在CAPM的理論之中,證券的預期報酬率與他的風險會呈現正相關,因為只有在提供足夠多的報酬時
,投資者才會願意忍受風險。理論模型的樣子為:\[R=R_F+\beta *(R_M-R_F)\]
將其畫在x,y軸座標上,會呈現正斜率的斜直線SML。也就是說,個別資產
的預期報酬與\(\beta\)值成線性關係。
當我們分別計算個別資產的\(\beta\)值與報酬率,畫在座標上的點有可能落在SML的上方或下方,落在下方的點
代表儘管承受一定風險,報酬率卻不如預期。此情況意味該資產價格高估,依照理論而言,持有者會出售手上證券
,導致價格下跌後提升預期報酬,直到符合理論值,反之亦然。
本次我想要觀察證券低於或超出理論報酬時,是否會逐漸修正,並在理論報酬上下震盪。
最後觀察當報酬值偏離理論值時,是否會因為買入或賣出增加而提升交易量。
讀取加權指數和幾檔ETF的每日資料,並且將交易日期統一。選取的資產有:
首先顯示大盤指數
index = read_csv('^TWII.csv')
etf53 = read_csv('0053.csv')
etf55 = read_csv('0055.csv')
DATE = ymd(index$Date)
index$Date = DATE
etf53$Date = DATE
etf55$Date = DATE
index %>% head(100) %>% ptable() %>% kable_styling() %>% scroll_box(height = "300px")
| Date | Open | High | Low | Close | Adj Close | Volume | Return |
|---|---|---|---|---|---|---|---|
| 2018-06-01 | 10882.68 | 10954.67 | 10876.97 | 10949.08 | 10949.08 | 2817400 | 0.0000000 |
| 2018-06-04 | 11002.15 | 11109.50 | 11002.15 | 11109.50 | 11109.50 | 2890900 | 0.0146515 |
| 2018-06-05 | 11130.03 | 11131.08 | 11054.62 | 11100.11 | 11100.11 | 3024000 | -0.0008452 |
| 2018-06-06 | 11111.14 | 11207.15 | 11111.14 | 11201.83 | 11201.83 | 3038200 | 0.0091638 |
| 2018-06-07 | 11228.64 | 11261.68 | 11188.99 | 11251.75 | 11251.75 | 3563000 | 0.0044564 |
| 2018-06-08 | 11243.59 | 11243.59 | 11122.98 | 11156.42 | 11156.42 | 2935100 | -0.0084725 |
| 2018-06-11 | 11168.99 | 11186.67 | 11118.81 | 11149.23 | 11149.23 | 2763200 | -0.0006444 |
| 2018-06-12 | 11140.02 | 11160.05 | 11088.53 | 11144.79 | 11144.79 | 3009100 | -0.0003983 |
| 2018-06-13 | 11153.20 | 11188.01 | 11119.24 | 11173.21 | 11173.21 | 3259400 | 0.0025501 |
| 2018-06-14 | 11143.04 | 11143.04 | 11013.98 | 11013.98 | 11013.98 | 3145600 | -0.0142510 |
| 2018-06-15 | 10998.20 | 11087.47 | 10981.61 | 11087.47 | 11087.47 | 3547100 | 0.0066724 |
| 2018-06-19 | 11008.77 | 11008.77 | 10904.19 | 10904.19 | 10904.19 | 3158000 | -0.0165303 |
| 2018-06-20 | 10904.80 | 10969.20 | 10842.56 | 10927.44 | 10927.44 | 3060000 | 0.0021322 |
| 2018-06-21 | 10949.85 | 10992.31 | 10941.07 | 10941.07 | 10941.07 | 2522200 | 0.0012473 |
| 2018-06-22 | 10901.25 | 10914.83 | 10828.86 | 10899.28 | 10899.28 | 2733900 | -0.0038196 |
| 2018-06-25 | 10834.07 | 10851.16 | 10786.46 | 10786.46 | 10786.46 | 2393700 | -0.0103512 |
| 2018-06-26 | 10730.90 | 10752.99 | 10651.42 | 10742.17 | 10742.17 | 2616000 | -0.0041061 |
| 2018-06-27 | 10766.88 | 10800.34 | 10701.03 | 10701.03 | 10701.03 | 2357900 | -0.0038297 |
| 2018-06-28 | 10669.42 | 10723.84 | 10633.01 | 10654.28 | 10654.28 | 2259600 | -0.0043687 |
| 2018-06-29 | 10667.64 | 10836.91 | 10667.64 | 10836.91 | 10836.91 | 2256100 | 0.0171415 |
| 2018-07-02 | 10852.17 | 10886.20 | 10777.94 | 10777.94 | 10777.94 | 2244500 | -0.0054416 |
