Exercise 1
Let X1, X2, . . . , Xn be n mutually independent random variables,
each of which is uniformly distributed on the integers from 1 to k. Let
Y denote the minimum of the Xi’s. Find the distribution of Y
Answer:
\[
\begin{align*}
P(Y \leq y) & = 1 - P(Y > y) \\
& = 1 - P(\min\{X_1, X_2, \ldots, X_n\} > y) \\
& = 1 - P(X_1 > y, X_2 > y, \ldots, X_n > y) \\
& = 1 - \left(\frac{k - y}{k}\right)^n \\
\\
P(Y \leq y - 1) & = 1 - \left(\frac{k - y + 1}{k}\right)^n \\
\\
d(y) & = P(Y = y) = P(Y \leq y) - P(Y \leq y - 1) \\
& = \frac{(k - y + 1)^n - (k - y)^n}{k^n}
\end{align*}
\]
Exercice 2
In this section, I’ll answer the second exercice:
Question A
# Probability of failure after 8 years using geometric distribution
p_geometric <- 1/10
prob <- 1 - pgeom(8-1, p_geometric)
# Expected value and standard deviation for geometric distribution
mean <- 1 / p_geometric
sd <- sqrt((1 - p_geometric) / p_geometric^2)
prob
## [1] 0.4304672
## [1] 10
## [1] 9.486833
Question B
# Probability of failure after 8 years using exponential distribution
lambda <- 1 / 10
prob <- 1 - pexp(8, rate = lambda)
# Expected value and standard deviation for exponential distribution
mean <- 1 / lambda
sd <- 1 / lambda
prob
## [1] 0.449329
## [1] 10
## [1] 10
Question 3
# Probability of failure after 8 years using binomial distribution
n <- 8
p_binomial <- 1 / 10
prob <- dbinom(0, size = n, prob = p_binomial)
# Expected value and standard deviation for binomial distribution
mean <- n * p_binomial
sd <- sqrt(n * p_binomial * (1 - p_binomial))
prob
## [1] 0.4304672
## [1] 0.8
## [1] 0.8485281
Question 4
# Probability of failure after 8 years using Poisson distribution
lambda_poisson <- 8 / 10
prob <- ppois(0, lambda = lambda_poisson)
# Expected value and standard deviation for Poisson distribution
mean <- lambda_poisson
sd <- sqrt(lambda_poisson)
prob
## [1] 0.449329
## [1] 0.8
## [1] 0.8944272
…
LS0tDQp0aXRsZTogIkhvbWV3b3JrIDciDQphdXRob3I6ICJLb3NzaSBBa3BsYWthIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQoNCiMjIEV4ZXJjaXNlIDENCkxldCBYMSwgWDIsIC4gLiAuICwgWG4gYmUgbiBtdXR1YWxseSBpbmRlcGVuZGVudCByYW5kb20gdmFyaWFibGVzLCBlYWNoIG9mIHdoaWNoIGlzIHVuaWZvcm1seSBkaXN0cmlidXRlZCBvbiB0aGUgaW50ZWdlcnMgZnJvbSAxIHRvIGsuIExldCBZIGRlbm90ZSB0aGUgbWluaW11bSBvZiB0aGUgWGnigJlzLiBGaW5kIHRoZSBkaXN0cmlidXRpb24gb2YgWQ0KDQpBbnN3ZXI6IA0KDQoNCg0KXFsNClxiZWdpbnthbGlnbip9DQpQKFkgXGxlcSB5KSAmID0gMSAtIFAoWSA+IHkpIFxcDQogICAgICAgICAgICAmID0gMSAtIFAoXG1pblx7WF8xLCBYXzIsIFxsZG90cywgWF9uXH0gPiB5KSBcXA0KICAgICAgICAgICAgJiA9IDEgLSBQKFhfMSA+IHksIFhfMiA+IHksIFxsZG90cywgWF9uID4geSkgXFwNCiAgICAgICAgICAgICYgPSAxIC0gXGxlZnQoXGZyYWN7ayAtIHl9e2t9XHJpZ2h0KV5uIFxcDQpcXA0KUChZIFxsZXEgeSAtIDEpICYgPSAxIC0gXGxlZnQoXGZyYWN7ayAtIHkgKyAxfXtrfVxyaWdodClebiBcXA0KXFwNCmQoeSkgJiA9IFAoWSA9IHkpID0gUChZIFxsZXEgeSkgLSBQKFkgXGxlcSB5IC0gMSkgXFwNCiAgICAgJiA9IFxmcmFjeyhrIC0geSArIDEpXm4gLSAoayAtIHkpXm59e2tebn0NClxlbmR7YWxpZ24qfQ0KXF0NCg0KDQojIyBFeGVyY2ljZSAyDQoNCkluIHRoaXMgc2VjdGlvbiwgSSdsbCBhbnN3ZXIgdGhlIHNlY29uZCBleGVyY2ljZToNCg0KIyMjIFF1ZXN0aW9uIEENCg0KYGBge3J9DQojIFByb2JhYmlsaXR5IG9mIGZhaWx1cmUgYWZ0ZXIgOCB5ZWFycyB1c2luZyBnZW9tZXRyaWMgZGlzdHJpYnV0aW9uDQpwX2dlb21ldHJpYyA8LSAxLzEwDQpwcm9iIDwtIDEgLSBwZ2VvbSg4LTEsIHBfZ2VvbWV0cmljKQ0KDQojIEV4cGVjdGVkIHZhbHVlIGFuZCBzdGFuZGFyZCBkZXZpYXRpb24gZm9yIGdlb21ldHJpYyBkaXN0cmlidXRpb24NCm1lYW4gPC0gMSAvIHBfZ2VvbWV0cmljDQpzZCA8LSBzcXJ0KCgxIC0gcF9nZW9tZXRyaWMpIC8gcF9nZW9tZXRyaWNeMikNCg0KcHJvYg0KbWVhbg0Kc2QNCmBgYA0KDQojIyMgUXVlc3Rpb24gQg0KDQpgYGB7cn0NCiMgUHJvYmFiaWxpdHkgb2YgZmFpbHVyZSBhZnRlciA4IHllYXJzIHVzaW5nIGV4cG9uZW50aWFsIGRpc3RyaWJ1dGlvbg0KbGFtYmRhIDwtIDEgLyAxMA0KcHJvYiA8LSAxIC0gcGV4cCg4LCByYXRlID0gbGFtYmRhKQ0KDQojIEV4cGVjdGVkIHZhbHVlIGFuZCBzdGFuZGFyZCBkZXZpYXRpb24gZm9yIGV4cG9uZW50aWFsIGRpc3RyaWJ1dGlvbg0KbWVhbiA8LSAxIC8gbGFtYmRhDQpzZCA8LSAxIC8gbGFtYmRhDQoNCnByb2INCm1lYW4NCnNkDQpgYGANCg0KDQojIyMgUXVlc3Rpb24gMw0KDQpgYGB7cn0NCiMgUHJvYmFiaWxpdHkgb2YgZmFpbHVyZSBhZnRlciA4IHllYXJzIHVzaW5nIGJpbm9taWFsIGRpc3RyaWJ1dGlvbg0KbiA8LSA4DQpwX2Jpbm9taWFsIDwtIDEgLyAxMA0KcHJvYiA8LSBkYmlub20oMCwgc2l6ZSA9IG4sIHByb2IgPSBwX2Jpbm9taWFsKQ0KDQojIEV4cGVjdGVkIHZhbHVlIGFuZCBzdGFuZGFyZCBkZXZpYXRpb24gZm9yIGJpbm9taWFsIGRpc3RyaWJ1dGlvbg0KbWVhbiA8LSBuICogcF9iaW5vbWlhbA0Kc2QgPC0gc3FydChuICogcF9iaW5vbWlhbCAqICgxIC0gcF9iaW5vbWlhbCkpDQoNCnByb2INCm1lYW4NCnNkDQpgYGANCg0KIyMjIFF1ZXN0aW9uIDQNCg0KYGBge3J9DQojIFByb2JhYmlsaXR5IG9mIGZhaWx1cmUgYWZ0ZXIgOCB5ZWFycyB1c2luZyBQb2lzc29uIGRpc3RyaWJ1dGlvbg0KbGFtYmRhX3BvaXNzb24gPC0gOCAvIDEwDQpwcm9iIDwtIHBwb2lzKDAsIGxhbWJkYSA9IGxhbWJkYV9wb2lzc29uKQ0KDQojIEV4cGVjdGVkIHZhbHVlIGFuZCBzdGFuZGFyZCBkZXZpYXRpb24gZm9yIFBvaXNzb24gZGlzdHJpYnV0aW9uDQptZWFuIDwtIGxhbWJkYV9wb2lzc29uDQpzZCA8LSBzcXJ0KGxhbWJkYV9wb2lzc29uKQ0KDQpwcm9iDQptZWFuDQpzZA0KYGBgDQoNCg0KDQouLi4NCg0K