.705 -0.800 -0.612 1 62101.61 58956.00
pool.pp 0.073 -0.038 0.183 1 87071.32 57939.41
pool.nn:days.sc -0.007 -0.114 0.099 1 80137.61 61149.43
days.sc:pool.pp 0.107 0.000 0.215 1 77120.40 59967.96

2.14 Remaining wood

Download image

 

Code
dat$prop.wood.rem <- dat$perc.wood.rem/100

fit2 <- brm(prop.wood.rem ~ trat * days.sc + (1 | plot.f), data = dat,
    chains = chains, family = Beta(), iter = iters, control = list(adapt_delta = 0.99,
        max_treedepth = 15), cores = chains, prior = prior, file = "./data/processed/prop.wood.rem_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/prop.wood.rem_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

2.15 prop.wood.rem_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 prop.wood.rem ~ trat * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 35031.72 46489.04 759730670
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
tratN 0.119 -0.129 0.368 1 52775.14 54547.99
tratNP 0.254 0.008 0.498 1 52405.88 54272.89
tratP 0.197 -0.047 0.442 1 52616.14 52551.39
days.sc -0.912 -1.096 -0.736 1 35031.72 46489.04
tratN:days.sc -0.005 -0.246 0.237 1 44660.38 56089.04
tratNP:days.sc 0.099 -0.136 0.334 1 42945.91 55080.66
tratP:days.sc 0.177 -0.057 0.414 1 42878.43 53367.71

Code
dat$prop.wood.rem <- dat$perc.wood.rem/100

dat$pool.n <- factor(dat$pool.n)

levels(dat$pool.n) <- c("no.n", "n")

fit2 <- brm(prop.wood.rem ~ pool.n * days.sc + pool.p * days.sc +
    (1 | plot.f), data = dat, chains = chains, family = Beta(), iter = iters,
    control = list(adapt_delta = 0.99, max_treedepth = 15), cores = chains,
    prior = prior, file = "./data/processed/prop.wood.rem_pooled_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/prop.wood.rem_pooled_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

2.16 prop.wood.rem_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 prop.wood.rem ~ pool.n * days.sc + pool.p * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 20) 40000 4 1 20000 0 (0%) 0 74032.63 54748.32 28695825
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn -0.085 -0.254 0.084 1 85986.97 57764.11
days.sc -0.933 -1.078 -0.791 1 74032.63 59306.25
pool.pp 0.165 -0.004 0.332 1 84792.55 54748.32
pool.nn:days.sc 0.047 -0.112 0.206 1 96922.82 63045.91
days.sc:pool.pp 0.137 -0.025 0.299 1 89845.98 62564.19

3 K

3.1 Litter

Correlation between Silvia’s and Andrea’s K

Code
k_vals <- read.csv("./data/raw/k-values-corr.csv")

k_vals$k.sil.wood <- abs(k_vals$k.sil.wood)

cor(k_vals$k.av.litt, k_vals$k.sil.litt)
[1] 0.9327804
Code
cor(k_vals$k.av.wood, k_vals$k.sil.wood)
[1] 0.9623055

Comparing all treatments vs control

Code
agg_kvals <- aggregate(k.sil.litt ~ Treatment, k_vals, mean)
agg_kvals$se <- aggregate(k.sil.litt ~ Treatment, k_vals, se)$k.sil.litt
agg_kvals$sd <- aggregate(k.sil.litt ~ Treatment, k_vals, sd)$k.sil.litt
agg_kvals$n <- aggregate(k.sil.litt ~ Treatment, k_vals, length)$k.sil.litt
agg_kvals$treat <- factor(agg_kvals$Treatment, levels = c("C", "N", "P", "NP"))
agg_kvals$n.labels <- paste("n =", agg_kvals$n) 

# composed box plot
ggplot(k_vals, aes(x = Treatment, y = k.sil.litt)) +
## add half-violin from {ggdist} package
  ggdist::stat_halfeye(
    fill = fill_color,
    alpha = 0.5,
    ## custom bandwidth
    adjust = .5,
    ## adjust height
    width = .6,
    .width = 0,
    ## move geom to the right
    justification = -.2,
    point_colour = NA
  ) +
  geom_boxplot(fill = fill_color,
    width = .15,
    ## remove outliers
    outlier.shape = NA ## `outlier.shape = NA` works as well
  ) +
  ## add justified jitter from the {gghalves} package
  gghalves::geom_half_point(
    color = fill_color,
    ## draw jitter on the left
    side = "l",
    ## control range of jitter
    range_scale = .4,
    ## add some transparency
    alpha = .5,
    transformation = ggplot2::position_jitter(height = 0)

  ) +
   labs(y = "Decomposition constant (k)") +
  # ylim(c(-0.39, 0.145)) +
  geom_text(data = agg_kvals, aes(y = rep(0.4, nrow(agg_kvals)), x = Treatment, label = n.labels), nudge_x = 0, size = 6) +
     theme_classic(base_size = 18) +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
    scale_x_discrete(labels=c("C" = "Control", "N" = "+N",
                              "NP" = "+NP", "P" = "+P"))

Code
ggsave("./output/litter_decomposition_k_by_treatment.tiff", dpi = 300)

Download image

Code
fit_k.litter <- brm(k.sil.litt ~ Treatment + (1 | quadrat), data = k_vals,
    chains = chains, family = gaussian(), iter = iters, control = list(adapt_delta = 0.99,
        max_treedepth = 15), cores = chains, prior = prior, file = "./data/processed/k_litter_model",
    file_refit = "on_change")
Code
extended_summary(gsub.pattern = "b_treatment|b_", gsub.replacement = "",
    highlight = TRUE, remove.intercepts = TRUE, read.file = "./data/processed/k_litter_model.rds")

3.2 k_litter_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 k.sil.litt ~ Treatment + (1 | quadrat) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 8 (1e-04%) 0 48188.3 53957.43 1990407839
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
TreatmentN 0.237 -0.182 0.650 1 48188.30 53957.43
TreatmentNP -0.157 -0.575 0.259 1 49353.64 54230.69
TreatmentP -0.008 -0.424 0.409 1 48264.71 54663.36

pooled N and P

Code
k_vals$pool.p <- ifelse(k_vals$Treatment %in% c("P", "NP"), "p", "no.p")
k_vals$pool.n <- ifelse(k_vals$Treatment %in% c("N", "NP"), "n", "no.n")

k_vals$pool.n <- factor(k_vals$pool.n)

levels(k_vals$pool.n) <- c("no.n", "n")

fit_k.litter <- brm(k.sil.litt ~ pool.p + pool.n + (1 | quadrat),
    data = k_vals, chains = chains, family = Gamma(link = "log"),
    iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
    cores = chains, prior = prior, file = "./data/processed/k_litter_pooled_model",
    file_refit = "on_change")
Code
extended_summary(gsub.pattern = "b_treatment|b_", gsub.replacement = "",
    highlight = TRUE, remove.intercepts = TRUE, read.file = "./data/processed/k_litter_pooled_model.rds")

3.3 k_litter_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 k.sil.litt ~ pool.p + pool.n + (1 | quadrat) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) shape-gamma(0.01, 0.01) 40000 4 1 20000 33 (0.00041%) 0 72277.17 53247.81 913293624
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.pp -0.129 -0.319 0.061 1 73014.04 53247.81
pool.nn -0.023 -0.212 0.166 1 72277.17 54264.67

Phosphorus vs no-phosphorus

Code
fit_k.litter.p.np <- brm(k.sil.litt ~ p.treat + (1 | quadrat), data = k_vals,
    chains = chains, family = Gamma(link = "log"), iter = iters, ,
    control = list(adapt_delta = 0.99, max_treedepth = 15), cores = chains,
    prior = prior, file = "./data/processed/k_litter_p_nop_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/k_litter_p_nop_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

3.4 k_litter_p_nop_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 k.sil.litt ~ p.treat + (1 | quadrat) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 22 (0.00028%) 0 67015.63 50456.69 803160143
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
p.treatwith.p -0.202 -0.498 0.092 1 67015.63 50456.69

Code
agg_kvals <- aggregate(k.sil.litt ~ p.treat, k_vals, mean)
agg_kvals$se <- aggregate(k.sil.litt ~ p.treat, k_vals, se)$k.sil.litt
agg_kvals$sd <- aggregate(k.sil.litt ~ p.treat, k_vals, sd)$k.sil.litt
agg_kvals$p.treat <- factor(agg_kvals$p.treat, labels = c("No P", "P"))
agg_kvals$n <- aggregate(k.sil.litt ~ p.treat, k_vals, length)$k.sil.litt
agg_kvals$n.labels <- paste("n =", agg_kvals$n) 
k_vals$p.treat <- factor(k_vals$p.treat, labels = c("No P", "P"))

# composed box plot
rn_p_litter <- ggplot(k_vals, aes(x = p.treat, y = k.sil.litt)) +
## add half-violin from {ggdist} package
  ggdist::stat_halfeye(
    fill = fill_color,
    alpha = 0.5,
    ## custom bandwidth
    adjust = .5,
    ## adjust height
    width = .6,
    .width = 0,
    ## move geom to the cright
    justification = -.2,
    point_colour = NA
  ) +
  geom_boxplot(fill = fill_color,
    width = .15,
    ## remove outliers
    outlier.shape = NA ## `outlier.shape = NA` works as well
  ) +
  ## add justified jitter from the {gghalves} package
  gghalves::geom_half_point(
    color = fill_color,
    ## draw jitter on the left
    side = "l",
    ## control range of jitter
    range_scale = .4,
    ## add some transparency
    alpha = .5,
    transformation = ggplot2::position_jitter(height = 0)

  ) +
  labs(y = "Decomposition constant (k)", x = "P treatment") +
  geom_text(data = agg_kvals, aes(y = rep(-0.387, nrow(agg_kvals)), x = p.treat, label = n.labels), nudge_x = 0, size = 6) +
     theme_classic(base_size = 18) +
theme(axis.text.x = element_text(angle = 30, hjust = 1))  +
    scale_x_discrete(labels=c("No P" = "No P", "P" = "+P"))

rn_p_litter

Code
ggsave("./output/litter_phosphorus_decomposition_k.tiff", dpi = 300)

Nitrogen vs no-nitrogen

Code
fit_k.litter.n.nn <- brm(k.sil.litt ~ n.treat + (1 | quadrat), data = k_vals,
    chains = chains, family = Gamma(link = "log"), iter = iters, control = list(adapt_delta = 0.99,
        max_treedepth = 15), cores = chains, prior = prior, file = "./data/processed/k_litter_n_no_n_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/k_litter_n_no_n_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

3.5 k_litter_n_no_n_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 k.sil.litt ~ n.treat + (1 | quadrat) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) shape-gamma(0.01, 0.01) 40000 4 1 20000 15 (0.00019%) 0 72242.88 53236.64 1667737665
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
n.treatwith.n 0.031 -0.162 0.223 1 72242.88 53236.64

Code
agg_kvals <- aggregate(k.sil.litt ~ n.treat, k_vals, mean)
agg_kvals$se <- aggregate(k.sil.litt ~ n.treat, k_vals, se)$k.sil.litt
agg_kvals$sd <- aggregate(k.sil.litt ~ n.treat, k_vals, sd)$k.sil.litt
agg_kvals$n.treat <- factor(agg_kvals$n.treat, labels = c("No N", "N"))
agg_kvals$n <- aggregate(k.sil.litt ~ n.treat, k_vals, length)$k.sil.litt
agg_kvals$n.labels <- paste("n =", agg_kvals$n) 
k_vals$n.treat <- factor(k_vals$n.treat, labels = c("No N", "N"))

