library(readxl)
## Warning: package 'readxl' was built under R version 4.3.2
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.3
library(treemap)
## Warning: package 'treemap' was built under R version 4.3.3
library(reshape2)
## Warning: package 'reshape2' was built under R version 4.3.3
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.3.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(plyr)
## Warning: package 'plyr' was built under R version 4.3.2
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
data.visdat <- read.csv("C:/Users/ACER/Downloads/ds_salaries (2).csv",sep = ",")
data.visdat
## id work_year experience_level employment_type
## 1 0 2020 MI FT
## 2 1 2020 SE FT
## 3 2 2020 SE FT
## 4 3 2020 MI FT
## 5 4 2020 SE FT
## 6 5 2020 EN FT
## 7 6 2020 SE FT
## 8 7 2020 MI FT
## 9 8 2020 MI FT
## 10 9 2020 SE FT
## 11 10 2020 EN FT
## 12 11 2020 MI FT
## 13 12 2020 EN FT
## 14 13 2020 MI FT
## 15 14 2020 MI FT
## 16 15 2020 MI FT
## 17 16 2020 EN FT
## 18 17 2020 SE FT
## 19 18 2020 EN FT
## 20 19 2020 MI FT
## 21 20 2020 MI FT
## 22 21 2020 MI FT
## 23 22 2020 SE FT
## 24 23 2020 MI FT
## 25 24 2020 MI FT
## 26 25 2020 EX FT
## 27 26 2020 EN FT
## 28 27 2020 SE FT
## 29 28 2020 EN CT
## 30 29 2020 SE FT
## 31 30 2020 MI FT
## 32 31 2020 EN FT
## 33 32 2020 SE FT
## 34 33 2020 MI FT
## 35 34 2020 MI FT
## 36 35 2020 MI FT
## 37 36 2020 MI FT
## 38 37 2020 EN FT
## 39 38 2020 EN FT
## 40 39 2020 EN FT
## 41 40 2020 MI FT
## 42 41 2020 EX FT
## 43 42 2020 MI FT
## 44 43 2020 MI FT
## 45 44 2020 MI FT
## 46 45 2020 EN PT
## 47 46 2020 MI FT
## 48 47 2020 SE FT
## 49 48 2020 MI FT
## 50 49 2020 MI FT
## 51 50 2020 EN FT
## 52 51 2020 EN FT
## 53 52 2020 EN FT
## 54 53 2020 EN FT
## 55 54 2020 SE FL
## 56 55 2020 SE FT
## 57 56 2020 MI FT
## 58 57 2020 MI FT
## 59 58 2020 SE FT
## 60 59 2020 MI FT
## 61 60 2020 MI FT
## 62 61 2020 MI FT
## 63 62 2020 EN PT
## 64 63 2020 SE FT
## 65 64 2020 SE FT
## 66 65 2020 EN FT
## 67 66 2020 EN FT
## 68 67 2020 SE FT
## 69 68 2020 EN FT
## 70 69 2020 SE FT
## 71 70 2020 MI FT
## 72 71 2020 MI FT
## 73 72 2021 EN FT
## 74 73 2021 EX FT
## 75 74 2021 EX FT
## 76 75 2021 SE FT
## 77 76 2021 MI FT
## 78 77 2021 MI PT
## 79 78 2021 MI CT
## 80 79 2021 EN FT
## 81 80 2021 SE FT
## 82 81 2021 MI FT
## 83 82 2021 MI FT
## 84 83 2021 MI FT
## 85 84 2021 EX FT
## 86 85 2021 MI FT
## 87 86 2021 EN FT
## 88 87 2021 MI FT
## 89 88 2021 SE FT
## 90 89 2021 SE FT
## 91 90 2021 SE FT
## 92 91 2021 EN FT
## 93 92 2021 MI FT
## 94 93 2021 SE FT
## 95 94 2021 EN FT
## 96 95 2021 MI FT
## 97 96 2021 EN PT
## 98 97 2021 MI FT
## 99 98 2021 EN FT
## 100 99 2021 MI FT
## 101 100 2021 MI FT
## 102 101 2021 SE FT
## 103 102 2021 MI FT
## 104 103 2021 MI FT
## 105 104 2021 MI FT
## 106 105 2021 MI FT
## 107 106 2021 MI FT
## 108 107 2021 SE FT
## 109 108 2021 SE FT
## 110 109 2021 EN FT
## 111 110 2021 SE FT
## 112 111 2021 SE FT
## 113 112 2021 SE FT
## 114 113 2021 EN PT
## 115 114 2021 MI FT
## 116 115 2021 EN FT
## 117 116 2021 MI FT
## 118 117 2021 MI FT
## 119 118 2021 EN FT
## 120 119 2021 MI FT
## 121 120 2021 MI FT
## 122 121 2021 SE FT
## 123 122 2021 EN FT
## 124 123 2021 EN FT
## 125 124 2021 EN PT
## 126 125 2021 MI FT
## 127 126 2021 SE FT
## 128 127 2021 MI FT
## 129 128 2021 EN FT
## 130 129 2021 SE FT
## 131 130 2021 EN FT
## 132 131 2021 EN FT
## 133 132 2021 MI FT
## 134 133 2021 SE FT
## 135 134 2021 EN FT
## 136 135 2021 MI FT
## 137 136 2021 MI FT
## 138 137 2021 MI FT
## 139 138 2021 SE FT
## 140 139 2021 EN FT
## 141 140 2021 MI FT
## 142 141 2021 SE FT
## 143 142 2021 SE FT
## 144 143 2021 MI FT
## 145 144 2021 MI FT
## 146 145 2021 SE FT
## 147 146 2021 MI FT
## 148 147 2021 MI FT
## 149 148 2021 SE FT
## 150 149 2021 SE FT
## 151 150 2021 SE FT
## 152 151 2021 MI FT
## 153 152 2021 MI FT
## 154 153 2021 EN FT
## 155 154 2021 SE FT
## 156 155 2021 SE FT
## 157 156 2021 MI FT
## 158 157 2021 MI FT
## 159 158 2021 SE FT
## 160 159 2021 EN FT
## 161 160 2021 EX FT
## 162 161 2021 EX FT
## 163 162 2021 MI FT
## 164 163 2021 EN FT
## 165 164 2021 EX FT
## 166 165 2021 SE FT
## 167 166 2021 EN FT
## 168 167 2021 EX FT
## 169 168 2021 EN FT
## 170 169 2021 MI FT
## 171 170 2021 MI FT
## 172 171 2021 MI FT
## 173 172 2021 EN FT
## 174 173 2021 SE FT
## 175 174 2021 SE FT
## 176 175 2021 SE FT
## 177 176 2021 MI FT
## 178 177 2021 MI FT
## 179 178 2021 EN FT
## 180 179 2021 MI FT
## 181 180 2021 MI FT
## 182 181 2021 MI FT
## 183 182 2021 MI FT
## 184 183 2021 SE FT
## 185 184 2021 MI FL
## 186 185 2021 MI