| 2018-07-03 | 10802.88 | 10873.48 | 10707.68 | 10715.72 | 10715.72 | 2685900 | -0.0057730 |
| 2018-07-04 | 10714.25 | 10752.05 | 10680.44 | 10721.87 | 10721.87 | 2081200 | 0.0005740 |
| 2018-07-05 | 10690.91 | 10709.80 | 10585.27 | 10611.81 | 10611.81 | 2075800 | -0.0102651 |
| 2018-07-06 | 10645.66 | 10665.72 | 10523.58 | 10608.57 | 10608.57 | 2613100 | -0.0003053 |
| 2018-07-09 | 10638.90 | 10746.74 | 10638.90 | 10720.28 | 10720.28 | 2329300 | 0.0105302 |
| 2018-07-10 | 10737.62 | 10776.47 | 10728.24 | 10756.89 | 10756.89 | 2427500 | 0.0034150 |
| 2018-07-11 | 10693.64 | 10693.64 | 10635.03 | 10676.84 | 10676.84 | 2140700 | -0.0074417 |
| 2018-07-12 | 10644.91 | 10752.57 | 10643.65 | 10738.38 | 10738.38 | 2053500 | 0.0057639 |
| 2018-07-13 | 10769.70 | 10864.54 | 10769.70 | 10864.54 | 10864.54 | 2134000 | 0.0117485 |
| 2018-07-16 | 10867.97 | 10890.20 | 10817.45 | 10817.45 | 10817.45 | 1889400 | -0.0043343 |
| 2018-07-17 | 10802.75 | 10818.84 | 10758.83 | 10778.99 | 10778.99 | 2029100 | -0.0035554 |
| 2018-07-18 | 10811.43 | 10872.74 | 10788.37 | 10842.46 | 10842.46 | 2388600 | 0.0058883 |
| 2018-07-19 | 10868.56 | 10896.25 | 10826.14 | 10835.38 | 10835.38 | 2052700 | -0.0006530 |
| 2018-07-20 | 10932.51 | 10963.95 | 10893.73 | 10932.11 | 10932.11 | 2245800 | 0.0089273 |
| 2018-07-23 | 10929.46 | 10984.84 | 10901.75 | 10946.89 | 10946.89 | 2153400 | 0.0013519 |
| 2018-07-24 | 10937.77 | 10995.39 | 10917.61 | 10995.39 | 10995.39 | 2213600 | 0.0044305 |
| 2018-07-25 | 10957.66 | 10992.29 | 10956.00 | 10965.79 | 10965.79 | 1970700 | -0.0026920 |
| 2018-07-26 | 10969.35 | 11018.19 | 10966.33 | 11010.61 | 11010.61 | 2336000 | 0.0040873 |
| 2018-07-27 | 11023.07 | 11075.78 | 11009.16 | 11075.78 | 11075.78 | 2230900 | 0.0059188 |
| 2018-07-30 | 11072.70 | 11080.41 | 11001.15 | 11033.54 | 11033.54 | 2141500 | -0.0038137 |
| 2018-07-31 | 10997.73 | 11057.51 | 10976.46 | 11057.51 | 11057.51 | 2513500 | 0.0021724 |
| 2018-08-01 | 11062.36 | 11100.02 | 11058.28 | 11098.13 | 11098.13 | 2144000 | 0.0036735 |
| 2018-08-02 | 11095.67 | 11095.67 | 10919.13 | 10929.77 | 10929.77 | 2168200 | -0.0151702 |
| 2018-08-03 | 10957.30 | 11012.43 | 10957.30 | 11012.43 | 11012.43 | 1956900 | 0.0075628 |
| 2018-08-06 | 10997.26 | 11054.49 | 10994.97 | 11024.10 | 11024.10 | 1896400 | 0.0010597 |
| 2018-08-07 | 11024.97 | 11030.09 | 10983.44 | 10983.44 | 10983.44 | 1987900 | -0.0036882 |
| 2018-08-08 | 11026.07 | 11095.50 | 11026.07 | 11075.25 | 11075.25 | 2141000 | 0.0083589 |
| 2018-08-09 | 11063.62 | 11063.62 | 11001.96 | 11028.07 | 11028.07 | 2004300 | -0.0042599 |
| 2018-08-10 | 11009.96 | 11033.89 | 10972.25 | 10983.68 | 10983.68 | 2143300 | -0.0040252 |
| 2018-08-13 | 10939.68 | 10939.68 | 10693.73 | 10748.92 | 10748.92 | 2883800 | -0.0213735 |