# composed box plot
rn_n_litter <- ggplot(k_vals, aes(x = n.treat, y = k.sil.litt)) +
## add half-violin from {ggdist} package
  ggdist::stat_halfeye(
    fill = fill_color,
    alpha = 0.5,
    ## custom bandwidth
    adjust = .5,
    ## adjust height
    width = .6,
    .width = 0,
    ## move geom to the cright
    justification = -.2,
    point_colour = NA
  ) +
  geom_boxplot(fill = fill_color,
    width = .15,
    ## remove outliers
    outlier.shape = NA ## `outlier.shape = NA` works as well
  ) +
  ## add justified jitter from the {gghalves} package
  gghalves::geom_half_point(
    color = fill_color,
    ## draw jitter on the left
    side = "l",
    ## control range of jitter
    range_scale = .4,
    ## add some transparency
    alpha = .5,
    transformation = ggplot2::position_jitter(height = 0)

  ) +
  labs(y = "Decomposition constant (k)", x = "P treatment") +
  geom_text(data = agg_kvals, aes(y = rep(-0.387, nrow(agg_kvals)), x = n.treat, label = n.labels), nudge_x = 0, size = 6) +
     theme_classic(base_size = 18) +
theme(axis.text.x = element_text(angle = 30, hjust = 1))  +
    scale_x_discrete(labels=c("No P" = "No P", "P" = "+P"))

rn_n_litter

Code
ggsave("./output/litter_nitrogen_decomposition_k.tiff", dpi = 300)

3.6 Wood

Comparing all treatments vs control

Code
agg_kvals <- aggregate(k.sil.wood ~ Treatment, k_vals, mean)
agg_kvals$se <- aggregate(k.sil.wood ~ Treatment, k_vals, se)$k.sil.wood
agg_kvals$sd <- aggregate(k.sil.wood ~ Treatment, k_vals, sd)$k.sil.wood
agg_kvals$n <- aggregate(k.sil.wood ~ Treatment, k_vals, length)$k.sil.wood
agg_kvals$treat <- factor(agg_kvals$Treatment, levels = c("C", "N", "P", "NP"))
agg_kvals$n.labels <- paste("n =", agg_kvals$n) 

# composed box plot
ggplot(k_vals, aes(x = Treatment, y = k.sil.wood)) +
## add half-violin from {ggdist} package
  ggdist::stat_halfeye(
    fill = fill_color,
    alpha = 0.5,
    ## custom bandwidth
    adjust = .5,
    ## adjust height
    width = .6,
    .width = 0,
    ## move geom to the cright
    justification = -.2,
    point_colour = NA
  ) +
  geom_boxplot(fill = fill_color,
    width = .15,
    ## remove outliers
    outlier.shape = NA ## `outlier.shape = NA` works as well
  ) +
  ## add justified jitter from the {gghalves} package
  gghalves::geom_half_point(
    color = fill_color,
    ## draw jitter on the left
    side = "l",
    ## control range of jitter
    range_scale = .4,
    ## add some transparency
    alpha = .5,
    transformation = ggplot2::position_jitter(height = 0)

  ) +
   labs(y = "Decomposition constant (k)") +
  # ylim(c(-0.39, 0.145)) +
  geom_text(data = agg_kvals, aes(y = rep(-0.387, nrow(agg_kvals)), x = Treatment, label = n.labels), nudge_x = 0, size = 6) +
     theme_classic(base_size = 18) +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
    scale_x_discrete(labels=c("C" = "Control", "N" = "+N",
                              "NP" = "+NP", "P" = "+P"))

Code
ggsave("./output/wood_decomposition_k_by_treatment.tiff", dpi = 300)

Download image

Code
fit_k.wood.p.treat <- brm(k.sil.wood ~ Treatment + (1 | quadrat),
    data = k_vals, chains = chains, family = Gamma(link = "log"),
    iter = iters * 2, control = list(adapt_delta = 0.99, max_treedepth = 15),
    cores = chains, prior = prior, file = "./data/processed/k_wood_treatment_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/k_wood_treatment_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

3.7 k_wood_treatment_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 k.sil.wood ~ Treatment + (1 | quadrat) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) shape-gamma(0.01, 0.01) 80000 4 1 40000 65 (0.00041%) 0 98166.04 105611.9 855747887
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
TreatmentN 0.012 -0.346 0.371 1 100934.75 107608.8
TreatmentNP -0.251 -0.608 0.106 1 99322.53 108781.5
TreatmentP -0.234 -0.594 0.125 1 98166.04 105611.9

pooled N and P

Code
k_vals$pool.p <- ifelse(k_vals$Treatment %in% c("P", "NP"), "p", "no.p")
k_vals$pool.n <- ifelse(k_vals$Treatment %in% c("N", "NP"), "n", "no.n")

k_vals$pool.n <- factor(k_vals$pool.n)

levels(k_vals$pool.n) <- c("no.n", "n")

fit_k.wood.p.pooled <- brm(k.sil.wood ~ pool.p + pool.n + (1 | quadrat),
    data = k_vals, chains = chains, family = Gamma(link = "log"),
    iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
    cores = chains, prior = prior, file = "./data/processed/k_wood_pooled_model",
    file_refit = "on_change")
Code
extended_summary(gsub.pattern = "b_treatment|b_", gsub.replacement = "",
    highlight = TRUE, remove.intercepts = TRUE, read.file = "./data/processed/k_wood_pooled_model.rds")

3.8 k_wood_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 sil.k.wood ~ pool.p + pool.n + (1 | quadrat) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 19 (0.00024%) 0 72247.85 53648.68 977910876
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.pp -0.497 -0.901 -0.093 1 73065.71 53648.68
pool.nn -0.006 -0.406 0.396 1 72247.85 54566.47

## Phosphorus vs no-phosphorus

Code
agg_kvals <- aggregate(k.sil.wood ~ p.treat, k_vals, mean)
agg_kvals$se <- aggregate(k.sil.wood ~ p.treat, k_vals, se)$k.sil.wood
agg_kvals$sd <- aggregate(k.sil.wood ~ p.treat, k_vals, sd)$k.sil.wood


agg_kvals$p.treat <- factor(agg_kvals$p.treat, labels = c("No P", "P"))
agg_kvals$n <- aggregate(k.sil.wood ~ p.treat, k_vals, length)$k.sil.wood
agg_kvals$n.labels <- paste("n =", agg_kvals$n) 


k_vals$p.treat <- factor(k_vals$p.treat, labels = c("No P", "P"))


# composed box plot
rn_p_wood <- ggplot(k_vals, aes(x = p.treat, y = k.sil.wood)) +
## add half-violin from {ggdist} package
  ggdist::stat_halfeye(
    fill = fill_color,
    alpha = 0.5,
    ## custom bandwidth
    adjust = .5,
    ## adjust height
    width = .6,
    .width = 0,
    ## move geom to the cright
    justification = -.2,
    point_colour = NA
  ) +
  geom_boxplot(fill = fill_color,
    width = .15,
    ## remove outliers
    outlier.shape = NA ## `outlier.shape = NA` works as well
  ) +
  ## add justified jitter from the {gghalves} package
  gghalves::geom_half_point(
    color = fill_color,
    ## draw jitter on the left
    side = "l",
    ## control range of jitter
    range_scale = .4,
    ## add some transparency
    alpha = .5,
    transformation = ggplot2::position_jitter(height = 0)

  ) +
  labs(y = "Decomposition constant (k)", x = "P treatment") +
  geom_text(data = agg_kvals, aes(y = rep(-0.387, nrow(agg_kvals)), x = p.treat, label = n.labels), nudge_x = 0, size = 6) +
     theme_classic(base_size = 18) +
theme(axis.text.x = element_text(angle = 30, hjust = 1))  +
    scale_x_discrete(labels=c("No P" = "No P", "P" = "+P"))

rn_p_wood

Code
ggsave("./output/phosphorus_decomposition_k.tiff", dpi = 300)

Download image

Code
fit_k.wood.p.no.p <- brm(k.sil.wood ~ p.treat + (1 | quadrat), data = k_vals,
    chains = chains, family = Gamma(link = "log"), iter = iters, control = list(adapt_delta = 0.99,
        max_treedepth = 15), cores = chains, prior = prior, file = "./data/processed/k_wood_p_no_p_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/k_wood_p_no_p_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

3.9 k_wood_p_no_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 k.sil.wood ~ p.treat + (1 | quadrat) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) shape-gamma(0.01, 0.01) 40000 4 1 20000 10 (0.00012%) 0 64734.01 54706.61 1645430139
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
p.treatwith.p -0.248 -0.5 0.001 1 64734.01 54706.61

3.10 Nitrogen vs no-nitrogen

Code
agg_kvals <- aggregate(k.sil.wood ~ n.treat, k_vals, mean)
agg_kvals$se <- aggregate(k.sil.wood ~ n.treat, k_vals, se)$k.sil.wood
agg_kvals$sd <- aggregate(k.sil.wood ~ n.treat, k_vals, sd)$k.sil.wood
agg_kvals$n.treat <- factor(agg_kvals$n.treat, labels = c("No N", "N"))
agg_kvals$n <- aggregate(k.sil.wood ~ n.treat, k_vals, length)$k.sil.wood
agg_kvals$n.labels <- paste("n =", agg_kvals$n) 
k_vals$n.treat <- factor(k_vals$n.treat, labels = c("No N", "N"))

# composed box plot
rn_n_wood <- ggplot(k_vals, aes(x = n.treat, y = k.sil.wood)) +
## add half-violin from {ggdist} package
  ggdist::stat_halfeye(
    fill = fill_color,
    alpha = 0.5,
    ## custom bandwidth
    adjust = .5,
    ## adjust height
    width = .6,
    .width = 0,
    ## move geom to the cright
    justification = -.2,
    point_colour = NA
  ) +
  geom_boxplot(fill = fill_color,
    width = .15,
    ## remove outliers
    outlier.shape = NA ## `outlier.shape = NA` works as well
  ) +
  ## add justified jitter from the {gghalves} package
  gghalves::geom_half_point(
    color = fill_color,
    ## draw jitter on the left
    side = "l",
    ## control range of jitter
    range_scale = .4,
    ## add some transparency
    alpha = .5,
    transformation = ggplot2::position_jitter(height = 0)

  ) +
  labs(y = "Decomposition constant (k)", x = "P treatment") +
  geom_text(data = agg_kvals, aes(y = rep(-0.387, nrow(agg_kvals)), x = n.treat, label = n.labels), nudge_x = 0, size = 6) +
     theme_classic(base_size = 18) +
theme(axis.text.x = element_text(angle = 30, hjust = 1))  +
    scale_x_discrete(labels=c("No P" = "No P", "P" = "+P"))

rn_n_wood

Code
ggsave("./output/nitrogen_decomposition_k.tiff", dpi = 300)

Download image

Code
fit_k.wood.n.no.n <- brm(k.sil.wood ~ n.treat + (1 | quadrat), data = k_vals,
    chains = chains, family = Gamma(link = "log"), iter = iters, control = list(adapt_delta = 0.99,
        max_treedepth = 15), cores = chains, prior = prior, file = "./data/processed/k_wood_n_no_n_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/k_wood_n_no_n_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

3.11 k_wood_n_no_n_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 k.sil.wood ~ n.treat + (1 | quadrat) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) shape-gamma(0.01, 0.01) 40000 4 1 20000 17 (0.00021%) 0 65193.64 55407.67 1393075606
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
n.treatwith.n 0 -0.255 0.254 1 65193.64 55407.67

4 Nutrient content by remaining litter mass

4.1 Nitrogen

Code
nutr$prom.hoja.reman.sc <- scale(nutr$prom.hoja.reman)

ggplot(data = nutr, aes(x = prom.hoja.reman, y = perc.n, color = treat)) +
    geom_point() + labs(x = "Remaining litter mass (% initial)", y = "Litter N concentration (%)",
    color = "Treatment") + scale_color_viridis_d(alpha = 0.5) + geom_smooth(method = "lm",
    se = FALSE) + scale_x_reverse()