FT
## 187 186 2021 SE FT
## 188 187 2021 EX FT
## 189 188 2021 SE FT
## 190 189 2021 MI FT
## 191 190 2021 SE FT
## 192 191 2021 EN FT
## 193 192 2021 MI FT
## 194 193 2021 SE FT
## 195 194 2021 SE FT
## 196 195 2021 MI FT
## 197 196 2021 EN FT
## 198 197 2021 SE FT
## 199 198 2021 SE FT
## 200 199 2021 EN FT
## 201 200 2021 MI FT
## 202 201 2021 SE FT
## 203 202 2021 MI FT
## 204 203 2021 SE FT
## 205 204 2021 MI FT
## 206 205 2021 MI FT
## 207 206 2021 SE FT
## 208 207 2021 SE FT
## 209 208 2021 MI FL
## 210 209 2021 SE FT
## 211 210 2021 MI FT
## 212 211 2021 MI FT
## 213 212 2021 MI FT
## 214 213 2021 EN FT
## 215 214 2021 EN FT
## 216 215 2021 SE FT
## 217 216 2021 EN PT
## 218 217 2021 MI FT
## 219 218 2021 MI FT
## 220 219 2021 SE FT
## 221 220 2021 MI FT
## 222 221 2021 MI FT
## 223 222 2021 MI FT
## 224 223 2021 MI FT
## 225 224 2021 SE FT
## 226 225 2021 EX CT
## 227 226 2021 SE FT
## 228 227 2021 MI FT
## 229 228 2021 SE FT
## 230 229 2021 SE FT
## 231 230 2021 EN FT
## 232 231 2021 SE FT
## 233 232 2021 SE FT
## 234 233 2021 SE FT
## 235 234 2021 MI FT
## 236 235 2021 MI FT
## 237 236 2021 MI FT
## 238 237 2021 MI FT
## 239 238 2021 EN FT
## 240 239 2021 EN FT
## 241 240 2021 SE FT
## 242 241 2021 MI FT
## 243 242 2021 MI FT
## 244 243 2021 SE FT
## 245 244 2021 EN FT
## 246 245 2021 MI FT
## 247 246 2021 EN FT
## 248 247 2021 MI FT
## 249 248 2021 SE FT
## 250 249 2021 SE FT
## 251 250 2021 MI FT
## 252 251 2021 EN FT
## 253 252 2021 EX FT
## 254 253 2021 EN FT
## 255 254 2021 MI FT
## 256 255 2021 SE FT
## 257 256 2021 MI FT
## 258 257 2021 SE FT
## 259 258 2021 SE FT
## 260 259 2021 EX FT
## 261 260 2021 MI FT
## 262 261 2021 SE FT
## 263 262 2021 MI FT
## 264 263 2021 SE FT
## 265 264 2021 MI FT
## 266 265 2021 SE FT
## 267 266 2021 MI FT
## 268 267 2021 MI FT
## 269 268 2021 MI FT
## 270 269 2021 EN FT
## 271 270 2021 EN FT
## 272 271 2021 SE FT
## 273 272 2021 EN FT
## 274 273 2021 EN FT
## 275 274 2021 SE FT
## 276 275 2021 EN FT
## 277 276 2021 EN FT
## 278 277 2021 SE FT
## 279 278 2021 SE FT
## 280 279 2021 EN FT
## 281 280 2021 MI FT
## 282 281 2021 EN FT
## 283 282 2021 MI PT
## 284 283 2021 SE CT
## 285 284 2021 MI FT
## 286 285 2021 SE FT
## 287 286 2021 SE FT
## 288 287 2021 MI FT
## 289 288 2021 MI FT
## 290 289 2022 SE FT
## 291 290 2022 SE FT
## 292 291 2022 SE FT
## 293 292 2022 MI FT
## 294 293 2022 MI FT
## 295 294 2022 MI FT
## 296 295 2022 MI FT
## 297 296 2022 SE FT
## 298 297 2022 SE FT
## 299 298 2022 SE FT
## 300 299 2022 SE FT
## 301 300 2022 SE FT
## 302 301 2022 SE FT
## 303 302 2022 SE FT
## 304 303 2022 SE FT
## 305 304 2022 EN FT
## 306 305 2022 SE FT
## 307 306 2022 SE FT
## 308 307 2022 MI FT
## 309 308 2022 MI FT
## 310 309 2022 EX FT
## 311 310 2022 EX FT
## 312 311 2022 MI FT
## 313 312 2022 MI FT
## 314 313 2022 MI FT
## 315 314 2022 MI FT
## 316 315 2022 SE FT
## 317 316 2022 EN FT
## 318 317 2022 SE FT
## 319 318 2022 SE FT
## 320 319 2022 SE FT
## 321 320 2022 SE FT
## 322 321 2022 SE FT
## 323 322 2022 SE FT
## 324 323 2022 SE FT
## 325 324 2022 SE FT
## 326 325 2022 SE FT
## 327 326 2022 EX FT
## 328 327 2022 EX FT
## 329 328 2022 SE FT
## 330 329 2022 MI FT
## 331 330 2022 SE FT
## 332 331 2022 SE FT
## 333 332 2022 SE FT
## 334 333 2022 SE FT
## 335 334 2022 SE FT
## 336 335 2022 SE FT
## 337 336 2022 MI FT
## 338 337 2022 SE FT
## 339 338 2022 SE FT
## 340 339 2022 SE FT
## 341 340 2022 SE FT
## 342 341 2022 SE FT
## 343 342 2022 EX FT
## 344 343 2022 EX FT
## 345 344 2022 EX FT
## 346 345 2022 SE FT
## 347 346 2022 SE FT
## 348 347 2022 SE FT
## 349 348 2022 SE FT
## 350 349 2022 SE FT
## 351 350 2022 SE FT
## 352 351 2022 SE FT
## 353 352 2022 SE FT
## 354 353 2022 SE FT
## 355 354 2022 SE FT
## 356 355 2022 SE FT
## 357 356 2022 SE FT
## 358 357 2022 SE FT
## 359 358 2022 SE FT
## 360 359 2022 SE FT
## 361 360 2022 SE FT
## 362 361 2022 SE FT
## 363 362 2022 SE FT
## 364 363 2022 SE FT
## 365 364 2022 SE FT
## 366 365 2022 SE FT
## 367 366 2022 SE FT
## 368 367 2022 MI FT
## 369 368 2022 EX FT
## 370 369 2022 SE FT
## 371 370 2022 SE FT
## 372 371 2022 SE FT
## 373 372 2022 SE FT
## 374 373 2022 MI FT
## 375 374 2022 MI FT
## 376 375 2022 EX FT
## 377 376 2022 SE FT
## 378 377 2022 SE FT
## 379 378 2022 SE FT
## 380 379 2022 SE FT
## 381 380 2022 SE FT
## 382 381 2022 SE FT
## 383 382 2022 SE FT
## 384 383 2022 SE FT
## 385 384 2022 EX FT
## 386 385 2022 SE FT
## 387 386 2022 EN FT
## 388 387 2022 SE FT
## 389 388 2022 SE FT
## 390 389 2022 MI FT
## 391 390 2022 MI FT
## 392 391 2022 MI