| 2018-08-14 | 10797.95 | 10829.85 | 10755.53 | 10824.23 | 10824.23 | 2280700 | 0.0070063 |
| 2018-08-15 | 10827.28 | 10827.28 | 10688.59 | 10716.75 | 10716.75 | 2450800 | -0.0099296 |
| 2018-08-16 | 10663.57 | 10725.71 | 10606.26 | 10683.90 | 10683.90 | 2348700 | -0.0030653 |
| 2018-08-17 | 10702.60 | 10757.01 | 10688.55 | 10690.96 | 10690.96 | 2069100 | 0.0006608 |
| 2018-08-20 | 10698.76 | 10729.90 | 10663.44 | 10699.05 | 10699.05 | 2057400 | 0.0007567 |
| 2018-08-21 | 10697.01 | 10792.20 | 10697.01 | 10792.20 | 10792.20 | 1972500 | 0.0087064 |
| 2018-08-22 | 10790.24 | 10828.21 | 10774.69 | 10804.20 | 10804.20 | 2018400 | 0.0011119 |
| 2018-08-23 | 10817.33 | 10863.13 | 10802.79 | 10863.13 | 10863.13 | 1938600 | 0.0054543 |
| 2018-08-24 | 10865.91 | 10865.91 | 10770.32 | 10809.35 | 10809.35 | 1748700 | -0.0049507 |
| 2018-08-27 | 10847.17 | 10916.69 | 10847.17 | 10902.21 | 10902.21 | 1710800 | 0.0085907 |
| 2018-08-28 | 10946.33 | 11005.55 | 10946.33 | 10989.55 | 10989.55 | 1940600 | 0.0080112 |
| 2018-08-29 | 11029.12 | 11099.57 | 11029.11 | 11099.57 | 11099.57 | 1822900 | 0.0100114 |
| 2018-08-30 | 11153.97 | 11186.05 | 11080.07 | 11093.75 | 11093.75 | 1915800 | -0.0005244 |
| 2018-08-31 | 11037.26 | 11063.94 | 10987.68 | 11063.94 | 11063.94 | 2081900 | -0.0026871 |
| 2018-09-03 | 11087.86 | 11097.11 | 10952.85 | 10964.22 | 10964.22 | 1897900 | -0.0090131 |
| 2018-09-04 | 10981.39 | 11028.27 | 10956.49 | 11021.38 | 11021.38 | 1653400 | 0.0052133 |
| 2018-09-05 | 11042.41 | 11058.06 | 10989.93 | 10995.13 | 10995.13 | 1898700 | -0.0023817 |
| 2018-09-06 | 11016.92 | 11016.92 | 10905.34 | 10924.30 | 10924.30 | 2038400 | -0.0064420 |
| 2018-09-07 | 10922.55 | 10922.55 | 10807.56 | 10846.99 | 10846.99 | 2491300 | -0.0070768 |
| 2018-09-10 | 10869.80 | 10877.72 | 10689.29 | 10725.80 | 10725.80 | 2600600 | -0.0111727 |
| 2018-09-11 | 10723.00 | 10765.42 | 10669.59 | 10752.30 | 10752.30 | 2098700 | 0.0024707 |
| 2018-09-12 | 10762.91 | 10779.93 | 10667.25 | 10722.57 | 10722.57 | 1938500 | -0.0027649 |
| 2018-09-13 | 10726.67 | 10758.84 | 10701.25 | 10727.23 | 10727.23 | 1811500 | 0.0004346 |
| 2018-09-14 | 10776.53 | 10882.04 | 10770.47 | 10868.14 | 10868.14 | 2068800 | 0.0131357 |
| 2018-09-17 | 10881.78 | 10883.98 | 10806.73 | 10828.61 | 10828.61 | 1698100 | -0.0036372 |
| 2018-09-18 | 10794.22 | 10806.56 | 10750.81 | 10760.21 | 10760.21 | 1938500 | -0.0063166 |
| 2018-09-19 | 10808.50 | 10882.75 | 10808.50 | 10857.27 | 10857.27 | 1999200 | 0.0090202 |
| 2018-09-20 | 10886.19 | 10908.36 | 10814.54 | 10831.41 | 10831.41 | 2090900 | -0.0023818 |
| 2018-09-21 | 10857.10 | 10972.41 | 10835.84 | 10972.41 | 10972.41 | 2539000 | 0.0130177 |