Code
ggsave("./output/nitrogen_by_litter_mass.tiff", dpi = 300)

Download image

Code
nutr$prop.n <- nutr$perc.n/100
fit_pern_by_rem_leave <- brm(prop.n ~ prom.hoja.reman.sc * treat +
    (1 | plot), data = nutr, chains = chains, family = Beta(link = "logit"),
    iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
    cores = chains, prior = prior, file = "./data/processed/n_per_by_leave_rem_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/n_per_by_leave_rem_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

4.2 n_per_by_leave_rem_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 prop.n ~ prom.hoja.reman.sc * treat + (1 | plot) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 20) 40000 4 1 20000 0 (0%) 0 46098.2 54930.62 1419862621
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
prom.hoja.reman.sc -0.097 -0.188 -0.008 1 46098.20 54930.62
treatN -0.092 -0.232 0.044 1 66658.88 59069.86
treatNP -0.036 -0.170 0.100 1 66868.65 58149.07
treatP -0.016 -0.150 0.119 1 66587.62 59170.26
prom.hoja.reman.sc:treatN 0.033 -0.091 0.156 1 56656.88 59418.75
prom.hoja.reman.sc:treatNP -0.047 -0.186 0.090 1 61314.28 61993.63
prom.hoja.reman.sc:treatP -0.009 -0.138 0.119 1 58600.17 61521.39

Code
fit_pern_by_rem_leave <- brm(prop.n ~ prom.hoja.reman.sc * treat +
    (1 | plot), data = nutr, chains = chains, family = Beta(link = "logit"),
    iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
    cores = chains, prior = prior, file = "./data/processed/n_per_by_leave_rem_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/n_per_by_leave_rem_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

4.3 n_per_by_leave_rem_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 prop.n ~ prom.hoja.reman.sc * treat + (1 | plot) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 20) 40000 4 1 20000 0 (0%) 0 46098.2 54930.62 1419862621
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
prom.hoja.reman.sc -0.097 -0.188 -0.008 1 46098.20 54930.62
treatN -0.092 -0.232 0.044 1 66658.88 59069.86
treatNP -0.036 -0.170 0.100 1 66868.65 58149.07
treatP -0.016 -0.150 0.119 1 66587.62 59170.26
prom.hoja.reman.sc:treatN 0.033 -0.091 0.156 1 56656.88 59418.75
prom.hoja.reman.sc:treatNP -0.047 -0.186 0.090 1 61314.28 61993.63
prom.hoja.reman.sc:treatP -0.009 -0.138 0.119 1 58600.17 61521.39

4.4 Phosphorus

Code
ggplot(data = sub.nutr, aes(x = prom.hoja.reman, y = perc.p, color = treat)) +
    geom_point() + labs(x = "Remaining litter mass (% initial)", y = "Litter P concentration (%)",
    color = "Treatment") + scale_color_viridis_d(alpha = 0.5) + geom_smooth(method = "lm",
    se = FALSE) + scale_x_reverse()

Code
ggsave("./output/phosphorus_by_litter_mass.tiff", dpi = 300)

Download image

Code
sub.nutr$prom.hoja.reman.sc <- scale(sub.nutr$prom.hoja.reman)

sub.nutr$prop.p <- sub.nutr$perc.p/100

fit_perp_by_rem_leave <- brm(prop.p ~ prom.hoja.reman.sc * treat +
    (1 | plot), data = sub.nutr, chains = chains, family = Beta(link = "logit"),
    iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
    cores = chains, prior = prior, file = "./data/processed/p_per_by_leave_rem_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/p_per_by_leave_rem_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

4.5 p_per_by_leave_rem_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 prop.p ~ prom.hoja.reman.sc * treat + (1 | plot) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 20) 40000 4 1 20000 0 (0%) 0 45911.09 48188.43 168759349
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
prom.hoja.reman.sc 0.031 -0.302 0.340 1 45911.09 48188.43
treatN -0.101 -0.594 0.388 1 66767.28 59107.27
treatNP 0.028 -0.448 0.506 1 64658.84 58565.19
treatP 0.073 -0.441 0.580 1 65754.39 59305.79
prom.hoja.reman.sc:treatN 0.017 -0.439 0.469 1 55504.55 56147.13
prom.hoja.reman.sc:treatNP -0.048 -0.520 0.418 1 55914.18 58512.29
prom.hoja.reman.sc:treatP -0.035 -0.507 0.432 1 56621.27 56984.24

Takeaways

  • Nitrogen percentage, but no Phosphorus percentage, increases along with remaining litter mass

 

5 Nutrient ratios

5.1 C:N

Code
# excluding plot 9
agg_cn <- aggregate(cn.mol.kg ~ colecta + treat + days, nutr, mean)

agg_cn$sd <- aggregate(cn.mol.kg ~ colecta + treat + days, nutr, sd)$cn.mol.kg

agg_cn$se <- aggregate(cn.mol.kg ~ colecta + treat + days, nutr, se)$cn.mol.kg


agg_cn$treat <- factor(agg_cn$treat, levels = c("C", "N", "P", "NP"))

pd <- position_dodge(15)

ggplot(agg_cn, aes(x = days, y = cn.mol.kg, color = treat)) + geom_point(size = 2,
    position = pd) + geom_errorbar(aes(ymax = cn.mol.kg + se, ymin = cn.mol.kg -
    se), width = 0, position = pd) + geom_line(size = 1.2, position = pd) +
    scale_color_viridis_d(alpha = 0.5) + labs(x = "Time (days)", y = "Litter C:N ratio",
    color = "Treatment") + scale_x_continuous(breaks = unique(agg_cn$days),
    labels = unique(agg_cn$days)) + theme(legend.position = c(0.9,
    0.8))

Code
ggsave("./output/cn_ratio_through_time.tiff", dpi = 300)

Download image

Code
fit.cn <- brm(cn.mol.kg ~ treat * days.sc + (1 | plot.f), data = nutr,
    chains = chains, family = Gamma(link = "log"), iter = iters, control = list(adapt_delta = 0.99,
        max_treedepth = 15), cores = chains, prior = prior, file = "./data/processed/cn_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/cn_model.rds", gsub.pattern = "b_treatment|b_",
    gsub.replacement = "", highlight = TRUE, remove.intercepts = TRUE)

5.2 cn_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 cn.mol.kg ~ treat * days.sc + (1 | plot.f) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 35587.38 44645.52 1143833718
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
treatN 0.009 -0.099 0.111 1 45969.23 44645.52
treatNP -0.007 -0.110 0.097 1 46816.05 48244.92
treatP -0.009 -0.113 0.094 1 47348.16 50561.75
days.sc -0.180 -0.244 -0.118 1 35587.38 47992.48
treatN:days.sc 0.039 -0.046 0.124 1 45580.65 56260.34
treatNP:days.sc 0.014 -0.072 0.101 1 45607.95 54630.70
treatP:days.sc -0.001 -0.087 0.085 1 45397.25 54204.90

Code
sub.nutr$pool.p <- ifelse(sub.nutr$treat %in% c("P", "NP"), "p", "no.p")
sub.nutr$pool.n <- ifelse(sub.nutr$treat %in% c("N", "NP"), "n", "no.n")

sub.nutr$pool.n <- factor(sub.nutr$pool.n)

levels(sub.nutr$pool.n) <- c("no.n", "n")

fit.cn <- brm(cn.mol.kg ~ pool.n * days.sc + pool.p * days.sc + (1 |
    plot.f), data = sub.nutr, chains = chains, family = gaussian(),
    iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
    cores = chains, prior = prior, file = "./data/processed/cn_pooled_model2",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/cn_pooled_model2.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

5.3 cn_pooled_model2

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 cn.mol.kg ~ pool.n * days.sc + pool.p * days.sc + (1 | plot.f) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 70922.09 57566.19 161678448
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn -0.326 -1.549 0.896 1 87506.75 57566.19
days.sc -2.386 -3.289 -1.488 1 70922.09 61664.32
pool.pp -0.524 -1.732 0.689 1 88220.05 58006.12
pool.nn:days.sc -0.670 -1.751 0.414 1 90006.00 61094.47
days.sc:pool.pp -0.234 -1.305 0.844 1 88619.19 62452.26

5.4 N:P

Code
# excluding plot 9
agg_np <- aggregate(np.mol.kg ~ colecta + treat + days, sub.nutr,
    mean)

agg_np$sd <- aggregate(np.mol.kg ~ colecta + treat + days, sub.nutr,
    sd)$np.mol.kg

agg_np$se <- aggregate(np.mol.kg ~ colecta + treat + days, sub.nutr,
    se)$np.mol.kg


agg_np$treat <- factor(agg_np$treat, levels = c("C", "N", "P", "NP"))


pd <- position_dodge(15)

ggplot(agg_np, aes(x = days, y = np.mol.kg, color = treat)) + geom_point(size = 2,
    position = pd) + geom_errorbar(aes(ymax = np.mol.kg + se, ymin = np.mol.kg -
    se), width = 0, position = pd) + geom_line(size = 1.2, position = pd) +
    scale_color_viridis_d(alpha = 0.5) + labs(x = "Time (days)", y = "Litter N:P ratio",
    color = "Treatment") + scale_x_continuous(breaks = unique(agg_np$days),
    labels = unique(agg_np$days)) + theme(legend.position = c(0.2,
    0.8))

Code
ggsave("./output/np_ratio_through_time.tiff", dpi = 300)

Download image

Code
fit.np <- brm(np.mol.kg ~ treat * days.sc + (1 | plot.f), data = sub.nutr,
    chains = chains, family = gaussian(), iter = iters, control = list(adapt_delta = 0.99,
        max_treedepth = 15), cores = chains, prior = prior, file = "./data/processed/np_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/np_model.rds", gsub.pattern = "b_treatment|b_",
    gsub.replacement = "", highlight = TRUE, remove.intercepts = TRUE)

5.5 np_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 np.mol.kg ~ treat * days.sc + (1 | plot.f) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 5.3) 40000 4 1 20000 0 (0%) 0 41007.87 48820.84 579910719
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
treatN 1.201 -3.053 5.508 1 49715.47 51006.06
treatNP -2.417 -6.618 1.863 1 49894.96 49578.50
treatP -3.147 -7.700 1.476 1 50348.36 48820.84
days.sc 4.426 1.783 7.053 1 41007.87 52509.45
treatN:days.sc -1.790 -5.413 1.821 1 50394.31 57568.65
treatNP:days.sc -1.805 -5.442 1.804 1 49985.13 56081.79
treatP:days.sc -1.430 -5.270 2.454 1 53311.35 55156.44

Code
sub.nutr$pool.p <- ifelse(sub.nutr$treat %in% c("P", "NP"), "p", "no.p")
sub.nutr$pool.n <- ifelse(sub.nutr$treat %in% c("N", "NP"), "n", "no.n")


sub.nutr$pool.n <- factor(sub.nutr$pool.n)

levels(sub.nutr$pool.n) <- c("no.n", "n")

fit.cn <- brm(np.mol.kg ~ pool.n * days.sc + pool.p * days.sc + (1 |
    plot.f), data = sub.nutr, chains = chains, family = gaussian(),
    iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
    cores = chains, prior = prior, file = "./data/processed/np_pooled_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/np_pooled_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

5.6 np_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 np.mol.kg ~ pool.n * days.sc + pool.p * days.sc + (1 | plot.f) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 5.3) 40000 4 1 20000 0 (0%) 0 61509.67 53836.89 676130983
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn -0.940 -4.035 2.178 1 71063.98 56909.25
days.sc 2.948 0.741 5.145 1 61509.67 57679.84
pool.pp -3.434 -6.491 -0.307 1 73981.72 53836.89
pool.nn:days.sc 1.212 -1.451 3.853 1 80364.56 62229.69
days.sc:pool.pp -0.717 -3.343 1.917 1 76934.24 60342.60