FT
## 393 392 2022 SE FT
## 394 393 2022 SE FT
## 395 394 2022 SE FT
## 396 395 2022 SE FT
## 397 396 2022 MI FT
## 398 397 2022 MI FT
## 399 398 2022 SE FT
## 400 399 2022 SE FT
## 401 400 2022 SE FT
## 402 401 2022 SE FT
## 403 402 2022 SE FT
## 404 403 2022 SE FT
## 405 404 2022 SE FT
## 406 405 2022 MI FT
## 407 406 2022 MI FT
## 408 407 2022 SE FT
## 409 408 2022 MI FT
## 410 409 2022 SE FT
## 411 410 2022 MI FT
## 412 411 2022 MI FT
## 413 412 2022 MI FT
## 414 413 2022 MI FT
## 415 414 2022 MI FT
## 416 415 2022 MI FT
## 417 416 2022 SE FT
## 418 417 2022 SE FT
## 419 418 2022 MI FT
## 420 419 2022 MI FT
## 421 420 2022 MI FT
## 422 421 2022 MI FT
## 423 422 2022 MI FT
## 424 423 2022 SE FT
## 425 424 2022 SE FT
## 426 425 2022 MI FT
## 427 426 2022 SE FT
## 428 427 2022 MI FT
## 429 428 2022 SE FT
## 430 429 2022 MI FT
## 431 430 2022 MI FT
## 432 431 2022 MI FT
## 433 432 2022 MI FT
## 434 433 2022 MI FT
## 435 434 2022 MI FT
## 436 435 2022 MI FT
## 437 436 2022 MI FT
## 438 437 2022 MI FT
## 439 438 2022 SE FT
## 440 439 2022 SE FT
## 441 440 2022 MI FT
## 442 441 2022 MI FT
## 443 442 2022 MI FT
## 444 443 2022 MI FT
## 445 444 2022 SE FT
## 446 445 2022 MI FT
## 447 446 2022 SE FT
## 448 447 2022 SE FT
## 449 448 2022 SE FT
## 450 449 2022 EN FT
## 451 450 2022 SE FT
## 452 451 2022 MI FT
## 453 452 2022 EX FT
## 454 453 2022 MI FT
## 455 454 2022 EN FT
## 456 455 2022 MI FT
## 457 456 2022 SE FT
## 458 457 2022 SE FT
## 459 458 2022 MI FT
## 460 459 2022 MI FT
## 461 460 2022 MI FT
## 462 461 2022 EN FT
## 463 462 2022 MI PT
## 464 463 2022 EN FT
## 465 464 2022 SE FT
## 466 465 2022 EN FT
## 467 466 2022 SE FT
## 468 467 2022 SE FT
## 469 468 2022 SE FT
## 470 469 2022 SE FT
## 471 470 2022 MI FT
## 472 471 2022 MI FT
## 473 472 2022 SE FT
## 474 473 2022 SE FT
## 475 474 2022 MI FT
## 476 475 2022 MI FT
## 477 476 2022 SE FT
## 478 477 2022 SE FT
## 479 478 2022 MI FT
## 480 479 2022 MI FT
## 481 480 2022 SE FT
## 482 481 2022 SE FT
## 483 482 2022 EX FT
## 484 483 2022 EX FT
## 485 484 2022 SE FT
## 486 485 2022 SE FT
## 487 486 2022 SE FT
## 488 487 2022 EN PT
## 489 488 2022 MI FL
## 490 489 2022 EN CT
## 491 490 2022 SE FT
## 492 491 2022 MI FT
## 493 492 2022 MI FT
## 494 493 2022 SE FT
## 495 494 2022 SE FT
## 496 495 2022 MI FT
## 497 496 2022 EN FT
## 498 497 2022 SE FT
## 499 498 2022 SE FT
## 500 499 2022 EN FT
## 501 500 2022 SE FT
## 502 501 2022 MI FT
## 503 502 2022 EN FT
## 504 503 2022 MI FT
## 505 504 2022 SE FT
## 506 505 2022 EN FT
## 507 506 2022 MI FT
## 508 507 2022 MI FT
## 509 508 2022 EN FT
## 510 509 2022 MI FT
## 511 510 2022 EN FT
## 512 511 2022 MI FT
## 513 512 2022 EN FT
## 514 513 2022 SE FT
## 515 514 2022 EN FT
## 516 515 2022 MI FT
## 517 516 2022 SE FT
## 518 517 2022 MI FT
## 519 518 2022 MI FT
## 520 519 2022 SE FT
## 521 520 2022 MI FT
## 522 521 2022 EN FT
## 523 522 2022 MI FT
## 524 523 2022 SE FT
## 525 524 2022 MI FT
## 526 525 2022 SE FT
## 527 526 2022 MI FT
## 528 527 2022 SE FT
## 529 528 2022 SE FT
## 530 529 2022 SE FT
## 531 530 2022 MI FT
## 532 531 2022 MI FT
## 533 532 2022 SE FT
## 534 533 2022 SE FT
## 535 534 2022 SE FT
## 536 535 2022 SE FT
## 537 536 2022 SE FT
## 538 537 2022 SE FT
## 539 538 2022 MI FT
## 540 539 2022 MI FT
## 541 540 2022 SE FT
## 542 541 2022 SE FT
## 543 542 2022 MI FT
## 544 543 2022 MI FT
## 545 544 2022 SE FT
## 546 545 2022 SE FT
## 547 546 2022 SE FT
## 548 547 2022 SE FT
## 549 548 2022 SE FT
## 550 549 2022 SE FT
## 551 550 2022 SE FT
## 552 551 2022 SE FT
## 553 552 2022 SE FT
## 554 553 2022 SE FT
## 555 554 2022 SE FT
## 556 555 2022 SE FT
## 557 556 2022 SE FT
## 558 557 2022 SE FT
## 559 558 2022 SE FT
## 560 559 2022 SE FT
## 561 560 2022 SE FT
## 562 561 2022 SE FT
## 563 562 2022 SE FT
## 564 563 2022 SE FT
## 565 564 2022 SE FT
## 566 565 2022 SE FT
## 567 566 2022 SE FT
## 568 567 2022 MI FT
## 569 568 2022 SE FT
## 570 569 2022 SE FT
## 571 570 2022 SE FT
## 572 571 2022 SE FT
## 573 572 2022 SE FT
## 574 573 2022 SE FT
## 575 574 2022 SE FT
## 576 575 2022 SE FT
## 577 576 2022 SE FT
## 578 577 2022 SE FT
## 579 578 2022 SE FT
## 580 579 2022 SE FT
## 581 580 2022 SE FT
## 582 581 2022 SE FT
## 583 582 2022 SE FT
## 584 583 2022 SE FT
## 585 584 2022 SE FT
## 586 585 2022 SE FT
## 587 586 2022 MI FT
## 588 587 2022 SE FT
## 589 588 2022 SE FT
## 590 589 2022 SE FT
## 591 590 2022 SE FT
## 592 591 2022 SE FT
## 593 592 2022 SE FT
## 594 593 2022 SE FT
## 595 594 2022 SE FT
## 596 595 2022 SE FT
## 597 596 2022 SE FT
## 598 597 2022 SE FT