| 2018-09-25 | 10959.56 | 11003.49 | 10941.77 | 10978.85 | 10978.85 | 1987200 | 0.0005869 |
| 2018-09-26 | 10974.08 | 11007.35 | 10947.29 | 10974.19 | 10974.19 | 1855200 | -0.0004244 |
| 2018-09-27 | 10973.77 | 11051.09 | 10961.27 | 11034.19 | 11034.19 | 2089800 | 0.0054674 |
| 2018-09-28 | 11050.09 | 11073.95 | 10966.96 | 11006.34 | 11006.34 | 2192700 | -0.0025240 |
| 2018-10-01 | 11014.19 | 11062.43 | 11012.95 | 11051.80 | 11051.80 | 1646700 | 0.0041303 |
| 2018-10-02 | 11048.89 | 11064.34 | 10906.42 | 10919.63 | 10919.63 | 1802400 | -0.0119591 |
| 2018-10-03 | 10918.74 | 10926.73 | 10839.46 | 10863.94 | 10863.94 | 1696000 | -0.0050999 |
| 2018-10-04 | 10826.19 | 10826.19 | 10707.76 | 10718.91 | 10718.91 | 1874000 | -0.0133497 |
| 2018-10-05 | 10665.29 | 10669.63 | 10446.94 | 10517.12 | 10517.12 | 2735700 | -0.0188256 |
| 2018-10-08 | 10467.85 | 10507.83 | 10403.13 | 10455.93 | 10455.93 | 1796600 | -0.0058182 |
| 2018-10-09 | 10464.39 | 10503.10 | 10428.97 | 10466.83 | 10466.83 | 2097200 | 0.0010425 |
| 2018-10-11 | 10272.04 | 10272.04 | 9797.93 | 9806.11 | 9806.11 | 4348500 | -0.0631251 |
| 2018-10-12 | 9811.58 | 10046.01 | 9740.76 | 10045.81 | 10045.81 | 2724400 | 0.0244439 |
| 2018-10-15 | 9989.63 | 9989.63 | 9890.47 | 9901.12 | 9901.12 | 2044700 | -0.0144030 |
| 2018-10-16 | 9891.97 | 10011.19 | 9888.73 | 9981.10 | 9981.10 | 1888800 | 0.0080778 |
| 2018-10-17 | 10048.43 | 10127.01 | 9978.25 | 9979.14 | 9979.14 | 1856700 | -0.0001964 |
| 2018-10-18 | 9975.46 | 10019.50 | 9919.79 | 9953.73 | 9953.73 | 1611800 | -0.0025462 |
| 2018-10-19 | 9879.47 | 9919.26 | 9762.91 | 9919.26 | 9919.26 | 2417000 | -0.0034631 |
| 2018-10-22 | 9871.30 | 9984.15 | 9822.15 | 9974.28 | 9974.28 | 1481700 | 0.0055468 |
| 2018-10-23 | 9912.28 | 9912.28 | 9775.20 | 9775.20 | 9775.20 | 1711300 | -0.0199593 |
我們先嘗試元大電子的表現,先看看資料
etf53 %>% head(100) %>% ptable()%>% kable_styling() %>% scroll_box(height = "300px")
| Date | Open | High | Low | Close | Adj Close | Volume | Return |
|---|---|---|---|---|---|---|---|
| 2018-06-01 | 35.57 | 35.93 | 35.57 | 35.82 | 35.82 | 30000 | 0.0000000 |
| 2018-06-04 | 36.16 | 36.39 | 36.16 | 36.39 | 36.39 | 25000 | 0.0159129 |
| 2018-06-05 | 36.42 | 36.49 | 36.37 | 36.37 | 36.37 | 4000 | -0.0005496 |
| 2018-06-06 | 36.51 | 36.74 | 36.51 | 36.74 | 36.74 | 17000 | 0.0101733 |
| 2018-06-07 | 36.94 | 37.10 | 36.74 | 36.88 | 36.88 | 121000 | 0.0038105 |
| 2018-06-08 | 37.01 | 37.01 | 36.61 | 36.61 | 36.61 | 14000 | -0.0073211 |
| 2018-06-11 | 36.71 | 36.71 | 36.49 | 36.54 | 36.54 | 17000 | -0.0019120 |
| 2018-06-12 | 36.68 | 36.76 | 36.33 | 36.48 | 36.48 | 10000 | -0.0016421 |
| 2018-06-13 | 36.73 | 36.86 | 36.73 | 36.86 | 36.86 | 8090 | 0.0104167 |
