Page 303 Exercise 11

A company buys 100 lightbulbs, each of which has an exponential lifetime of 1000 hours. What is the expected time for the first of these bulbs to burn out? (See Exercise 10.)

Solution by Hand

For any of the bulbs, $X_i = $ its independent random variable. Let \(\Sigma X_i = min(x_1, x_2, ... x_{100})\). Let \(n=100\). From the problem, we know that \(X_i\) is exponentially distributed.

The expected lifetime of bulb \(i\) is 1000. \[ E[X_i] = \frac{1}{\lambda_i} = 1000 \rightarrow \lambda_i = \frac{1}{1000} \]

We have \(\Sigma X_i = min(x_1, x_2, ... x_{100})\). Since \(X_i \sim Exponential(\lambda_i)\), \(\Sigma X_i \sim Exponential(\Sigma_{i=1}^{100} \lambda_i)\).

\[ \Sigma \lambda_i = \Sigma_{i=1}^{100} \frac{1}{1000} = \frac{1}{10} \\ E[min(x_1, x_2, ... x_{100})] = \frac{1}{\lambda} = \frac{1}{1/10} = 10 \] Therefore, the expected time for the first of these bulbs to burn out is 10.

Solution with R

# number of bulbs
n <- 100
# expected lifetime of any bulb
ex <- 1000
# lambda of i
lambda_i <- 1 / ex
# calculate expected time for first of bulbs to burn out
lambda_min <- rep(lambda_i, n)
for (i in 1:n) {
  lambda_min[i] <- lambda_i * (1 - pexp(1, rate = lambda_min[i]))  
}
expected_time_first_burn_out <- 1 / sum(lambda_min)
print(expected_time_first_burn_out)
## [1] 10.01001

Page 303 Exercise 14

Assume that \(X_1\) and \(X_2\) are independent random variables, each having an exponential density with parameter \(\lambda\). Show that \(Z = X_1 − X_2\) has density \(f_z(z) = (1/2)\lambda e^{-\lambda |z|}\).

Solution by Hand

\[ f(x_1) = \lambda e^{-\lambda x_1}\\ f(x_2) = \lambda e^{-\lambda x_2} \]

For \(Z<0\): \[ Z = X_1 X_2 \rightarrow X_2 = X_1 - Z\\ f_z(z) = \int_{-\infty}^{\infty} f_{x_2}(x_1 - z) f_{x_1}(x_1) dx_1 \\ = \int_{0}^{\infty} \lambda e^{-\lambda (x_1 - z)} \lambda e^{-\lambda x_1}dx_1 = \lambda^2 \int_0^{\infty} e^{-\lambda (x_1 - z)} e^{-\lambda x_1}dx_1\\ = \lambda^2 \int_0^{\infty} e^{-\lambda x_1} e^{\lambda z} e^{-\lambda x}dx_1 = \lambda^2 e^{\lambda z} \int_0^{\infty} e^{-2 \lambda x_1} dx_1\\ = \frac{\lambda ^2 e^{\lambda z}}{-2\lambda} [e^{-2 \lambda x_1}]_0^{\infty} = (-1/2)\lambda e^{\lambda z} [0-1] = (-1)((-1/2)\lambda e^{\lambda z}) \\ f_z(z) = (1/2)\lambda e^{\lambda |z|} \]

For \(Z>0\): \[ Z= X_1 - X_2 \rightarrow X_1 = Z + X_2\\ f_z(z) = \int_{-\infty}^{\infty} f_{x_1} (x_2+z) f_{x_2} (x_2)dx_2\\ = \int_0^{\infty}\lambda e^{-\lambda (x_2 + z)} \lambda e^{-\lambda x_2}dx_2 = \lambda^2 \int_0^{\infty} e ^{-\lambda x_2 - \lambda z} e^{-\lambda x_2}dx_2\\ = \lambda^2 \int_0^{\infty} e^{-\lambda x_2}e^{-\lambda z} e^{-\lambda x_2}dx_2 = \lambda ^2 e^{-\lambda z} \int_0^{\infty} e^{-2\lambda x_2}dx_2\\ = \frac{\lambda^2 e^{-\lambda z}}{-2\lambda}[e^{-2\lambda x_2}]_0^{\infty} = \frac{\lambda^2 e^{-\lambda z}}{-2\lambda} [0 -1] \\ = (1/2) \lambda e^{-\lambda |z|} \]

So, in conclusion:

\[ f_z(Z) = \begin{cases} (1/2) \lambda e^{-\lambda |z|} \text{ for } Z>0\\ (1/2)\lambda e^{\lambda |z|} \text{ for } Z<0\\ \end{cases} \]

Page 320-321 Exercise 1

Let \(X\) be a continuous random variable with mean \(\mu = 10\) and variance \(\sigma^2 = 100/3\). Using Chebyshev’s Inequality, find an upper bound for the following probabilities.

Solution

Chebychev’s Inequality: \[ P(|X-E[X]| > k\sigma)\leq \frac{1}{k^2} \text{ for } k>0 \]

# variance
var <- 100/3
# mean
mean <- 10
# standard deviation
sd <- sqrt(var)
  1. \(P(|X−10|\geq 2)\)

\[ k\sigma = 2\\ k\sqrt{\frac{100}{3}} = 2 \rightarrow k = 0.3464\\ \text{Upper Bound } = \frac{1}{k^2} = \frac{1}{0.3464^2} = \frac{25}{3} \approx 8.333 \]

k_a <- 2/sd
upper_bound_a <- 1/k_a^2
print(upper_bound_a)
## [1] 8.333333
  1. \(P(|X−10|\geq 5)\)

\[ k\sigma = 5 \rightarrow k = \frac{5}{\sqrt{\frac{100}{3}}} \approx 0.866025\\ \frac{1}{k^2} = \frac{1}{0.866025^2} \approx 1.333 = \frac{4}{3} \]

k_b <- 5/sd
upper_bound_b <- 1/k_b^2
print(upper_bound_b)
## [1] 1.333333
  1. \(P(|X−10|\geq 9)\) \[ k\sigma = 9 \rightarrow k=\frac{9}{\sqrt{\frac{100}{3}}} \approx 1.558845\\ \frac{1}{k^2} = \frac{1}{1.5588^2} \approx 0.4115 = \frac{100}{243} \]
k_c <- 9/sd
upper_bound_c <- 1/k_c^2
print(upper_bound_c)
## [1] 0.4115226
  1. \(P(|X − 10| \geq 20)\)

\[ k\sigma = 20 \rightarrow k=\frac{20}{\sqrt{\frac{100}{3}}} \approx 3.4641\\ \frac{1}{k^2} = \frac{1}{3.4641^2} \approx 0.08333 = \frac{1}{12} \]

k_d <- 20/sd
upper_bound_d <- 1/k_d^2
print(upper_bound_d)
## [1] 0.08333333