## 599 598 2022 MI FT
## 600 599 2022 MI FT
## 601 600 2022 EN FT
## 602 601 2022 EN FT
## 603 602 2022 SE FT
## 604 603 2022 SE FT
## 605 604 2022 SE FT
## 606 605 2022 SE FT
## 607 606 2022 MI FT
## job_title salary salary_currency
## 1 Data Scientist 70000 EUR
## 2 Machine Learning Scientist 260000 USD
## 3 Big Data Engineer 85000 GBP
## 4 Product Data Analyst 20000 USD
## 5 Machine Learning Engineer 150000 USD
## 6 Data Analyst 72000 USD
## 7 Lead Data Scientist 190000 USD
## 8 Data Scientist 11000000 HUF
## 9 Business Data Analyst 135000 USD
## 10 Lead Data Engineer 125000 USD
## 11 Data Scientist 45000 EUR
## 12 Data Scientist 3000000 INR
## 13 Data Scientist 35000 EUR
## 14 Lead Data Analyst 87000 USD
## 15 Data Analyst 85000 USD
## 16 Data Analyst 8000 USD
## 17 Data Engineer 4450000 JPY
## 18 Big Data Engineer 100000 EUR
## 19 Data Science Consultant 423000 INR
## 20 Lead Data Engineer 56000 USD
## 21 Machine Learning Engineer 299000 CNY
## 22 Product Data Analyst 450000 INR
## 23 Data Engineer 42000 EUR
## 24 BI Data Analyst 98000 USD
## 25 Lead Data Scientist 115000 USD
## 26 Director of Data Science 325000 USD
## 27 Research Scientist 42000 USD
## 28 Data Engineer 720000 MXN
## 29 Business Data Analyst 100000 USD
## 30 Machine Learning Manager 157000 CAD
## 31 Data Engineering Manager 51999 EUR
## 32 Big Data Engineer 70000 USD
## 33 Data Scientist 60000 EUR
## 34 Research Scientist 450000 USD
## 35 Data Analyst 41000 EUR
## 36 Data Engineer 65000 EUR
## 37 Data Science Consultant 103000 USD
## 38 Machine Learning Engineer 250000 USD
## 39 Data Analyst 10000 USD
## 40 Machine Learning Engineer 138000 USD
## 41 Data Scientist 45760 USD
## 42 Data Engineering Manager 70000 EUR
## 43 Machine Learning Infrastructure Engineer 44000 EUR
## 44 Data Engineer 106000 USD
## 45 Data Engineer 88000 GBP
## 46 ML Engineer 14000 EUR
## 47 Data Scientist 60000 GBP
## 48 Data Engineer 188000 USD
## 49 Data Scientist 105000 USD
## 50 Data Engineer 61500 EUR
## 51 Data Analyst 450000 INR
## 52 Data Analyst 91000 USD
## 53 AI Scientist 300000 DKK
## 54 Data Engineer 48000 EUR
## 55 Computer Vision Engineer 60000 USD
## 56 Principal Data Scientist 130000 EUR
## 57 Data Scientist 34000 EUR
## 58 Data Scientist 118000 USD
## 59 Data Scientist 120000 USD
## 60 Data Scientist 138350 USD
## 61 Data Engineer 110000 USD
## 62 Data Engineer 130800 USD
## 63 Data Scientist 19000 EUR
## 64 Data Scientist 412000 USD
## 65 Machine Learning Engineer 40000 EUR
## 66 Data Scientist 55000 EUR
## 67 Data Scientist 43200 EUR
## 68 Data Science Manager 190200 USD
## 69 Data Scientist 105000 USD
## 70 Data Scientist 80000 EUR
## 71 Data Scientist 55000 EUR
## 72 Data Scientist 37000 EUR
## 73 Research Scientist 60000 GBP
## 74 BI Data Analyst 150000 USD
## 75 Head of Data 235000 USD
## 76 Data Scientist 45000 EUR
## 77 BI Data Analyst 100000 USD
## 78 3D Computer Vision Researcher 400000 INR
## 79 ML Engineer 270000 USD
## 80 Data Analyst 80000 USD
## 81 Data Analytics Engineer 67000 EUR
## 82 Data Engineer 140000 USD
## 83 Applied Data Scientist 68000 CAD
## 84 Machine Learning Engineer 40000 EUR
## 85 Director of Data Science 130000 EUR
## 86 Data Engineer 110000 PLN
## 87 Data Analyst 50000 EUR
## 88 Data Analytics Engineer 110000 USD
## 89 Lead Data Analyst 170000 USD
## 90 Data Analyst 80000 USD
## 91 Marketing Data Analyst 75000 EUR
## 92 Data Science Consultant 65000 EUR
## 93 Lead Data Analyst 1450000 INR
## 94 Lead Data Engineer 276000 USD
## 95 Data Scientist 2200000 INR
## 96 Cloud Data Engineer 120000 SGD
## 97 AI Scientist 12000 USD
## 98 Financial Data Analyst 450000 USD
## 99 Computer Vision Software Engineer 70000 USD
## 100 Computer Vision Software Engineer 81000 EUR
## 101 Data Analyst 75000 USD
## 102 Data Engineer 150000 USD
## 103 BI Data Analyst 11000000 HUF
## 104 Data Analyst 62000 USD
## 105 Data Scientist 73000 USD
## 106 Data Analyst 37456 GBP
## 107 Research Scientist 235000 CAD
## 108 Data Engineer 115000 USD
## 109 Data Engineer 150000 USD
## 110 Data Engineer 2250000 INR
## 111 Machine Learning Engineer 80000 EUR
## 112 Director of Data Engineering 82500 GBP
## 113 Lead Data Engineer 75000 GBP
## 114 AI Scientist 12000 USD
## 115 Data Engineer 38400 EUR
## 116 Machine Learning Scientist 225000 USD
## 117 Data Scientist 50000 USD
## 118 Data Science Engineer 34000 EUR
## 119 Data Analyst 90000 USD
## 120 Data Engineer 200000 USD
## 121 Big Data Engineer 60000 USD
## 122 Principal Data Engineer 200000 USD
## 123 Data Analyst 50000 USD
## 124 Applied