data <- read.csv("C:\\Users\\ASUS\\Documents\\Nita\\SEMESTER 4\\Analisis Regresi\\Kuliah\\Data Anreg Berganda 2.csv", sep=";")
data
## Y X1 X2 X3 X4 X5 X6
## 1 443 49 79 76 8 15 205
## 2 290 27 70 31 6 6 129
## 3 676 115 92 130 0 9 339
## 4 536 92 62 92 5 8 247
## 5 481 67 42 94 16 3 202
## 6 296 31 54 34 14 11 119
## 7 453 105 60 47 5 10 212
## 8 617 114 85 84 17 20 285
## 9 514 98 72 71 12 -1 242
## 10 400 15 59 99 15 11 174
## 11 473 62 62 81 9 1 207
## 12 157 25 11 7 9 9 45
## 13 440 45 65 84 19 13 195
## 14 480 92 75 63 9 20 232
## 15 316 27 26 82 4 17 134
## 16 530 111 52 93 11 13 256
## 17 610 78 102 84 5 7 266
## 18 617 106 87 82 18 7 276
## 19 600 97 98 71 12 8 266
## 20 480 67 65 62 13 12 196
## 21 279 38 26 44 10 8 110
## 22 446 56 32 99 16 8 188
## 23 450 54 100 50 11 15 205
## 24 335 53 55 60 8 0 170
## 25 459 61 53 79 6 5 193
## 26 630 60 108 104 17 8 273
## 27 483 83 78 71 11 8 233
## 28 617 74 125 66 16 4 265
## 29 605 89 121 71 8 8 283
## 30 388 64 30 81 10 10 176
## 31 351 34 44 65 7 9 143
## 32 366 71 34 56 8 9 162
## 33 493 88 30 87 13 0 207
## 34 648 112 105 123 5 12 340
## 35 449 57 69 72 5 4 200
## 36 340 61 35 55 13 0 152
## 37 292 29 45 47 13 13 123
## 38 688 82 105 81 20 9 268
## 39 408 80 55 61 11 1 197
## 40 461 82 88 54 14 7 225
n <- 40
p <- 4
n = 40 merupakan banyaknya data yang digunakan p = 4 (beta 0, beta 1, beta 2, beta 3)
plot(x = data$X1,y = data$Y)
plot(x = data$X2,y = data$Y)
plot(x = data$X3,y = data$Y)
plot(x = data$X4,y = data$Y)
plot(x = data$X5,y = data$Y)
plot(x = data$X6,y = data$Y)
(model <- lm(Y ~ X1+X2+X3, data=data))
##
## Call:
## lm(formula = Y ~ X1 + X2 + X3, data = data)
##
## Coefficients:
## (Intercept) X1 X2 X3
## 61.925 1.637 2.177 2.017
summary(model)
##
## Call:
## lm(formula = Y ~ X1 + X2 + X3, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -73.919 -15.681 -4.493 22.570 99.903
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 61.9253 18.1589 3.410 0.00162 **
## X1 1.6365 0.2208 7.413 9.50e-09 ***
## X2 2.1769 0.2028 10.734 9.05e-13 ***
## X3 2.0173 0.2398 8.411 5.10e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 31.63 on 36 degrees of freedom
## Multiple R-squared: 0.9408, Adjusted R-squared: 0.9359
## F-statistic: 190.7 on 3 and 36 DF, p-value: < 2.2e-16
(model_Y_X1 <- lm(Y~X1,data=data))
##
## Call:
## lm(formula = Y ~ X1, data = data)
##
## Coefficients:
## (Intercept) X1
## 227.552 3.451
(u <- data$Y - model_Y_X1$coefficients[1] - (model_Y_X1$coefficients[2]*data$X1))
## [1] 46.327313 -30.740910 51.531982 -9.084796 22.201314 -38.546687
## [7] -136.953574 -4.016573 -51.793463 120.676423 31.458536 -156.838021
## [13] 57.133091 -65.084796 -4.740910 -80.662240 113.235425 23.594982
## [19] 37.657982 21.201314 -79.706798 25.167202 36.070091 -75.478464
## [25] 20.909980 195.361425 -31.021797 134.041203 70.269537 -60.444353
## [31] 6.098979 -106.604464 -38.279019 33.886315 24.715758 -98.090020
## [37] -35.643799 177.429648 -95.667464 -49.570352
(model_X3_X1 <- lm(X3~X1, data=data))
##
## Call:
## lm(formula = X3 ~ X1, data = data)
##
## Coefficients:
## (Intercept) X1
## 45.6864 0.3873
(v <- data$X3 - model_X3_X1$coefficients[1] - (model_X3_X1$coefficients[2]*data$X1))
## [1] 11.334449 -25.144292 39.770674 10.679263 22.362511 -23.693612
## [7] -39.356026 -5.841996 -12.644717 47.503667 11.299160 -48.369633
## [13] 20.883769 -18.320737 25.855708 4.319994 8.101881 -4.743356
## [19] -12.257387 -9.637489 -16.404922 31.623140 -16.602200 -6.214870
## [25] 9.686490 35.073820 -6.834768 -8.348799 -9.158748 10.524500
## [31] 6.144398 -17.186809 7.228582 33.932664 4.235810 -14.313510
## [37] -9.918952 3.552562 -15.672778 -23.447438
(beta3 <- sum(u*v)/sum(v^2))
## [1] 2.332771
e_kuadrat <- sum(model$residuals^2)
sigma_kuadrat <- e_kuadrat/(n-p)
sigma <- sqrt(sigma_kuadrat)
(se_beta3 <- sigma / sqrt(sum(v^2)))
## [1] 0.2380304
Melalui rumus manual, didapatkan nilai beta 3 adalah 2.3327 dan standard error adalah 0.23803 Sedangkan melalui fungsi lm didapatkan nilai beta 3 adalah 2.0173 dan standard error adalah 0.2398. Adanya perbedaan tersebut dapat disebabkan oleh adanya nilai pembulatan dalam pengerjaan rumus manual dan melalui fungsi lm.