| 2018-06-14 | 36.72 | 36.72 | 36.36 | 36.36 | 36.36 | 7000 | -0.0135648 |
| 2018-06-15 | 36.37 | 36.37 | 36.23 | 36.31 | 36.31 | 6000 | -0.0013751 |
| 2018-06-19 | 36.17 | 36.17 | 35.83 | 35.95 | 35.95 | 11000 | -0.0099146 |
| 2018-06-20 | 35.91 | 35.91 | 35.61 | 35.75 | 35.75 | 11000 | -0.0055633 |
| 2018-06-21 | 35.89 | 36.05 | 35.89 | 35.93 | 35.93 | 6000 | 0.0050350 |
| 2018-06-22 | 35.79 | 35.79 | 35.41 | 35.55 | 35.55 | 13000 | -0.0105762 |
| 2018-06-25 | 35.47 | 35.47 | 35.39 | 35.39 | 35.39 | 10000 | -0.0045007 |
| 2018-06-26 | 35.16 | 35.16 | 34.86 | 35.12 | 35.12 | 10000 | -0.0076293 |
| 2018-06-27 | 35.33 | 35.44 | 35.25 | 35.28 | 35.28 | 48000 | 0.0045558 |
| 2018-06-28 | 34.92 | 34.96 | 34.92 | 34.95 | 34.95 | 9000 | -0.0093537 |
| 2018-06-29 | 35.09 | 35.48 | 35.09 | 35.48 | 35.48 | 25000 | 0.0151645 |
| 2018-07-02 | 35.75 | 35.76 | 35.59 | 35.59 | 35.59 | 10000 | 0.0031004 |
| 2018-07-03 | 35.61 | 35.88 | 35.36 | 35.36 | 35.36 | 23000 | -0.0064625 |
| 2018-07-04 | 35.50 | 35.50 | 35.49 | 35.49 | 35.49 | 2000 | 0.0036765 |
| 2018-07-05 | 35.35 | 35.35 | 35.00 | 35.00 | 35.00 | 29000 | -0.0138068 |
| 2018-07-06 | 35.17 | 35.17 | 34.91 | 35.06 | 35.06 | 28000 | 0.0017143 |
| 2018-07-09 | 35.48 | 35.75 | 35.48 | 35.75 | 35.75 | 71000 | 0.0196805 |
| 2018-07-10 | 34.80 | 35.90 | 34.80 | 35.85 | 35.85 | 22000 | 0.0027972 |
| 2018-07-11 | 35.71 | 35.71 | 35.55 | 35.57 | 35.57 | 43000 | -0.0078103 |
| 2018-07-12 | 35.45 | 35.91 | 35.45 | 35.91 | 35.91 | 12000 | 0.0095586 |
| 2018-07-13 | 36.15 | 36.31 | 36.15 | 36.28 | 36.28 | 31000 | 0.0103035 |
| 2018-07-16 | 36.39 | 36.39 | 36.34 | 36.38 | 36.38 | 27000 | 0.0027564 |
| 2018-07-17 | 36.24 | 36.29 | 36.14 | 36.14 | 36.14 | 6000 | -0.0065971 |
| 2018-07-18 | 36.28 | 36.37 | 36.26 | 36.36 | 36.36 | 19000 | 0.0060875 |
| 2018-07-19 | 36.43 | 36.43 | 36.43 | 36.43 | 36.43 | 1000 | 0.0019252 |
| 2018-07-20 | 36.43 | 36.90 | 36.37 | 36.80 | 36.80 | 43000 | 0.0101564 |
| 2018-07-23 | 36.93 | 37.20 | 36.93 | 37.06 | 37.06 | 35000 | 0.0070653 |
| 2018-07-24 | 37.08 | 37.08 | 36.97 | 37.06 | 37.06 | 72000 | 0.0000000 |
| 2018-07-25 | 36.96 | 37.14 | 36.96 | 37.14 | 37.14 | 12000 | 0.0021586 |
| 2018-07-26 | 37.18 | 37.32 | 37.16 | 37.26 | 37.26 | 21000 | 0.0032310 |
| 2018-07-27 | 37.30 | 37.56 | 37.30 | 37.56 | 37.56 | 21000 | 0.0080516 |
| 2018-07-30 | 37.61 | 37.63 | 37.61 | 37.62 | 37.62 | 14000 | 0.0015974 |
| 2018-07-31 | 37.47 | 37.47 | 37.29 | 37.29 | 37.29 | 42000 | -0.0087719 |
| 2018-08-01 | 37.58 | 37.81 | 37.58 | 37.81 | 37.81 | 13000 | 0.0139448 |
| 2018-08-02 | 37.96 | 37.96 | 37.30 | 37.30 | 37.30 | 27000 | -0.0134886 |
| 2018-08-03 | 37.52 | 37.58 | 37.44 | 37.46 | 37.46 | 5000 | 0.0042895 |