Data Scientist 80000 GBP
## 125 Data Analyst 8760 EUR
## 126 Principal Data Scientist 151000 USD
## 127 Machine Learning Scientist 120000 USD
## 128 Data Scientist 700000 INR
## 129 Machine Learning Engineer 20000 USD
## 130 Lead Data Scientist 3000000 INR
## 131 Machine Learning Developer 100000 USD
## 132 Data Scientist 42000 EUR
## 133 Applied Machine Learning Scientist 38400 USD
## 134 Computer Vision Engineer 24000 USD
## 135 Data Scientist 100000 USD
## 136 Data Analyst 90000 USD
## 137 ML Engineer 7000000 JPY
## 138 ML Engineer 8500000 JPY
## 139 Principal Data Scientist 220000 USD
## 140 Data Scientist 80000 USD
## 141 Data Analyst 135000 USD
## 142 Data Science Manager 240000 USD
## 143 Data Engineering Manager 150000 USD
## 144 Data Scientist 82500 USD
## 145 Data Engineer 100000 USD
## 146 Machine Learning Engineer 70000 EUR
## 147 Research Scientist 53000 EUR
## 148 Data Engineer 90000 USD
## 149 Data Engineering Manager 153000 USD
## 150 Cloud Data Engineer 160000 USD
## 151 Director of Data Science 168000 USD
## 152 Data Scientist 150000 USD
## 153 Data Scientist 95000 CAD
## 154 Data Scientist 13400 USD
## 155 Data Science Manager 144000 USD
## 156 Data Science Engineer 159500 CAD
## 157 Data Scientist 160000 SGD
## 158 Applied Machine Learning Scientist 423000 USD
## 159 Data Analytics Manager 120000 USD
## 160 Machine Learning Engineer 125000 USD
## 161 Head of Data 230000 USD
## 162 Head of Data Science 85000 USD
## 163 Data Engineer 24000 EUR
## 164 Data Science Consultant 54000 EUR
## 165 Director of Data Science 110000 EUR
## 166 Data Specialist 165000 USD
## 167 Data Engineer 80000 USD
## 168 Director of Data Science 250000 USD
## 169 BI Data Analyst 55000 USD
## 170 Data Architect 150000 USD
## 171 Data Architect 170000 USD
## 172 Data Engineer 60000 GBP
## 173 Data Analyst 60000 USD
## 174 Principal Data Scientist 235000 USD
## 175 Research Scientist 51400 EUR
## 176 Data Engineering Manager 174000 USD
## 177 Data Scientist 58000 MXN
## 178 Data Scientist 30400000 CLP
## 179 Machine Learning Engineer 81000 USD
## 180 Data Scientist 420000 INR
## 181 Big Data Engineer 1672000 INR
## 182 Data Scientist 76760 EUR
## 183 Data Engineer 22000 EUR
## 184 Finance Data Analyst 45000 GBP
## 185 Machine Learning Scientist 12000 USD
## 186 Data Engineer 4000 USD
## 187 Data Analytics Engineer 50000 USD
## 188 Data Science Consultant 59000 EUR
## 189 Data Engineer 65000 EUR
## 190 Machine Learning Engineer 74000 USD
## 191 Data Science Manager 152000 USD
## 192 Machine Learning Engineer 21844 USD
## 193 Big Data Engineer 18000 USD
## 194 Data Science Manager 174000 USD
## 195 Research Scientist 120500 CAD
## 196 Data Scientist 147000 USD
## 197 BI Data Analyst 9272 USD
## 198 Machine Learning Engineer 1799997 INR
## 199 Data Science Manager 4000000 INR
## 200 Data Science Consultant 90000 USD
## 201 Data Scientist 52000 EUR
## 202 Machine Learning Infrastructure Engineer 195000 USD
## 203 Data Scientist 32000 EUR
## 204 Research Scientist 50000 USD
## 205 Data Scientist 160000 USD
## 206 Data Scientist 69600 BRL
## 207 Machine Learning Engineer 200000 USD
## 208 Data Engineer 165000 USD
## 209 Data Engineer 20000 USD
## 210 Data Analytics Manager 120000 USD
## 211 Machine Learning Engineer 21000 EUR
## 212 Research Scientist 48000 EUR
## 213 Data Engineer 48000 GBP
## 214 Big Data Engineer 435000 INR
## 215 Machine Learning Engineer 21000 EUR
## 216 Principal Data Engineer 185000 USD
## 217 Computer Vision Engineer 180000 DKK
## 218 Data Scientist 76760 EUR
## 219 Machine Learning Engineer 75000 EUR
## 220 Data Analytics Manager 140000 USD
## 221 Machine Learning Engineer 180000 PLN
## 222 Data Scientist 85000 GBP
## 223 Data Scientist 2500000 INR
## 224 Data Scientist 40900 GBP
## 225 Machine Learning Scientist 225000 USD
## 226 Principal Data Scientist 416000 USD
## 227 Data Scientist 110000 CAD
## 228 Data Scientist 75000 EUR
## 229 Data Scientist 135000 USD
## 230 Data Analyst 90000 CAD
## 231 Big Data Engineer 1200000 INR
## 232 ML Engineer 256000 USD
## 233 Director of Data Engineering 200000 USD
## 234 Data Analyst 200000 USD
## 235 Data Architect 180000 USD
## 236 Head of Data Science 110000 USD
## 237 Research Scientist 80000 CAD
## 238 Data Scientist 39600 EUR
## 239 Data Scientist 4000 USD
## 240 Data Engineer 1600000 INR
## 241 Data Scientist 130000 CAD
## 242 Data Analyst 80000 USD
## 243 Data Engineer 110000 USD
## 244 Data Scientist 165000 USD
## 245 AI Scientist 1335000 INR
## 246 Data Engineer 52500 GBP
## 247 Data Scientist 