5.7 C:P

Code
# excluding plot 9
agg_cp <- aggregate(cp.mol.kg ~ colecta + treat + days, sub.nutr,
    mean)

agg_cp$sd <- aggregate(cp.mol.kg ~ colecta + treat + days, sub.nutr,
    sd)$cp.mol.kg

agg_cp$se <- aggregate(cp.mol.kg ~ colecta + treat + days, sub.nutr,
    se)$cp.mol.kg

agg_cp$treat <- factor(agg_cp$treat, levels = c("C", "N", "P", "NP"))


pd <- position_dodge(15)

ggplot(agg_cp, aes(x = days, y = cp.mol.kg, color = treat)) + geom_point(size = 2,
    position = pd) + geom_errorbar(aes(ymax = cp.mol.kg + se, ymin = cp.mol.kg -
    se), width = 0, position = pd) + geom_line(size = 1.2, position = pd) +
    scale_color_viridis_d(alpha = 0.5) + labs(x = "Time (days)", y = "Litter C:P ratio",
    color = "Treatment") + scale_x_continuous(breaks = unique(agg_cp$days),
    labels = unique(agg_cp$days)) + theme(legend.position = c(0.9,
    0.8))

Code
ggsave("./output/cp_ratio_through_time.tiff", dpi = 300)

Download image

Code
fit.cp <- brm(cp.mol.kg ~ treat * days.sc + (1 | plot.f), data = sub.nutr,
    chains = chains, family = gaussian(), iter = iters, cores = chains,
    prior = prior, file = "./data/processed/cp_model", file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/cp_model.rds", gsub.pattern = "b_treatment|b_",
    gsub.replacement = "", highlight = TRUE, remove.intercepts = TRUE)

5.8 cp_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 cp.mol.kg ~ treat * days.sc + (1 | plot.f) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 106.3) 40000 4 1 20000 0 (0%) 0 62183.29 54476.32 1789568456
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
treatN 0.327 -19.220 19.986 1 62606.85 55520.65
treatNP -0.296 -19.879 19.113 1 63093.42 55249.52
treatP -0.277 -19.860 19.448 1 63377.19 55433.86
days.sc -6.126 -21.105 9.108 1 62183.29 54476.32
treatN:days.sc 0.369 -17.654 18.204 1 66553.98 58235.32
treatNP:days.sc -4.798 -22.854 13.180 1 66003.03 57751.21
treatP:days.sc -2.664 -20.834 15.494 1 64783.90 56574.64

Code
sub.nutr$pool.p <- ifelse(sub.nutr$treat %in% c("P", "NP"), "p", "no.p")
sub.nutr$pool.n <- ifelse(sub.nutr$treat %in% c("N", "NP"), "n", "no.n")


sub.nutr$pool.n <- factor(sub.nutr$pool.n)

levels(sub.nutr$pool.n) <- c("no.n", "n")

fit.cn <- brm(cp.mol.kg ~ pool.n * days.sc + pool.p * days.sc + (1 |
    plot.f), data = sub.nutr, chains = chains, family = gaussian(),
    iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
    cores = chains, prior = prior, file = "./data/processed/cp_pooled_model",
    file_refit = "on_change")
Code
extended_summary(read.file = "./data/processed/cp_pooled_model.rds",
    gsub.pattern = "b_treatment|b_", gsub.replacement = "", highlight = TRUE,
    remove.intercepts = TRUE)

5.9 cp_pooled_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 cp.mol.kg ~ pool.n * days.sc + pool.p * days.sc + (1 | plot.f) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 106.3) 40000 4 1 20000 0 (0%) 0 49279.16 51752.89 1583776905
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
pool.nn -0.106 -19.546 19.468 1 49530.50 51841.82
days.sc -5.325 -20.757 10.232 1 49279.16 51752.89
pool.pp -0.526 -20.030 19.001 1 50219.39 53109.33
pool.nn:days.sc -0.987 -18.409 16.520 1 52068.26 52702.46
days.sc:pool.pp -6.579 -23.831 10.864 1 50389.63 52780.69


6 Combined plots

6.1 Remaining mass

Code
agg_rem_w$substrate <- "Wood"
agg_rem$substrate <- "Litter"

names(agg_rem) <- names(agg_rem_w) <- c("colecta", "trat", "days",
    "perc.rem", "sd", "se", "substrate")

agg_rem_pooled <- rbind(agg_rem, agg_rem_w)

ggplot(agg_rem_pooled, aes(x = days, y = perc.rem, color = trat)) +
    geom_point(size = 2, position = pd) + geom_errorbar(aes(ymax = perc.rem +
    se, ymin = perc.rem - se), width = 0, position = pd) + geom_line(size = 1.2,
    position = pd) + scale_color_viridis_d(alpha = 0.5, labels = c("Control",
    "+N", "+P", "+NP")) + labs(x = "Time (days)", y = "Remaining mass (%)",
    color = "Treatment") + scale_x_continuous(breaks = unique(agg_rem_pooled$days),
    labels = unique(agg_rem_pooled$days)) + facet_wrap(~substrate,
    nrow = 2)

Code
ggsave("./output/remaining_mass_combined.tiff", dpi = 300)

Download image

6.2 Litter content

Code
agg_p$nutrient <- "P"
agg_n$nutrient <- "N"

names(agg_n) <- names(agg_p) <- c("colecta", "treat", "days", "perc",
    "sd", "se", "nutrient")

agg_np2 <- rbind(agg_n, agg_p)

ggplot(agg_np2, aes(x = days, y = perc, color = treat)) + geom_point(size = 2,
    position = pd) + geom_errorbar(aes(ymax = perc + se, ymin = perc -
    se), width = 0, position = pd) + geom_line(size = 1.2, position = pd) +
    scale_color_viridis_d(alpha = 0.5, labels = c("Control", "+N",
        "+P", "+NP")) + labs(x = "Time (days)", y = "Litter nutrient content (% initial)",
    color = "Treatment") + scale_x_continuous(breaks = unique(agg_p$days),
    labels = unique(agg_p$days)) + facet_wrap(~nutrient, nrow = 2)

Code
ggsave("./output/litter_content_combined.tiff", dpi = 300)

Download image

6.3 Concentration

Code
agg_conc_p$nutrient <- "P"
agg_conc_n$nutrient <- "N"

names(agg_conc_n) <- names(agg_conc_p) <- c("colecta", "treat", "days",
    "perc", "sd", "se", "nutrient")

agg_conc_np <- rbind(agg_conc_n, agg_conc_p)

ggplot(agg_conc_np, aes(x = days, y = perc, color = treat)) + geom_point(size = 2,
    position = pd) + geom_errorbar(aes(ymax = perc + se, ymin = perc -
    se), width = 0, position = pd) + geom_line(size = 1.2, position = pd) +
    scale_color_viridis_d(alpha = 0.5, labels = c("Control", "+N",
        "+P", "+NP")) + labs(x = "Time (days)", y = "Litter nutrient concentration (%)",
    color = "Treatment") + scale_x_continuous(breaks = unique(agg_conc_p$days),
    labels = unique(agg_conc_p$days)) + facet_wrap(~nutrient, nrow = 2,
    scales = "free_y")

Code
ggsave("./output/concentration_combined.tiff", dpi = 300)

Download image

6.4 Nutrient ratios

Code
agg_cn$nutrients <- "C:N"
agg_cp$nutrients <- "C:P"
agg_np$nutrients <- "N:P"

names(agg_cn) <- names(agg_cp) <- names(agg_np) <- c("colecta", "treat",
    "days", "mol.kg", "sd", "se", "nutrients")

agg_ratios <- rbind(agg_cn[, names(agg_cn)], agg_cp[, names(agg_cn)],
    agg_np[, names(agg_cn)])

ggplot(agg_ratios, aes(x = days, y = mol.kg, color = treat)) + geom_point(size = 2,
    position = pd) + geom_errorbar(aes(ymax = mol.kg + se, ymin = mol.kg -
    se), width = 0, position = pd) + geom_line(size = 1.2, position = pd) +
    scale_color_viridis_d(alpha = 0.5, labels = c("Control", "+N",
        "+P", "+NP")) + labs(x = "Time (days)", y = "Litter nutrient ratios",
    color = "Treatment") + scale_x_continuous(breaks = unique(agg_ratios$days),
    labels = unique(agg_ratios$days)) + facet_wrap(~nutrients, nrow = 3,
    scales = "free_y")

Code
ggsave("./output/nutrient_ratios_combined.tiff", dpi = 300, width = 10,
    height = 12)

Download image

6.5 Decomposition constant

Code
rn_n_wood_dat <- rn_n_wood$data[, c("n.treat", "k.sil.wood")]
rn_n_litter_dat <- rn_n_litter$data[, c("n.treat", "k.sil.litt")]
rn_p_wood_dat <- rn_p_wood$data[, c("p.treat", "k.sil.wood")]
rn_p_litter_dat <- rn_p_litter$data[, c("p.treat", "k.sil.litt")]

names(rn_p_wood_dat) <- names(rn_n_wood_dat)  <- names(rn_p_litter_dat) <- names(rn_n_litter_dat) <- c("treatment", "k")
rn_p_wood_dat$substrate <- rn_n_wood_dat$substrate <- "wood"
rn_p_litter_dat$substrate <- rn_n_litter_dat$substrate <- "litter"

rn_n_wood_dat$nutrient <- rn_n_litter_dat$nutrient <- "N"
rn_p_litter_dat$nutrient <- rn_p_wood_dat$nutrient <- "P"

rn_k_dat <- rbind(rn_n_wood_dat, rn_p_wood_dat, rn_n_litter_dat, rn_p_litter_dat)                             
                             
# composed box plot
ggplot(rn_k_dat, aes(x = treatment, y = k)) +
## add half-violin from {ggdist} package
  ggdist::stat_halfeye(
    fill = fill_color,
    alpha = 0.5,
    ## custom bandwidth
    adjust = .5,
    ## adjust height
    width = .6,
    .width = 0,
    ## move geom to the cright
    justification = -.2,
    point_colour = NA
  ) +
  geom_boxplot(fill = fill_color,
    width = .15,
    ## remove outliers
    outlier.shape = NA ## `outlier.shape = NA` works as well
  ) +
  ## add justified jitter from the {gghalves} package
  gghalves::geom_half_point(
    color = fill_color,
    ## draw jitter on the left
    side = "l",
    ## control range of jitter
    range_scale = .4,
    ## add some transparency
    alpha = .5,
    transformation = ggplot2::position_jitter(height = 0)

  ) +
  labs(y = "Decomposition constant (k)", x = "P treatment") +
  # geom_text(data = agg_kvals, aes(y = rep(-0.387, nrow(agg_kvals)), x = n.treat, label = n.labels), nudge_x = 0, size = 6) +
     theme_classic(base_size = 18) +
theme(axis.text.x = element_text(angle = 30, hjust = 1))  +
    scale_x_discrete(labels=c("No P" = "No P", "P" = "+P")) +
    facet_grid(~ substrate)

Code
ggsave("./output/decomposition_k_combined_v1.tiff", dpi = 300, width = 10, height = 12)

Download image

Code
# composed box plot
ggplot(rn_k_dat, aes(x = treatment, y = k)) +
## add half-violin from {ggdist} package
  ggdist::stat_halfeye(
    fill = fill_color,
    alpha = 0.5,
    ## custom bandwidth
    adjust = .5,
    ## adjust height
    width = .6,
    .width = 0,
    ## move geom to the cright
    justification = -.2,
    point_colour = NA
  ) +
  geom_boxplot(fill = fill_color,
    width = .15,
    ## remove outliers
    outlier.shape = NA ## `outlier.shape = NA` works as well
  ) +
  ## add justified jitter from the {gghalves} package
  gghalves::geom_half_point(
    color = fill_color,
    ## draw jitter on the left
    side = "l",
    ## control range of jitter
    range_scale = .4,
    ## add some transparency
    alpha = .5,
    transformation = ggplot2::position_jitter(height = 0)