| 2018-08-06 | 37.35 | 37.47 | 37.32 | 37.32 | 37.32 | 19000 | -0.0037373 |
| 2018-08-07 | 37.39 | 37.40 | 37.28 | 37.28 | 37.28 | 11000 | -0.0010718 |
| 2018-08-08 | 37.46 | 37.65 | 37.46 | 37.65 | 37.65 | 5000 | 0.0099250 |
| 2018-08-09 | 37.50 | 37.54 | 37.50 | 37.54 | 37.54 | 2000 | -0.0029217 |
| 2018-08-10 | 37.54 | 37.54 | 37.39 | 37.39 | 37.39 | 3000 | -0.0039958 |
| 2018-08-13 | 36.99 | 36.99 | 36.20 | 36.38 | 36.38 | 45000 | -0.0270125 |
| 2018-08-14 | 36.45 | 36.62 | 36.36 | 36.41 | 36.41 | 11000 | 0.0008246 |
| 2018-08-15 | 36.26 | 36.26 | 35.95 | 36.04 | 36.04 | 12000 | -0.0101620 |
| 2018-08-16 | 35.64 | 36.08 | 35.52 | 35.99 | 35.99 | 15000 | -0.0013873 |
| 2018-08-17 | 36.07 | 36.23 | 36.07 | 36.09 | 36.09 | 11000 | 0.0027785 |
| 2018-08-20 | 35.97 | 35.97 | 35.81 | 35.97 | 35.97 | 9000 | -0.0033250 |
| 2018-08-21 | 36.05 | 36.14 | 36.05 | 36.14 | 36.14 | 4000 | 0.0047261 |
| 2018-08-22 | 36.28 | 36.28 | 36.27 | 36.27 | 36.27 | 2000 | 0.0035972 |
| 2018-08-23 | 36.13 | 36.16 | 36.13 | 36.16 | 36.16 | 9000 | -0.0030328 |
| 2018-08-24 | 36.16 | 36.16 | 36.16 | 36.16 | 36.16 | 2000 | 0.0000000 |
| 2018-08-27 | 36.30 | 36.59 | 36.28 | 36.57 | 36.57 | 37000 | 0.0113385 |
| 2018-08-28 | 36.93 | 37.08 | 36.93 | 37.08 | 37.08 | 12000 | 0.0139459 |
| 2018-08-29 | 37.22 | 37.74 | 37.22 | 37.74 | 37.74 | 17000 | 0.0177993 |
| 2018-08-30 | 38.00 | 38.30 | 37.87 | 37.91 | 37.91 | 17000 | 0.0045045 |
| 2018-08-31 | 37.58 | 37.58 | 37.18 | 37.34 | 37.34 | 11000 | -0.0150356 |
| 2018-09-03 | 37.60 | 37.67 | 37.38 | 37.38 | 37.38 | 28000 | 0.0010713 |
| 2018-09-04 | 37.59 | 37.59 | 37.16 | 37.16 | 37.16 | 31072 | -0.0058855 |
| 2018-09-05 | 37.46 | 37.68 | 37.46 | 37.65 | 37.65 | 16000 | 0.0131863 |
| 2018-09-06 | 37.55 | 37.55 | 37.25 | 37.34 | 37.34 | 7000 | -0.0082338 |
| 2018-09-07 | 37.13 | 37.14 | 37.01 | 37.01 | 37.01 | 18000 | -0.0088378 |
| 2018-09-10 | 36.93 | 36.93 | 36.46 | 36.53 | 36.53 | 21000 | -0.0129695 |
| 2018-09-11 | 36.47 | 36.53 | 36.24 | 36.38 | 36.38 | 11000 | -0.0041062 |
| 2018-09-12 | 36.32 | 36.32 | 36.06 | 36.22 | 36.22 | 13000 | -0.0043980 |
| 2018-09-13 | 36.32 | 36.32 | 35.91 | 35.91 | 35.91 | 9075 | -0.0085588 |
| 2018-09-14 | 36.34 | 36.52 | 36.26 | 36.52 | 36.52 | 5000 | 0.0169869 |
| 2018-09-17 | 36.72 | 36.72 | 36.40 | 36.48 | 36.48 | 11000 | -0.0010953 |
| 2018-09-18 | 36.30 | 36.30 | 36.01 | 36.01 | 36.01 | 17000 | -0.0128838 |
| 2018-09-19 | 36.13 | 36.26 | 36.13 | 36.26 | 36.26 | 4000 | 0.0069425 |
| 2018-09-20 | 36.41 | 36.41 | 36.01 | 36.15 | 36.15 | 13000 | -0.0030336 |
| 2018-09-21 | 35.98 | 36.20 | 35.98 | 36.15 | 36.15 | 7000 | 0.0000000 |
| 2018-09-25 | 36.17 | 36.56 | 36.15 | 36.52 | 36.52 | 14000 | 0.0102351 |
| 2018-09-26 | 36.52 | 36.52 | 36.46 | 36.48 | 36.48 | 9074 | -0.0010953 |