31000 EUR
## 248 Data Engineer 108000 TRY
## 249 Data Engineer 70000 GBP
## 250 Principal Data Analyst 170000 USD
## 251 Data Scientist 115000 USD
## 252 Data Scientist 90000 USD
## 253 Principal Data Engineer 600000 USD
## 254 Data Scientist 2100000 INR
## 255 Data Analyst 93000 USD
## 256 Big Data Architect 125000 CAD
## 257 Data Engineer 200000 USD
## 258 Principal Data Scientist 147000 EUR
## 259 Machine Learning Engineer 185000 USD
## 260 Director of Data Science 120000 EUR
## 261 Data Scientist 130000 USD
## 262 Data Analyst 54000 EUR
## 263 Data Scientist 1250000 INR
## 264 Machine Learning Engineer 4900000 INR
## 265 Data Scientist 21600 EUR
## 266 Lead Data Engineer 160000 USD
## 267 Data Engineer 93150 USD
## 268 Data Engineer 111775 USD
## 269 Data Engineer 250000 TRY
## 270 Data Engineer 55000 EUR
## 271 Data Engineer 72500 USD
## 272 Computer Vision Engineer 102000 BRL
## 273 Data Science Consultant 65000 EUR
## 274 Machine Learning Engineer 85000 USD
## 275 Data Scientist 65720 EUR
## 276 Data Scientist 100000 USD
## 277 Data Scientist 58000 USD
## 278 AI Scientist 55000 USD
## 279 Data Scientist 180000 TRY
## 280 Business Data Analyst 50000 EUR
## 281 Data Engineer 112000 USD
## 282 Research Scientist 100000 USD
## 283 Data Engineer 59000 EUR
## 284 Staff Data Scientist 105000 USD
## 285 Research Scientist 69999 USD
## 286 Data Science Manager 7000000 INR
## 287 Head of Data 87000 EUR
## 288 Data Scientist 109000 USD
## 289 Machine Learning Engineer 43200 EUR
## 290 Data Engineer 135000 USD
## 291 Data Analyst 155000 USD
## 292 Data Analyst 120600 USD
## 293 Data Scientist 130000 USD
## 294 Data Scientist 90000 USD
## 295 Data Engineer 170000 USD
## 296 Data Engineer 150000 USD
## 297 Data Analyst 102100 USD
## 298 Data Analyst 84900 USD
## 299 Data Scientist 136620 USD
## 300 Data Scientist 99360 USD
## 301 Data Scientist 90000 GBP
## 302 Data Scientist 80000 GBP
## 303 Data Scientist 146000 USD
## 304 Data Scientist 123000 USD
## 305 Data Engineer 40000 GBP
## 306 Data Analyst 99000 USD
## 307 Data Analyst 116000 USD
## 308 Data Analyst 106260 USD
## 309 Data Analyst 126500 USD
## 310 Data Engineer 242000 USD
## 311 Data Engineer 200000 USD
## 312 Data Scientist 50000 GBP
## 313 Data Scientist 30000 GBP
## 314 Data Engineer 60000 GBP
## 315 Data Engineer 40000 GBP
## 316 Data Scientist 165220 USD
## 317 Data Engineer 35000 GBP
## 318 Data Scientist 120160 USD
## 319 Data Analyst 90320 USD
## 320 Data Engineer 181940 USD
## 321 Data Engineer 132320 USD
## 322 Data Engineer 220110 USD
## 323 Data Engineer 160080 USD
## 324 Data Scientist 180000 USD
## 325 Data Scientist 120000 USD
## 326 Data Analyst 124190 USD
## 327 Data Analyst 130000 USD
## 328 Data Analyst 110000 USD
## 329 Data Analyst 170000 USD
## 330 Data Analyst 115500 USD
## 331 Data Analyst 112900 USD
## 332 Data Analyst 90320 USD
## 333 Data Analyst 112900 USD
## 334 Data Analyst 90320 USD
## 335 Data Engineer 165400 USD
## 336 Data Engineer 132320 USD
## 337 Data Analyst 167000 USD
## 338 Data Engineer 243900 USD
## 339 Data Analyst 136600 USD
## 340 Data Analyst 109280 USD
## 341 Data Engineer 128875 USD
## 342 Data Engineer 93700 USD
## 343 Head of Data Science 224000 USD
## 344 Head of Data Science 167875 USD
## 345 Analytics Engineer 175000 USD
## 346 Data Engineer 156600 USD
## 347 Data Engineer 108800 USD
## 348 Data Scientist 95550 USD
## 349 Data Engineer 113000 USD
## 350 Data Analyst 135000 USD
## 351 Data Science Manager 161342 USD
## 352 Data Science Manager 137141 USD
## 353 Data Scientist 167000 USD
## 354 Data Scientist 123000 USD
## 355 Data Engineer 60000 GBP
## 356 Data Engineer 50000 GBP
## 357 Data Scientist 150000 USD
## 358 Data Scientist 211500 USD
## 359 Data Architect 192400 USD
## 360 Data Architect 90700 USD
## 361 Data Analyst 130000 USD
## 362 Data Analyst 61300 USD
## 363 Data Analyst 130000 USD
## 364 Data Analyst 61300 USD
## 365 Data Engineer 160000 USD
## 366 Data Scientist 138600 USD
## 367 Data Engineer 136000 USD
## 368 Data Analyst 58000 USD
## 369 Analytics Engineer 135000 USD
## 370 Data Scientist 170000 USD
## 371 Data Scientist 123000 USD
## 372 Machine Learning Engineer 189650 USD
## 373 Machine Learning Engineer 164996 USD
## 374 ETL Developer 50000 EUR
## 375 ETL Developer 50000 EUR
## 376 Lead Data Engineer 150000 CAD
## 377 Data Analyst 132000 USD
## 378 Data Engineer 165400 USD
## 379 Data Architect 208775 USD
## 380 Data Architect 147800 USD
## 381 Data Engineer 136994 USD
## 382 Data Engineer 101570 USD
## 383 Data Analyst 