  ) +
  labs(y = "Decomposition constant (k)", x = "P treatment") +
  # geom_text(data = agg_kvals, aes(y = rep(-0.387, nrow(agg_kvals)), x = n.treat, label = n.labels), nudge_x = 0, size = 6) +
     theme_classic(base_size = 18) +
theme(axis.text.x = element_text(angle = 30, hjust = 1))  +
    scale_x_discrete(labels=c("No P" = "No P", "P" = "+P")) +
    facet_grid(substrate ~ nutrient, scales = "free_x")

Code
ggsave("./output/decomposition_k_combined_v12.tiff", dpi = 300, width = 10, height = 12)

Download image

7 Carbon inputs/outputs

7.1 Litter

7.1.1 N

Code
# read data
c_input_litter <- read.csv("./data/raw/annual_litter_C_input.csv")

# same with ggplot2
ggplot(c_input_litter, aes(x = n.pooled, y = cr.total)) + geom_boxplot() +
    labs(y = "Carbon input (Mg C ha-1 yr-1)", x = "N treatment") +
    theme_classic(base_size = 18) + scale_x_discrete(labels = c(no.n = "-N",
    with.n = "+N"))

Code
# mod1 <- lm(cr.total ~ n.pooled, data =
# c_input_litter[complete.cases(c_input_litter), ])

prior <- c(prior(normal(0, 10), "b"), prior(normal(0, 50), "Intercept"))


litter_input_n <- brm(cr.total ~ n.pooled, data = c_input_litter[complete.cases(c_input_litter),
    c("cr.total", "n.pooled")], chains = chains, family = gaussian(),
    iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
    cores = chains, prior = prior, file = "./data/processed/litter_input_n_model",
    file_refit = "on_change")
Code
extended_summary(fit = litter_input_n, highlight = TRUE, remove.intercepts = TRUE)

7.2 litter_input_n

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 cr.total ~ n.pooled gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 47439.53 41816.38 26169603
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_n.pooledwith.n 0.071 -0.337 0.487 1 47439.53 41816.38

7.2.1 P

Code
ggplot(c_input_litter, aes(x = p.pooled, y = cr.total)) + geom_boxplot() +
    labs(y = "Carbon input (Mg C ha-1 yr-1)", x = "P treatment") +
    theme_classic(base_size = 18) + scale_x_discrete(labels = c(no.p = "-P",
    with.p = "+P"))

Code
litter_input_p <- brm(cr.total ~ p.pooled, data = c_input_litter[complete.cases(c_input_litter),
    c("cr.total", "p.pooled")], chains = chains, family = gaussian(),
    iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
    cores = chains, prior = prior, file = "./data/processed/litter_input_p_model",
    file_refit = "on_change")
Code
extended_summary(fit = litter_input_p, highlight = TRUE, remove.intercepts = TRUE)

7.3 litter_input_p

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 cr.total ~ p.pooled gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 48518.02 42903.88 603178782
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_p.pooledwith.p -0.096 -0.51 0.319 1 48518.02 42903.88

7.4 CO2 output

7.4.1 N

Code
c_avg_co2 <- read.csv("./data/raw/co2_plot_averages.csv")

ggplot(c_avg_co2, aes(x = pool.n, y = annual.flux)) + geom_boxplot() +
    labs(y = "Carbon output (Mg C ha-1 yr-1)", x = "N treatment") +
    theme_classic(base_size = 18)

Code
prior <- c(prior(normal(0, 10), "b"), prior(normal(0, 50), "Intercept"))

co2_output_n <- brm(annual.flux ~ pool.n, data = c_avg_co2[complete.cases(c_avg_co2),
    ], chains = chains, family = gaussian(), iter = iters, control = list(adapt_delta = 0.99,
    max_treedepth = 15), cores = chains, prior = prior, file = "./data/processed/co2_output_n_model",
    file_refit = "on_change")
Code
extended_summary(fit = co2_output_n, highlight = TRUE, remove.intercepts = TRUE)

7.5 co2_output_n

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 annual.flux ~ pool.n gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 50024.09 42637.79 306100029
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_pool.nPN 1.081 -1.215 3.366 1 50024.09 42637.79

7.5.1 P

Code
ggplot(c_avg_co2, aes(x = pool.p, y = annual.flux)) + geom_boxplot() +
    labs(y = "Carbon output (Mg C ha-1 yr-1)", x = "P treatment") +
    theme_classic(base_size = 18)

Code
co2_output_p <- brm(annual.flux ~ pool.p, data = c_avg_co2[complete.cases(c_avg_co2),
    ], chains = chains, family = gaussian(), iter = iters, control = list(adapt_delta = 0.99,
    max_treedepth = 15), cores = chains, prior = prior, file = "./data/processed/co2_output_p_model",
    file_refit = "on_change")
Code
extended_summary(fit = co2_output_p, highlight = TRUE, remove.intercepts = TRUE)

7.6 co2_output_p

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 annual.flux ~ pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 51625.97 44811.71 1833764711
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_pool.pPP 0.57 -1.764 2.906 1 51625.97 44811.71

8 Microbial biomass

8.1 N

Code
soil_mic <- read.csv("./data/raw/strimastersoils.csv")

# names(soil_mic)


soil_mic$BS <- soil_mic$BS/100
soil_mic$Al.sat <- soil_mic$Al.sat/100

variables <- c("mic.c", "mic.n", "mic.p", "mic.cn", "mic.cp", "mic.np",
    "AG", "BG", "XYL", "CEL", "NAG", "LAP", "MUP", "BIS", "S", "BG.NAG",
    "BG.MUP", "NAG.MUP", "BG.S", "NAG.S", "MUP.S", "ph.h2o", "ph.cacl2",
    "tc.g.kg.18", "tn.g.kg.18", "tp.g.kg.18", "CN", "CP", "NP", "k2so4.C",
    "nitrate.2017", "resin.p", "ox.Al", "ox.Fe", "Al", "Ca", "Fe",
    "K", "Mg", "Mn", "Na", "TEB", "ECEC", "BS", "Al.sat")


variables[!variables %in% names(soil_mic)]
character(0)
Code
for (i in variables) {
    soil_mic$var <- soil_mic[, i]
    gg <- ggplot(soil_mic, aes(x = treat.pool.n, y = var)) + geom_boxplot() +
        geom_jitter() + labs(y = i, x = "N treatment") + theme_classic(base_size = 18)

    print(gg)
}

Code
soil_mic$var <- NULL

prior <- c(prior(normal(0, 10), "b"), prior(normal(0, 50), "Intercept"))

for (i in variables) {
    soil_mic$var <- soil_mic[, i]

    fam <- Gamma(link = "log")

    if (i %in% c("BS", "Al.sat"))
        fam <- Beta(link = "logit") else if (any(soil_mic$var < 0))
        soil_mic$var <- soil_mic$var + min(abs(soil_mic$var)) + 1e-04

    co2_output_n <- brm(var ~ treat.pool.n, data = soil_mic, chains = chains,
        family = fam, iter = iters, control = list(adapt_delta = 0.99,
            max_treedepth = 15), cores = chains, prior = prior, file = paste("./data/processed/soil_",
            i, "_model", sep = ""), file_refit = "on_change")
}
Code
for (i in variables) {
    mod <- paste("./data/processed/soil_", i, "_model.rds", sep = "")

    # print(paste('###', i))

    # print('<br>')

    extended_summary(read.file = mod, highlight = TRUE, remove.intercepts = TRUE)
}

8.2 soil_mic.c_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50056.97 44399.96 1048612606
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.015 -0.135 0.163 1 50056.97 44399.96

8.3 soil_mic.n_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 55194.14 44394.02 620083842
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.008 -0.141 0.159 1 55194.14 44394.02

8.4 soil_mic.p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50554.16 44978.2 1705825401
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.137 -0.706 0.425 1 50554.16 44978.2

8.5 soil_mic.cn_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 53675.73 43286.97 945490801
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.005 -0.06 0.071 1 53675.73 43286.97

8.6 soil_mic.cp_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 48766.3 43533.35 758109104
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.118 -0.677 0.429 1 48766.3 43533.35

8.7 soil_mic.np_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50611.52 43737.19 623667626
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.152 -0.724 0.415 1 50611.52 43737.19

8.8 soil_AG_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50390.32 41933.96 413707254
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.683 -0.227 1.562 1 50390.32 41933.96

8.9 soil_BG_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51303.8 44547.72 1423846020
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0 -0.318 0.313 1 51303.8 44547.72

8.10 soil_XYL_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51580.4 43697.72 250356946
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.201 -0.424 0.019 1 51580.4 43697.72

8.11 soil_CEL_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 54480.45 45568.53 1495070855
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.271 -0.539 -0.004 1 54480.45 45568.53

8.12 soil_NAG_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52309.59 45689.58 157324855
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.059 -0.5 0.38 1 52309.59 45689.58

8.13 soil_LAP_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50427.18 43807.01 61789085
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.061 -0.123 0.241 1 50427.18 43807.01

8.14 soil_MUP_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 48769.08 42562.98 1487964286
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.025 -0.212 0.16 1 48769.08 42562.98

8.15 soil_BIS_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 53007.32 43862.13 1854109569
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.027 -0.16 0.213 1 53007.32 43862.13

8.16 soil_S_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 53001.26 44602.74 1300695161
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.442 0.184 0.699 1 53001.26 44602.74

8.17 soil_BG.NAG_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52333.81 44087.55 1640455467
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.066 -0.29 0.418 1 52333.81 44087.55

8.18 soil_BG.MUP_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 54354.84 43218.54 451859965
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.007 -0.257 0.27 1 54354.84 43218.54

8.19 soil_NAG.MUP_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 49937.27 43895.43 479400828
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.039 -0.371 0.291 1 49937.27 43895.43

8.20 soil_BG.S_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 53770.81 45621.45 1321964644
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.505 -0.783 -0.23 1 53770.81 45621.45

8.21 soil_NAG.S_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 53435.49 44457.67 1482520037
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.57 -0.899 -0.243 1 53435.49 44457.67

8.22 soil_MUP.S_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50998.96 44714.77 1502704492
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.478 -0.648 -0.31 1 50998.96 44714.77

8.23 soil_ph.h2o_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51867.18 45151.44 795850558
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.018 -0.019 0.054 1 51867.18 45151.44

8.24 soil_ph.cacl2_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51815.37 45301.38 1401049143
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.02 -0.012 0.051 1 51815.37 45301.38

8.25 soil_tc.g.kg.18_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52230.53 45318.31 7447136
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.053 -0.153 0.044 1 52230.53 45318.31

8.26 soil_tn.g.kg.18_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52556.95 45569.59 1146528163
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.038 -0.138 0.062 1 52556.95 45569.59

8.27 soil_tp.g.kg.18_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 49894.08 45025.61 1168252258
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.065 -0.193 0.319 1 49894.08 45025.61

8.28 soil_CN_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51520.78 45357.64 1322327565
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.013 -0.061 0.035 1 51520.78 45357.64

8.29 soil_CP_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 48680.27 41289.78 101726671
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.104 -0.374 0.163 1 48680.27 41289.78

8.30 soil_NP_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 48846.28 43402.47 1270710134
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.088 -0.365 0.186 1 48846.28 43402.47

8.31 soil_k2so4.C_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 53927.69 45763.14 1070220198
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.051 -0.142 0.041 1 53927.69 45763.14

8.32 soil_nitrate.2017_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50337.29 43223.91 359163032
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.195 -0.487 0.096 1 50337.29 43223.91

8.33 soil_resin.p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 48893.93 41454.89 876971613
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.069 -1.056 1.159 1 48893.93 41454.89

8.34 soil_ox.Al_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 49141.2 42952.56 1320258032
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.06 -0.082 0.201 1 49141.2 42952.56