| 2018-09-27 | 36.30 | 36.57 | 36.30 | 36.57 | 36.57 | 11000 | 0.0024671 |
| 2018-09-28 | 36.60 | 36.60 | 36.35 | 36.35 | 36.35 | 14000 | -0.0060159 |
| 2018-10-01 | 36.32 | 36.63 | 36.32 | 36.63 | 36.63 | 5000 | 0.0077030 |
| 2018-10-02 | 36.61 | 36.61 | 36.13 | 36.15 | 36.15 | 20000 | -0.0131040 |
| 2018-10-03 | 36.14 | 36.15 | 36.07 | 36.07 | 36.07 | 4075 | -0.0022131 |
| 2018-10-04 | 35.67 | 35.67 | 35.45 | 35.47 | 35.47 | 18000 | -0.0166343 |
| 2018-10-05 | 35.13 | 35.13 | 34.57 | 34.57 | 34.57 | 7000 | -0.0253736 |
| 2018-10-08 | 34.42 | 34.56 | 34.05 | 34.05 | 34.05 | 28000 | -0.0150420 |
| 2018-10-09 | 34.19 | 34.28 | 34.10 | 34.16 | 34.16 | 6000 | 0.0032306 |
| 2018-10-11 | 32.30 | 32.30 | 31.78 | 31.78 | 31.78 | 36000 | -0.0696721 |
| 2018-10-12 | 31.88 | 32.56 | 31.88 | 32.56 | 32.56 | 45000 | 0.0245438 |
| 2018-10-15 | 32.57 | 32.57 | 32.26 | 32.26 | 32.26 | 8083 | -0.0092139 |
| 2018-10-16 | 32.33 | 32.74 | 32.33 | 32.60 | 32.60 | 18000 | 0.0105394 |
| 2018-10-17 | 33.20 | 33.35 | 33.03 | 33.03 | 33.03 | 9000 | 0.0131902 |
| 2018-10-18 | 32.92 | 32.92 | 32.65 | 32.67 | 32.67 | 3000 | -0.0108992 |
| 2018-10-19 | 32.20 | 32.40 | 32.20 | 32.40 | 32.40 | 16000 | -0.0082644 |
| 2018-10-22 | 32.19 | 32.75 | 32.19 | 32.75 | 32.75 | 7000 | 0.0108024 |
| 2018-10-23 | 32.52 | 32.54 | 32.10 | 32.10 | 32.10 | 13083 | -0.0198474 |
接著初步觀察報酬率是正相關或負相關,並用趨勢圖顯示。
能夠發現到兩檔ETF與大盤看來都是正相關
ALL_return = data.frame(Date = DATE,Index = index$Return, Hh= etf53$Return, Med = etf55$Return)
p <- ggplot(data = ALL_return, aes(x = Index))
p <- p + geom_point(aes(y = Hh),colour = "#E69F00",alpha=0.5) + geom_smooth(aes(y = Hh),colour = "#E69F00",method='lm')
p <- p + geom_point(aes(y = Med),colour = "#56B4E9",alpha=0.5)+ geom_smooth(aes(y = Med),colour = "#56B4E9",method='lm')
p <- p + labs(y = 'Return on stocks', x = 'index return', colour = '')
p
首先計算個股的beta值,beta值的公式為:\[\beta_i = {Cov(R_i,R_M)\over \sigma^2 (R_M)}\]
The beta of 0053 is 1.04
The beta of 0055 is 0.65
藉由觀察台灣的平均國債利率,我認為無風險利率設為1%是合理的。另外,由market-risk-premia.com 網站得知,台灣的風險溢酬差不多是6%
risk free rate = 1%
average risk premium on stock = 6%
然後就能夠建構出台股的SML:
\[\overline R_i=1\%+\beta_i*6\%\] 以下為SML圖形
CAPM = data.frame(Beta = c(0,0.61,0.65,1.04,2),ExpRe = c(1,4.66,4.9,7.24,13))
ggplot(CAPM,aes(x = Beta, y = ExpRe)) + geom_line(colour = '#0072B2')+geom_point(colour = '#0072B2')+labs(title = "E(R)=1%+beta*6%") + scale_x_continuous(name = "beta",limits = c(0, 2),breaks=1:10) + scale_y_continuous(name = "expected return (%)") + theme(axis.line = element_line(colour = "darkblue", size = 1, linetype = "solid",
))
Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
ℹ Please use the `linewidth` argument instead.