128875 USD
## 384 Data Analyst 93700 USD
## 385 Head of Machine Learning 6000000 INR
## 386 Data Engineer 132320 USD
## 387 Machine Learning Engineer 28500 GBP
## 388 Data Analyst 164000 USD
## 389 Data Engineer 155000 USD
## 390 Machine Learning Engineer 95000 GBP
## 391 Machine Learning Engineer 75000 GBP
## 392 AI Scientist 120000 USD
## 393 Data Analyst 112900 USD
## 394 Data Analyst 90320 USD
## 395 Data Analytics Manager 145000 USD
## 396 Data Analytics Manager 105400 USD
## 397 Machine Learning Engineer 80000 EUR
## 398 Data Engineer 90000 GBP
## 399 Data Scientist 215300 USD
## 400 Data Scientist 158200 USD
## 401 Data Engineer 209100 USD
## 402 Data Engineer 154600 USD
## 403 Data Analyst 115934 USD
## 404 Data Analyst 81666 USD
## 405 Data Engineer 175000 USD
## 406 Data Engineer 75000 GBP
## 407 Data Analyst 58000 USD
## 408 Data Engineer 183600 USD
## 409 Data Analyst 40000 GBP
## 410 Data Scientist 180000 USD
## 411 Data Scientist 55000 GBP
## 412 Data Scientist 35000 GBP
## 413 Data Engineer 60000 EUR
## 414 Data Engineer 45000 EUR
## 415 Data Engineer 60000 GBP
## 416 Data Engineer 45000 GBP
## 417 Data Scientist 260000 USD
## 418 Data Science Engineer 60000 USD
## 419 Data Engineer 63900 USD
## 420 Machine Learning Scientist 160000 USD
## 421 Machine Learning Scientist 112300 USD
## 422 Data Science Manager 241000 USD
## 423 Data Science Manager 159000 USD
## 424 Data Scientist 180000 USD
## 425 Data Scientist 80000 USD
## 426 Data Engineer 82900 USD
## 427 Data Engineer 100800 USD
## 428 Data Engineer 45000 EUR
## 429 Data Scientist 140400 USD
## 430 Data Analyst 30000 GBP
## 431 Data Analyst 40000 EUR
## 432 Data Analyst 30000 EUR
## 433 Data Engineer 80000 EUR
## 434 Data Engineer 70000 EUR
## 435 Data Engineer 80000 GBP
## 436 Data Engineer 70000 GBP
## 437 Data Engineer 60000 EUR
## 438 Data Engineer 80000 EUR
## 439 Machine Learning Engineer 189650 USD
## 440 Machine Learning Engineer 164996 USD
## 441 Data Analyst 40000 EUR
## 442 Data Analyst 30000 EUR
## 443 Data Engineer 75000 GBP
## 444 Data Engineer 60000 GBP
## 445 Data Scientist 215300 USD
## 446 Data Engineer 70000 EUR
## 447 Data Engineer 209100 USD
## 448 Data Engineer 154600 USD
## 449 Data Engineer 180000 USD
## 450 ML Engineer 20000 EUR
## 451 Data Engineer 80000 USD
## 452 Machine Learning Developer 100000 CAD
## 453 Director of Data Science 250000 CAD
## 454 Machine Learning Engineer 120000 USD
## 455 Computer Vision Engineer 125000 USD
## 456 NLP Engineer 240000 CNY
## 457 Data Engineer 105000 USD
## 458 Lead Machine Learning Engineer 80000 EUR
## 459 Business Data Analyst 1400000 INR
## 460 Data Scientist 2400000 INR
## 461 Machine Learning Infrastructure Engineer 53000 EUR
## 462 Financial Data Analyst 100000 USD
## 463 Data Engineer 50000 EUR
## 464 Data Scientist 1400000 INR
## 465 Principal Data Scientist 148000 EUR
## 466 Data Engineer 120000 USD
## 467 Research Scientist 144000 USD
## 468 Data Scientist 104890 USD
## 469 Data Engineer 100000 USD
## 470 Data Scientist 140000 USD
## 471 Data Analyst 135000 USD
## 472 Data Analyst 50000 USD
## 473 Data Scientist 220000 USD
## 474 Data Scientist 140000 USD
## 475 Data Scientist 140000 GBP
## 476 Data Scientist 70000 GBP
## 477 Data Scientist 185100 USD
## 478 Machine Learning Engineer 220000 USD
## 479 Data Scientist 200000 USD
## 480 Data Scientist 120000 USD
## 481 Machine Learning Engineer 120000 USD
## 482 Machine Learning Engineer 65000 USD
## 483 Data Engineer 324000 USD
## 484 Data Engineer 216000 USD
## 485 Data Engineer 210000 USD
## 486 Machine Learning Engineer 120000 USD
## 487 Data Scientist 230000 USD
## 488 Data Scientist 100000 USD
## 489 Data Scientist 100000 USD
## 490 Applied Machine Learning Scientist 29000 EUR
## 491 Head of Data 200000 USD
## 492 Principal Data Analyst 75000 USD
## 493 Data Scientist 150000 PLN
## 494 Machine Learning Developer 100000 CAD
## 495 Data Scientist 100000 USD
## 496 Machine Learning Scientist 153000 USD
## 497 Data Engineer 52800 EUR
## 498 Data Scientist 165000 USD
## 499 Research Scientist 85000 EUR
## 500 Data Scientist 66500 CAD
## 501 Machine Learning Engineer 57000 EUR
## 502 Head of Data 30000 EUR
## 503 Data Scientist 40000 USD
## 504 Machine Learning Engineer 121000 AUD
## 505 Data Engineer 115000 USD
## 506 Data Scientist 120000 AUD
## 507 Applied Machine Learning Scientist 75000 USD
## 508 Research Scientist 59000 EUR
## 509 Research Scientist 120000 USD
## 510 Applied Data Scientist 157000 USD
## 511 Computer Vision Software Engineer 150000 USD