8.35 soil_ox.Fe_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 53613.61 43687.69 836977121
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.055 -0.155 0.262 1 53613.61 43687.69

8.36 soil_Al_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 53687.01 45391.43 1520224625
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.084 -0.228 0.058 1 53687.01 45391.43

8.37 soil_Ca_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50876.02 43350.54 2049339314
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.092 -0.418 0.6 1 50876.02 43350.54

8.38 soil_Fe_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 47853.59 43033.11 648824471
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.182 -0.609 0.239 1 47853.59 43033.11

8.39 soil_K_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 53940.4 45930.04 945628376
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.056 -0.152 0.264 1 53940.4 45930.04

8.40 soil_Mg_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51519.4 43660.18 1413138599
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.215 -0.059 0.488 1 51519.4 43660.18

8.41 soil_Mn_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52450.84 46752.57 1222938933
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.327 -0.724 0.068 1 52450.84 46752.57

8.42 soil_Na_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 48319.6 42886.46 504747857
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.012 -0.858 0.809 1 48319.6 42886.46

8.43 soil_TEB_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50297.83 43834.86 221157550
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.11 -0.239 0.46 1 50297.83 43834.86

8.44 soil_ECEC_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 55238.75 43657.61 1318796507
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.028 -0.164 0.107 1 55238.75 43657.61

8.45 soil_BS_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52846.25 44558.75 842999925
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n 0.204 -0.171 0.58 1 52846.25 44558.75

8.46 soil_Al.sat_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.n beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52103.51 43553.15 28613706
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.nno.n -0.169 -0.54 0.204 1 52103.51 43553.15

8.47 P

Code
for (i in variables) {
    soil_mic$var <- soil_mic[, i]
    gg <- ggplot(soil_mic, aes(x = treat.pool.p, y = var)) + geom_boxplot() +
        geom_jitter() + labs(y = i, x = "N treatment") + theme_classic(base_size = 18)

    print(gg)
}

Code
soil_mic$var <- NULL

prior <- c(prior(normal(0, 10), "b"), prior(normal(0, 50), "Intercept"))

for (i in variables) {
    soil_mic$var <- soil_mic[, i]

    fam <- Gamma(link = "log")

    if (i %in% c("BS", "Al.sat"))
        fam <- Beta(link = "logit") else soil_mic$var <- soil_mic$var + min(abs(soil_mic$var)) + 1e-04

    co2_output_n <- brm(var ~ treat.pool.p, data = soil_mic, chains = chains,
        family = fam, iter = iters, control = list(adapt_delta = 0.99,
            max_treedepth = 15), cores = chains, prior = prior, file = paste("./data/processed/soil_",
            i, "_p_model", sep = ""), file_refit = "on_change")
}
Code
for (i in variables) {

    # print(paste('###', i)) print('<br>')

    mod <- paste("./data/processed/soil_", i, "_p_model.rds", sep = "")

    extended_summary(read.file = mod, highlight = TRUE, remove.intercepts = TRUE)
}

8.48 soil_mic.c_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52815.96 44643.1 1410388778
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.008 -0.082 0.097 1 52815.96 44643.1

8.49 soil_mic.n_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52794.68 46822.58 2133030045
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.022 -0.065 0.11 1 52794.68 46822.58

8.50 soil_mic.p_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 47771.71 42911.08 569771158
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.536 0.114 0.953 1 47771.71 42911.08

8.51 soil_mic.cn_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52339.14 44798.78 1824816502
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.012 -0.054 0.03 1 52339.14 44798.78

8.52 soil_mic.cp_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50338.83 44815.98 504408909
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.17 -0.597 0.249 1 50338.83 44815.98

8.53 soil_mic.np_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52444.94 44483.51 1166263785
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.129 -0.576 0.315 1 52444.94 44483.51

8.54 soil_AG_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50973.55 44146.78 1888031748
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.27 -0.606 1.132 1 50973.55 44146.78

8.55 soil_BG_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52216.02 44513.83 2015288702
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.163 -0.355 0.027 1 52216.02 44513.83

8.56 soil_XYL_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51926.47 45063.27 1016965150
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.032 -0.186 0.122 1 51926.47 45063.27

8.57 soil_CEL_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 53118.19 43648.91 129713067
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.051 -0.145 0.246 1 53118.19 43648.91

8.58 soil_NAG_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 53297.85 43143.25 559935875
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.065 -0.392 0.259 1 53297.85 43143.25

8.59 soil_LAP_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 53290.02 45022.28 1471666862
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.013 -0.124 0.097 1 53290.02 45022.28

8.60 soil_MUP_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51326.73 41936.9 253537481
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.05 -0.161 0.062 1 51326.73 41936.9

8.61 soil_BIS_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52035.94 45117.31 1298056656
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.074 -0.184 0.036 1 52035.94 45117.31

8.62 soil_S_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51264.29 43462.54 422033495
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.026 -0.242 0.187 1 51264.29 43462.54

8.63 soil_BG.NAG_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50065.21 43618.49 1820284231
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.109 -0.346 0.128 1 50065.21 43618.49

8.64 soil_BG.MUP_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51616.77 42053.02 208349016
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.097 -0.266 0.07 1 51616.77 42053.02

8.65 soil_NAG.MUP_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 53679.24 46089.57 256697027
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.003 -0.222 0.227 1 53679.24 46089.57

8.66 soil_BG.S_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52979.52 43800.39 458011613
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.099 -0.332 0.134 1 52979.52 43800.39

8.67 soil_NAG.S_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51050.87 43038.25 1115811220
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.006 -0.29 0.275 1 51050.87 43038.25

8.68 soil_MUP.S_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51580.23 43167.48 424644961
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.036 -0.211 0.14 1 51580.23 43167.48

8.69 soil_ph.h2o_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51867.32 46079.65 449266213
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.012 -0.019 0.042 1 51867.32 46079.65

8.70 soil_ph.cacl2_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51764.06 43692.87 808782001
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.003 -0.027 0.032 1 51764.06 43692.87

8.71 soil_tc.g.kg.18_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 53329.79 44767.88 557080911
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.006 -0.054 0.066 1 53329.79 44767.88

8.72 soil_tn.g.kg.18_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51130.27 44575.58 909676702
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.005 -0.056 0.066 1 51130.27 44575.58

8.73 soil_tp.g.kg.18_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 55070.58 44592.65 1517616170
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.112 -0.042 0.265 1 55070.58 44592.65

8.74 soil_CN_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 53154.82 41924.48 980893121
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0 -0.035 0.035 1 53154.82 41924.48

8.75 soil_CP_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 49077.93 43640.13 1877978843
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.112 -0.279 0.055 1 49077.93 43640.13

8.76 soil_NP_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 49230.4 42944.99 481022454
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.114 -0.286 0.059 1 49230.4 42944.99

8.77 soil_k2so4.C_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 49114.65 43826.35 578047706
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.002 -0.056 0.06 1 49114.65 43826.35

8.78 soil_nitrate.2017_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 54872.61 44939.65 1019934469
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.149 -0.358 0.056 1 54872.61 44939.65

8.79 soil_resin.p_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50658.03 41551.49 2007192121
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 1.464 0.607 2.299 1 50658.03 41551.49

8.80 soil_ox.Al_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 55632.56 45127.43 1682132424
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.006 -0.079 0.092 1 55632.56 45127.43

8.81 soil_ox.Fe_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51232.56 44039.44 443025579
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.029 -0.1 0.158 1 51232.56 44039.44

8.82 soil_Al_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50111.19 42882.31 955637997
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.052 -0.14 0.037 1 50111.19 42882.31

8.83 soil_Ca_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52371.71 45637.49 2096082951
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.568 0.282 0.856 1 52371.71 45637.49

8.84 soil_Fe_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51719.29 44508.7 1213893636
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.074 -0.22 0.367 1 51719.29 44508.7

8.85 soil_K_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51844.09 43639.53 678770394
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.029 -0.103 0.16 1 51844.09 43639.53

8.86 soil_Mg_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52095.78 45142.31 1794541253
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.033 -0.156 0.223 1 52095.78 45142.31

8.87 soil_Mn_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 51929.86 44205.72 1123578253
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.067 -0.247 0.378 1 51929.86 44205.72

8.88 soil_Na_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 47703.16 41307.24 2114117209
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.11 -0.947 0.724 1 47703.16 41307.24

8.89 soil_TEB_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50372.42 46346.36 95652643
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.304 0.112 0.496 1 50372.42 46346.36

8.90 soil_ECEC_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 48552.37 44552.81 580602680
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.044 -0.033 0.122 1 48552.37 44552.81

8.91 soil_BS_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 52387.68 43695.21 1042335918
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp 0.558 0.255 0.859 1 52387.68 43695.21

8.92 soil_Al.sat_p_model

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 var ~ treat.pool.p beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 54009.19 47074.01 656346342
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_treat.pool.pp -0.53 -0.825 -0.236 1 54009.19 47074.01

8.93 BIS by Nitrate rate

Code
soil_mic$Nrat <- soil_mic$nitrate.2017/soil_mic$resin.p

ggplot(soil_mic, aes(x = Nrat, y = BIS)) + geom_point() + geom_smooth(method = "lm") +
    theme_classic(base_size = 18)

Code
BIS_Nitrate_mod <- brm(BIS ~ Nrat, data = soil_mic, chains = chains,
    family = Gamma(link = "log"), iter = iters, control = list(adapt_delta = 0.99,
        max_treedepth = 15), cores = chains, prior = prior, file = "./data/processed/soil_BIS_by_Nitrate_rate_model",
    file_refit = "on_change")

extended_summary(fit = BIS_Nitrate_mod, highlight = TRUE, remove.intercepts = TRUE)

8.94 BIS_Nitrate_mod

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 BIS ~ Nrat gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 50530.8 42963.66 1164919495
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_Nrat 0.017 0 0.035 1 50530.8 42963.66

9 CO2 data

9.1 All sampling events

Code
co2mean <- read.csv("./data/raw/CO2_dat_mean.csv")

co2mean$date4 <- as.Date(co2mean$date4)
co2mean$day <- co2mean$date4 - min(co2mean$date4)

exp_flux_pool_mod <- brm(exp.flux ~ pool.n * day + (1 | id.plot/collar.generic),
    data = co2mean, chains = chains, family = student(), iter = iters,
    control = list(adapt_delta = 0.99, max_treedepth = 15), cores = chains,
    prior = prior, file = "./data/processed/exp_flux_pool_n_model",
    file_refit = "on_change")

Running /usr/lib/R/bin/R CMD SHLIB foo.c using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ gcc -I”/usr/share/R/include” -DNDEBUG -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/Rcpp/include/” -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/RcppEigen/include/” -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/RcppEigen/include/unsupported” -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/BH/include” -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/StanHeaders/include/src/” -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/StanHeaders/include/” -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/RcppParallel/include/” -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/rstan/include” -DEIGEN_NO_DEBUG -DBOOST_DISABLE_ASSERTS -DBOOST_PENDING_INTEGER_LOG2_HPP -DSTAN_THREADS -DUSE_STANC3 -DSTRICT_R_HEADERS -DBOOST_PHOENIX_NO_VARIADIC_EXPRESSION -D_HAS_AUTO_PTR_ETC=0 -include ‘/home/m/R/x86_64-pc-linux-gnu-library/4.5/StanHeaders/include/stan/math/prim/fun/Eigen.hpp’ -D_REENTRANT -DRCPP_PARALLEL_USE_TBB=1 -fpic -g -O2 -ffile-prefix-map=/build/r-base-BPEaBJ/r-base-4.5.0=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -Wno-format-security -c foo.c -o foo.o In file included from /home/m/R/x86_64-pc-linux-gnu-library/4.5/RcppEigen/include/Eigen/Core:19, from /home/m/R/x86_64-pc-linux-gnu-library/4.5/RcppEigen/include/Eigen/Dense:1, from /home/m/R/x86_64-pc-linux-gnu-library/4.5/StanHeaders/include/stan/math/prim/fun/Eigen.hpp:22, from : /home/m/R/x86_64-pc-linux-gnu-library/4.5/RcppEigen/include/Eigen/src/Core/util/Macros.h:679:10: fatal error: cmath: No such file or directory 679 | #include | ^~~~~~~ compilation terminated. make: *** [/usr/lib/R/etc/Makeconf:202: foo.o] Error 1