現在計算元大電子0053每季的報酬率並且年化,同時計算每季的交易量
quar_first_day = seq(as.Date('2018-06-01'),as.Date('2023-05-01'),by='quarter')
quar_last_day = seq(as.Date('2018-07-01'),as.Date('2023-06-01'),by='quarter')-1
Quar_V <- c()
Quar_R <- c()
for(i in 1:20){
begin_d = quar_first_day[i]
last_d = quar_last_day[i]
a = etf53%>% filter(between(Date,begin_d, last_d)) %>% slice(n())
b = etf53 %>% filter(between(Date,begin_d, last_d)) %>% head(.,1)
quar_r = (a$Close - b$Close)/a$Close
Quar_R <- c(Quar_R,(1+quar_r)^4-1)
c = etf53%>% filter(between(Date,begin_d, last_d))
quar_v = sum(c$Volume)
Quar_V <- c(Quar_V,quar_v)
}
接著觀察畫出來的圖形
dates_quarters2 <- as.yearqtr(quar_first_day, format = "%Y-%m-%d")
pqr = Quar_R*100
er = rep(7.24,20)
quarter_return = data.frame(dates_quarters2,pqr,er)
p1 = ggplot(quarter_return,aes(x=dates_quarters2,y = pqr)) + geom_line(colour = "#D55E00")+geom_point()
p1 = p1 + geom_line(aes(y = er)) + labs(title = '每季報酬與期望值',x = "year-quarter", y= "return convert to annum(%)")
p1
如同預料一般,當報酬率低於或高於理論值的時候,都會接著向理論值修正,導致報酬率在理論值上下震盪。
然而無法推論此種修正是否為賣出或買入所導致。
按照CAPM的說法,當證券的實際報酬率不同於相應風險(beta值)的理論值,會造成投資者買入或是賣出,表現出交易量放大。 也就是說,報酬偏離越多,交易量應該越大,所以接下來要檢視實際報酬與理論值差距,以及交易量的關係。
n_Quar_R = abs(Quar_R*100-7.24)
Quar_V10k <- Quar_V/10000
div_lnV = data.frame(dates_quarters2,n_Quar_R,Quar_V10k)
p2 = ggplot(div_lnV,aes(x = dates_quarters2, y = n_Quar_R)) + geom_line(colour = "#D55E00") + geom_point()
p2 <- p2 + geom_col(aes(y = Quar_V10k),alpha=0.5)+ labs(title = "每季報酬偏差與交易量",x = "year-quarter", y= "報酬率偏離值")
p2
但是畫出圖形之後,依然沒有辦法很直接判斷兩者的關係。所以接著用cor.test(n_Quar_R,Quar_V10k,method = "pearson")計算相關係數。
coefficient of correlation = 0.1629
兩者關係為低度正相關,試著使用線性回歸模型:lm_d_v = lm(n_Quar_R ~ Quar_V10k) summary(lm_d_v)。
| predictor | Estimate | Std. Error | p-value |
|---|---|---|---|
| (Intercept) | 27.54 | 7.043 | 0.001 |
| diff to E(R) | 0.204 | 0.2925 | 0.4925 |
| R square | 0.026 |
| F-statistic | 0.49 |
| Residual se | 19.7 |
回歸式: \(Volume in 10k=27.54+0.204*R_E\)
然而本模型的R square 太大,解釋力不足,同時F值也太大,表示回歸並不妥適。
把前述的步驟運用到0055上面,觀察他的表現
coefficient of correlation = 0.1807
使用線性回歸模型:
lm_d_v = lm(n_Quar_R ~ Quar_V10k) summary(lm_d_v)
| predictor | Estimate | Std. Error | p-value |
|---|---|---|---|
| (Intercept) | 11.76 | 4.576 | 0.012 |
| diff to E(R) | 0.05 | 0.0734 | 0.4457 |
| R square | 0.032 |
| F-statistic | 0.44 |
| Residual se | 14.5 |
回歸式: \(Volume in 100k=11.76+0.05*R_E\)
回歸的解釋力與顯著性皆不足;因此通過觀察,沒有充足的證據顯示一開始提出的看法為真
就本次的觀察而言,CAPM模型的推論假設不完全實際。