Code
extended_summary(fit = exp_flux_pool_mod, highlight = TRUE, remove.intercepts = TRUE)

9.2 exp_flux_pool_mod

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 exp.flux ~ pool.n * day + (1 | id.plot/collar.generic) student (identity) b-normal(0, 10) Intercept-normal(0, 50) nu-gamma(2, 0.1) sd-student_t(3, 0, 2.5) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 33000.07 43714.7 1386974416
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_pool.nnoN -0.839 -1.519 -0.165 1 33000.07 43714.70
b_day -0.009 -0.012 -0.006 1 87398.98 60692.18
b_pool.nnoN:day 0.006 0.002 0.009 1 90354.29 61147.64

Code
exp_flux_pool_p_mod <- brm(exp.flux ~ pool.p * day + (1 | id.plot/collar.generic),
    data = co2mean, chains = chains, family = student(), iter = iters,
    control = list(adapt_delta = 0.99, max_treedepth = 15), cores = chains,
    prior = prior, file = "./data/processed/exp_flux_pool_p_model",
    file_refit = "on_change")

Running /usr/lib/R/bin/R CMD SHLIB foo.c using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’ gcc -I”/usr/share/R/include” -DNDEBUG -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/Rcpp/include/” -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/RcppEigen/include/” -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/RcppEigen/include/unsupported” -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/BH/include” -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/StanHeaders/include/src/” -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/StanHeaders/include/” -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/RcppParallel/include/” -I”/home/m/R/x86_64-pc-linux-gnu-library/4.5/rstan/include” -DEIGEN_NO_DEBUG -DBOOST_DISABLE_ASSERTS -DBOOST_PENDING_INTEGER_LOG2_HPP -DSTAN_THREADS -DUSE_STANC3 -DSTRICT_R_HEADERS -DBOOST_PHOENIX_NO_VARIADIC_EXPRESSION -D_HAS_AUTO_PTR_ETC=0 -include ‘/home/m/R/x86_64-pc-linux-gnu-library/4.5/StanHeaders/include/stan/math/prim/fun/Eigen.hpp’ -D_REENTRANT -DRCPP_PARALLEL_USE_TBB=1 -fpic -g -O2 -ffile-prefix-map=/build/r-base-BPEaBJ/r-base-4.5.0=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -Wno-format-security -c foo.c -o foo.o In file included from /home/m/R/x86_64-pc-linux-gnu-library/4.5/RcppEigen/include/Eigen/Core:19, from /home/m/R/x86_64-pc-linux-gnu-library/4.5/RcppEigen/include/Eigen/Dense:1, from /home/m/R/x86_64-pc-linux-gnu-library/4.5/StanHeaders/include/stan/math/prim/fun/Eigen.hpp:22, from : /home/m/R/x86_64-pc-linux-gnu-library/4.5/RcppEigen/include/Eigen/src/Core/util/Macros.h:679:10: fatal error: cmath: No such file or directory 679 | #include | ^~~~~~~ compilation terminated. make: *** [/usr/lib/R/etc/Makeconf:202: foo.o] Error 1

Code
extended_summary(fit = exp_flux_pool_p_mod, highlight = TRUE, remove.intercepts = TRUE)

9.3 exp_flux_pool_p_mod

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 exp.flux ~ pool.p * day + (1 | id.plot/collar.generic) student (identity) b-normal(0, 10) Intercept-normal(0, 50) nu-gamma(2, 0.1) sd-student_t(3, 0, 2.5) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 36045.7 47450.92 1801513762
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_pool.pP 0.176 -0.536 0.899 1 36045.70 47450.92
b_day -0.006 -0.008 -0.003 1 99278.34 61672.84
b_pool.pP:day 0.001 -0.002 0.005 1 94342.06 59599.81

9.4 Only first and last sampling events

Code
co2mean <- read.csv("./data/raw/CO2_dat_mean.csv")

co2mean$date4 <- as.Date(co2mean$date4)
co2mean$day <- co2mean$date4 - min(co2mean$date4)

sub_co2mean <- co2mean[co2mean$day %in% c(0, max(co2mean$day)), ]

sub_co2mean$day_f <- ifelse(sub_co2mean$day == 0, "first", "last")

exp_flux_pool_fl_mod <- brm(exp.flux ~ pool.n * day_f + (1 | id.plot/collar.generic),
    data = sub_co2mean, chains = chains, family = Gamma(link = "log"),
    iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
    cores = chains, prior = prior, file = "./data/processed/exp_flux_pool_n_first_last_model",
    file_refit = "on_change")

extended_summary(fit = exp_flux_pool_fl_mod, highlight = TRUE, remove.intercepts = TRUE)

9.5 exp_flux_pool_fl_mod

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 exp.flux ~ pool.n * day_f + (1 | id.plot/collar.generic) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 2.5) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 41481.73 52368.68 793319142
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_pool.nnoN -0.083 -0.241 0.074 1 41481.73 52368.68
b_day_flast -0.184 -0.285 -0.084 1 66962.94 61807.41
b_pool.nnoN:day_flast 0.067 -0.069 0.201 1 64565.91 61471.79

Code
exp_flux_pool_p_fl_mod <- brm(exp.flux ~ pool.p * day_f + (1 | id.plot/collar.generic),
    data = sub_co2mean, chains = chains, family = Gamma(link = "log"),
    iter = iters, control = list(adapt_delta = 0.99, max_treedepth = 15),
    cores = chains, prior = prior, file = "./data/processed/exp_flux_pool_p_first_last_model",
    file_refit = "on_change")

extended_summary(fit = exp_flux_pool_p_fl_mod, highlight = TRUE, remove.intercepts = TRUE)

9.6 exp_flux_pool_p_fl_mod

formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 exp.flux ~ pool.p * day_f + (1 | id.plot/collar.generic) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 2.5) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 35314.55 47345.04 1209038702
Estimate l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
b_pool.pP 0.017 -0.142 0.175 1 35314.55 47345.04
b_day_flast -0.154 -0.254 -0.054 1 57512.82 57924.25
b_pool.pP:day_flast 0.011 -0.125 0.147 1 54256.51 55731.36

10 Combined model diagnostics

Code
check_rds_fits(path = "./data/processed", html = TRUE)
fit formula family priors iterations chains thinning warmup diverg_transitions rhats > 1.05 min_bulk_ESS min_tail_ESS seed
1 cn_model.rds cn.mol.kg ~ treat * days.sc + (1 | plot.f) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 21056 29398 1143833718
2 CN_pooled_model.rds CN ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 30321 38267 675162061
3 cn_pooled_model2.rds cn.mol.kg ~ pool.n * days.sc + pool.p * days.sc + (1 | plot.f) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 25964 38212 161678448
4 co2_output_n_model.rds annual.flux ~ pool.n gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 29286 36219 306100029
5 co2_output_p_model.rds annual.flux ~ pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 29399 38777 1833764711
6 cp_model.rds cp.mol.kg ~ treat * days.sc + (1 | plot.f) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 106.3) 40000 4 1 20000 0 (0%) 0 7445 6323 1789568456
7 cp_pooled_model.rds cp.mol.kg ~ pool.n * days.sc + pool.p * days.sc + (1 | plot.f) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 106.3) 40000 4 1 20000 0 (0%) 0 7246 7047 1583776905
8 CP.no.outlier_pooled_model.rds CP.no.outlier ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 10.7) 40000 4 1 20000 0 (0%) 0 29778 39107 257447415
9 exp_flux_pool_n_first_last_model.rds exp.flux ~ pool.n * day_f + (1 | id.plot/collar.generic) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 2.5) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 10294 24738 793319142
10 exp_flux_pool_n_model.rds exp.flux ~ pool.n * day + (1 | id.plot/collar.generic) student (identity) b-normal(0, 10) Intercept-normal(0, 50) nu-gamma(2, 0.1) sd-student_t(3, 0, 2.5) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 6660 18983 1386974416
11 exp_flux_pool_p_first_last_model.rds exp.flux ~ pool.p * day_f + (1 | id.plot/collar.generic) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 2.5) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 8835 19530 1209038702
12 exp_flux_pool_p_model.rds exp.flux ~ pool.p * day + (1 | id.plot/collar.generic) student (identity) b-normal(0, 10) Intercept-normal(0, 50) nu-gamma(2, 0.1) sd-student_t(3, 0, 2.5) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 6727 19294 1801513762
13 k_litter_model.rds k.sil.litt ~ Treatment + (1 | quadrat) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 8 (1e-04%) 0 20484 26650 1990407839
14 k_litter_n_no_n_model.rds k.sil.litt ~ n.treat + (1 | quadrat) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) shape-gamma(0.01, 0.01) 40000 4 1 20000 15 (0.0001875%) 0 20084 20797 1667737665
15 k_litter_p_nop_model.rds k.sil.litt ~ p.treat + (1 | quadrat) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 22 (0.000275%) 0 19481 19365 803160143
16 k_litter_pooled_model.rds k.sil.litt ~ pool.p + pool.n + (1 | quadrat) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) shape-gamma(0.01, 0.01) 40000 4 1 20000 33 (0.0004125%) 0 15776 12192 913293624
17 k_wood_n_no_n_model.rds k.sil.wood ~ n.treat + (1 | quadrat) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) shape-gamma(0.01, 0.01) 40000 4 1 20000 17 (0.0002125%) 0 18256 21244 1393075606
18 k_wood_p_no_p_model.rds k.sil.wood ~ p.treat + (1 | quadrat) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) shape-gamma(0.01, 0.01) 40000 4 1 20000 10 (0.000125%) 0 20314 25040 1645430139
19 k_wood_pooled_model.rds sil.k.wood ~ pool.p + pool.n + (1 | quadrat) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 19 (0.0002375%) 0 18913 27175 977910876
20 k_wood_treatment_model.rds k.sil.wood ~ Treatment + (1 | quadrat) gamma (log) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) shape-gamma(0.01, 0.01) 80000 4 1 40000 65 (0.00040625%) 0 37556 25286 855747887
21 litter_input_n_model.rds cr.total ~ n.pooled gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 27933 34717 26169603
22 litter_input_p_model.rds cr.total ~ p.pooled gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 27654 36152 603178782
23 litter.mg.C.ha.yr_pooled_model.rds litter.mg.C.ha.yr ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 29444 38067 308107221
24 litter.n.content.rem_model.rds litter.n.content.prop.initial ~ treat * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 11049 24371 1667653932
25 litter.n.perc_model.rds prop.n ~ treat * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 27802 36645 129583210
26 litter.p.content.perc.initial_pooled_model.rds litter.p.content.prop.initial ~ pool.n * days.sc + pool.p * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 15873 21732 43891969
27 litter.p.content.rem_model.rds litter.p.content.prop.initial ~ treat * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 13259 17304 915208762
28 litter.p.perc_model.rds prop.p ~ pool.n * days.sc + pool.p * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 20) 40000 4 1 20000 0 (0%) 0 34825 36680 838385675
29 n_content_by_pooled_model.rds litter.n.content.prop.initial ~ pool.n * days.sc + pool.p * days.sc + (1 | plot) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 11468 21590 1616033078
30 n_per_by_leave_rem_model.rds prop.n ~ prom.hoja.reman.sc * treat + (1 | plot) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 20) 40000 4 1 20000 0 (0%) 0 27747 36872 1419862621
31 n_perc_by_pooled_model.rds prop.n ~ pool.n * days.sc + pool.p * days.sc + (1 | plot) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 28534 41884 915417491
32 np_model.rds np.mol.kg ~ treat * days.sc + (1 | plot.f) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 5.3) 40000 4 1 20000 0 (0%) 0 21703 35240 579910719
33 np_pooled_model.rds np.mol.kg ~ pool.n * days.sc + pool.p * days.sc + (1 | plot.f) gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sd-student_t(3, 0, 20) sigma-student_t(3, 0, 5.3) 40000 4 1 20000 0 (0%) 0 21942 32981 676130983
34 NP.no.outlier_pooled_model.rds NP.no.outlier ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 27893 35607 2143149156
35 p_per_by_leave_rem_model.rds prop.p ~ prom.hoja.reman.sc * treat + (1 | plot) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 20) 40000 4 1 20000 0 (0%) 0 32890 39496 168759349
36 ph.h2o_pooled_model.rds ph.h2o ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 28904 39052 1664004957
37 prop.litter.rem_model.rds prop.wood.rem ~ trat * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 20) 20000 4 1 10000 0 (0%) 0 11934 17029 1828689869
38 prop.litter.rem_pooled_model.rds prop.litter.rem ~ pool.n * days.sc + pool.p * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 20) 40000 4 1 20000 0 (0%) 0 27021 36431 1782064894
39 prop.wood.rem_model.rds prop.wood.rem ~ trat * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 24920 35876 759730670
40 prop.wood.rem_pooled_model.rds prop.wood.rem ~ pool.n * days.sc + pool.p * days.sc + (1 | plot.f) beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) sd-student_t(3, 0, 20) 40000 4 1 20000 0 (0%) 0 25312 36334 28695825
41 resin.p_pooled_model.rds resin.p ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 30.9) 40000 4 1 20000 0 (0%) 0 33460 45980 1531674567
42 resin.p.no.outlier_pooled_model.rds resin.p.no.outlier ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 27) 40000 4 1 20000 0 (0%) 0 31940 41129 2096696539
43 soil_AG_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29525 36818 413707254
44 soil_AG_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30025 37761 1888031748
45 soil_Al_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29808 36724 1520224625
46 soil_Al_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28622 37554 955637997
47 soil_Al.sat_model.rds var ~ treat.pool.n beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29441 38080 28613706
48 soil_Al.sat_p_model.rds var ~ treat.pool.p beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30409 38045 656346342
49 soil_BG_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29120 38568 1423846020
50 soil_BG_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29711 37361 2015288702
51 soil_BG.MUP_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29376 38290 451859965
52 soil_BG.MUP_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28854 35992 208349016
53 soil_BG.NAG_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29385 37766 1640455467
54 soil_BG.NAG_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28726 38258 1820284231
55 soil_BG.S_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30480 37610 1321964644
56 soil_BG.S_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29644 38046 458011613
57 soil_BIS_by_Nitrate_rate_model.rds BIS ~ Nrat gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29949 38069 1164919495
58 soil_BIS_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28874 37133 1854109569
59 soil_BIS_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29223 35552 1298056656
60 soil_BS_model.rds var ~ treat.pool.n beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29932 38924 842999925
61 soil_BS_p_model.rds var ~ treat.pool.p beta (logit) b-normal(0, 10) Intercept-normal(0, 50) phi-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30266 37000 1042335918
62 soil_Ca_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30666 37929 2049339314
63 soil_Ca_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28802 38600 2096082951
64 soil_CEL_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30598 36053 1495070855
65 soil_CEL_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28419 35678 129713067
66 soil_CN_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28714 37750 1322327565
67 soil_CN_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28666 37146 980893121
68 soil_CP_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28973 36489 101726671
69 soil_CP_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29487 37362 1877978843
70 soil_ECEC_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29857 35530 1318796507
71 soil_ECEC_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29688 37011 580602680
72 soil_Fe_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29182 37215 648824471
73 soil_Fe_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28815 35498 1213893636
74 soil_K_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29740 36260 945628376
75 soil_K_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28739 37225 678770394
76 soil_k2so4.C_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29316 37526 1070220198
77 soil_k2so4.C_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28919 37492 578047706
78 soil_LAP_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29020 36260 61789085
79 soil_LAP_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29211 37723 1471666862
80 soil_Mg_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28430 35458 1413138599
81 soil_Mg_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30189 38131 1794541253
82 soil_mic.c_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29726 38442 1048612606
83 soil_mic.c_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29534 38510 1410388778
84 soil_mic.cn_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30052 37425 945490801
85 soil_mic.cn_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29105 37961 1824816502
86 soil_mic.cp_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29327 38116 758109104
87 soil_mic.cp_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30850 38635 504408909
88 soil_mic.n_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29159 38617 620083842
89 soil_mic.n_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29908 37760 2133030045
90 soil_mic.np_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30291 38743 623667626
91 soil_mic.np_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29826 36889 1166263785
92 soil_mic.p_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30210 37203 1705825401
93 soil_mic.p_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29978 39417 569771158
94 soil_Mn_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 31016 39420 1222938933
95 soil_Mn_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29933 38473 1123578253
96 soil_MUP_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30075 36456 1487964286
97 soil_MUP_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28785 36889 253537481
98 soil_MUP.S_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30129 37840 1502704492
99 soil_MUP.S_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28168 36530 424644961
100 soil_Na_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30455 36192 504747857
101 soil_Na_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 31007 38133 2114117209
102 soil_NAG_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29040 38968 157324855
103 soil_NAG_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29542 36999 559935875
104 soil_NAG.MUP_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30190 36686 479400828
105 soil_NAG.MUP_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29694 36241 256697027
106 soil_NAG.S_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29222 37742 1482520037
107 soil_NAG.S_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28629 37036 1115811220
108 soil_nitrate.2017_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28974 38876 359163032
109 soil_nitrate.2017_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29368 37214 1019934469
110 soil_NP_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29165 38048 1270710134
111 soil_NP_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28070 34311 481022454
112 soil_ox.Al_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28666 38300 1320258032
113 soil_ox.Al_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29299 37531 1682132424
114 soil_ox.Fe_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29963 37742 836977121
115 soil_ox.Fe_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29540 37662 443025579
116 soil_ph.cacl2_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30031 36457 1401049143
117 soil_ph.cacl2_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28997 36056 808782001
118 soil_ph.h2o_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30325 38491 795850558
119 soil_ph.h2o_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30466 37967 449266213
120 soil_resin.p_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29537 36683 876971613
121 soil_resin.p_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29233 36521 2007192121
122 soil_S_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29649 37015 1300695161
123 soil_S_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29255 37268 422033495
124 soil_tc.g.kg.18_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29106 37710 7447136
125 soil_tc.g.kg.18_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30219 36218 557080911
126 soil_TEB_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30012 36939 221157550
127 soil_TEB_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28848 37219 95652643
128 soil_tn.g.kg.18_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29156 37302 1146528163
129 soil_tn.g.kg.18_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29028 37188 909676702
130 soil_tp.g.kg.18_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 28718 37097 1168252258
131 soil_tp.g.kg.18_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29052 38229 1517616170
132 soil_XYL_model.rds var ~ treat.pool.n gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 29679 36636 250356946
133 soil_XYL_p_model.rds var ~ treat.pool.p gamma (log) b-normal(0, 10) Intercept-normal(0, 50) shape-gamma(0.01, 0.01) 40000 4 1 20000 0 (0%) 0 30590 37416 1016965150
134 tc.g.kg.18_pooled_model.rds tc.g.kg.18 ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 4.5) 40000 4 1 20000 0 (0%) 0 31016 39122 1374186359
135 tn.g.kg.18_pooled_model.rds tn.g.kg.18 ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 2.5) 40000 4 1 20000 0 (0%) 0 29686 37369 772312416
136 tp.g.kg.18_pooled_model.rds tp.g.kg.18 ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 565.6) 40000 4 1 20000 0 (0%) 0 35762 46463 532966702
137 tp.g.kg.18.no.outlier_pooled_model.rds tp.g.kg.18.no.outlier ~ pool.n + pool.p gaussian (identity) b-normal(0, 10) Intercept-normal(0, 50) sigma-student_t(3, 0, 478.9) 40000 4 1 20000 0 (0%) 0 36458 47868 1716433649

 

Session information

R version 4.5.0 (2025-04-11)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=es_CR.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=es_CR.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=es_CR.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=es_CR.UTF-8 LC_IDENTIFICATION=C       

time zone: America/Costa_Rica
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] brmsish_1.0.0     ggdist_3.3.3      brms_2.22.0       Rcpp_1.1.0       
 [5] viridis_0.6.5     viridisLite_0.4.2 ggridges_0.5.6    posterior_1.6.1  
 [9] ggrepel_0.9.6     cowplot_1.1.3     tidybayes_3.0.7   ggplot2_3.5.2    
[13] readxl_1.4.5      knitr_1.50        kableExtra_1.4.0 

loaded via a namespace (and not attached):
 [1] pbapply_1.7-4        gridExtra_2.3        formatR_1.14        
 [4] remotes_2.5.0        inline_0.3.21        sandwich_3.1-1      
 [7] rlang_1.1.6          magrittr_2.0.3       multcomp_1.4-28     
[10] matrixStats_1.5.0    compiler_4.5.0       mgcv_1.9-3          
[13] loo_2.8.0            systemfonts_1.2.3    callr_3.7.6         
[16] vctrs_0.6.5          reshape2_1.4.4       stringr_1.5.1       
[19] pkgconfig_2.0.3      arrayhelpers_1.1-0   crayon_1.5.3        
[22] fastmap_1.2.0        backports_1.5.0      labeling_0.4.3      
[25] rmarkdown_2.29       ps_1.9.1             ragg_1.4.0          
[28] purrr_1.0.4          xfun_0.52            jsonlite_2.0.0      
[31] gghalves_0.1.4       parallel_4.5.0       R6_2.6.1            
[34] stringi_1.8.7        RColorBrewer_1.1-3   StanHeaders_2.32.10 
[37] cellranger_1.1.0     estimability_1.5.1   rstan_2.32.7        
[40] zoo_1.8-14           bayesplot_1.12.0     Matrix_1.7-3        
[43] splines_4.5.0        tidyselect_1.2.1     rstudioapi_0.17.1   
[46] abind_1.4-8          yaml_2.3.10          codetools_0.2-20    
[49] processx_3.8.6       curl_6.4.0           pkgbuild_1.4.8      
[52] lattice_0.22-7       tibble_3.3.0         plyr_1.8.9          
[55] withr_3.0.2          bridgesampling_1.1-2 coda_0.19-4.1       
[58] evaluate_1.0.3       survival_3.8-3       sketchy_1.0.5       
[61] RcppParallel_5.1.10  xml2_1.3.8           pillar_1.11.0       
[64] tensorA_0.36.2.1     packrat_0.9.2        checkmate_2.3.2     
[67] stats4_4.5.0         distributional_0.5.0 generics_0.1.4      
[70] rstantools_2.4.0     scales_1.4.0         xtable_1.8-4        
[73] glue_1.8.0           emmeans_1.11.1       tools_4.5.0         
[76] xaringanExtra_0.8.0  mvtnorm_1.3-3        grid_4.5.0          
[79] tidyr_1.3.1          ape_5.8-1            QuickJSR_1.7.0      
[82] nlme_3.1-168         cli_3.6.5            textshaping_1.0.1   
[85] svUnit_1.0.6         svglite_2.1.3        Brobdingnag_1.2-9   
[88] dplyr_1.1.4          V8_6.0.4             gtable_0.3.6        
[91] digest_0.6.37        TH.data_1.1-3        htmlwidgets_1.6.4   
[94] farver_2.1.2         htmltools_0.5.8.1    lifecycle_1.0.4     
[97] MASS_7.3-65