## 512 Business Data Analyst 90000 CAD
## 513 Data Engineer 65000 USD
## 514 Machine Learning Engineer 65000 EUR
## 515 Data Analytics Engineer 20000 USD
## 516 Data Scientist 48000 USD
## 517 Data Science Manager 152500 USD
## 518 Data Engineer 62000 EUR
## 519 Data Scientist 115000 CHF
## 520 Applied Data Scientist 380000 USD
## 521 Data Scientist 88000 CAD
## 522 Computer Vision Engineer 10000 USD
## 523 Data Analyst 20000 USD
## 524 Data Analytics Lead 405000 USD
## 525 Data Scientist 135000 USD
## 526 Applied Data Scientist 177000 USD
## 527 Data Scientist 78000 USD
## 528 Data Analyst 135000 USD
## 529 Data Analyst 100000 USD
## 530 Data Analyst 90320 USD
## 531 Data Analyst 85000 USD
## 532 Data Analyst 75000 USD
## 533 Machine Learning Engineer 214000 USD
## 534 Machine Learning Engineer 192600 USD
## 535 Data Architect 266400 USD
## 536 Data Architect 213120 USD
## 537 Data Analyst 112900 USD
## 538 Data Engineer 155000 USD
## 539 Data Scientist 141300 USD
## 540 Data Scientist 102100 USD
## 541 Data Analyst 115934 USD
## 542 Data Analyst 81666 USD
## 543 Data Engineer 206699 USD
## 544 Data Engineer 99100 USD
## 545 Data Engineer 130000 USD
## 546 Data Engineer 115000 USD
## 547 Data Engineer 110500 USD
## 548 Data Engineer 130000 USD
## 549 Data Analyst 99050 USD
## 550 Data Engineer 160000 USD
## 551 Data Scientist 205300 USD
## 552 Data Scientist 140400 USD
## 553 Data Scientist 176000 USD
## 554 Data Scientist 144000 USD
## 555 Data Engineer 200100 USD
## 556 Data Engineer 160000 USD
## 557 Data Engineer 145000 USD
## 558 Data Engineer 70500 USD
## 559 Data Scientist 205300 USD
## 560 Data Scientist 140400 USD
## 561 Analytics Engineer 205300 USD
## 562 Analytics Engineer 184700 USD
## 563 Data Engineer 175100 USD
## 564 Data Engineer 140250 USD
## 565 Data Analyst 116150 USD
## 566 Data Engineer 54000 USD
## 567 Data Analyst 170000 USD
## 568 Data Analyst 50000 GBP
## 569 Data Analyst 80000 USD
## 570 Data Scientist 140000 USD
## 571 Data Scientist 210000 USD
## 572 Data Scientist 140000 USD
## 573 Data Analyst 100000 USD
## 574 Data Analyst 69000 USD
## 575 Data Scientist 210000 USD
## 576 Data Scientist 140000 USD
## 577 Data Scientist 210000 USD
## 578 Data Analyst 150075 USD
## 579 Data Engineer 100000 USD
## 580 Data Engineer 25000 USD
## 581 Data Analyst 126500 USD
## 582 Data Analyst 106260 USD
## 583 Data Engineer 220110 USD
## 584 Data Engineer 160080 USD
## 585 Data Analyst 105000 USD
## 586 Data Analyst 110925 USD
## 587 Data Analyst 35000 GBP
## 588 Data Scientist 140000 USD
## 589 Data Analyst 99000 USD
## 590 Data Analyst 60000 USD
## 591 Data Architect 192564 USD
## 592 Data Architect 144854 USD
## 593 Data Scientist 230000 USD
## 594 Data Scientist 150000 USD
## 595 Data Analytics Manager 150260 USD
## 596 Data Analytics Manager 109280 USD
## 597 Data Scientist 210000 USD
## 598 Data Analyst 170000 USD
## 599 Data Scientist 160000 USD
## 600 Data Scientist 130000 USD
## 601 Data Analyst 67000 USD
## 602 Data Analyst 52000 USD
## 603 Data Engineer 154000 USD
## 604 Data Engineer 126000 USD
## 605 Data Analyst 129000 USD
## 606 Data Analyst 150000 USD
## 607 AI Scientist 200000 USD
## salary_in_usd employee_residence remote_ratio company_location company_size
## 1 79833 DE 0 DE L
## 2 260000 JP 0 JP S
## 3 109024 GB 50 GB M
## 4 20000 HN 0 HN S
## 5 150000 US 50 US L
## 6 72000 US 100 US L
## 7 190000 US 100 US S
## 8 35735 HU 50 HU L
## 9 135000 US 100 US L
## 10 125000 NZ 50 NZ S
## 11 51321 FR 0 FR S
## 12 40481 IN 0 IN L
## 13 39916 FR 0 FR M
## 14 87000 US 100 US L
## 15 85000 US 100 US L
## 16 8000 PK 50 PK L
## 17 41689 JP 100 JP S
## 18 114047 PL 100 GB S
## 19 5707 IN 50 IN M
## 20 56000 PT 100 US M
## 21 43331 CN 0 CN M
## 22 6072 IN 100 IN L
## 23 47899 GR 50 GR L
## 24 98000 US 0 US M
## 25 115000 AE 0 AE L
## 26 325000 US 100 US L
## 27 42000 NL 50 NL L
## 28 33511 MX 0 MX S
## 29 100000 US 100 US L
## 30 117104 CA 50 CA L
## 31 59303 DE 100 DE S
## 32 70000 US 100 US L
## 33 68428 GR 100 US L
## 34 450000 US 0 US M
## 35 46759 FR 50 FR L
## 36 74130 AT 50 AT L
## 37 103000 US 100 US L
## 38 250000 US 50 US L
## 39 10000 NG 100 NG S
## 40 138000 US 100 US S
## 41 45760 PH 100 US S
## 42 79833 ES 50 ES L
## 43 50180 PT 0 PT M
## 44 106000 US 100 US L
## 45 112872 GB 50 GB L
## 46 15966 DE 100 DE S
## 47 76958 GB 100 GB S
## 48 188000 US 100 US L
## 49 105000 US 100 US L
## 50 70139 FR 50 FR L
## 51 6072 IN 0 IN S
## 52 91000 US 100 US L
## 53 45896 DK 50 DK S
## 54 54742 PK 100 DE L
## 55 60000 RU 100 US S
## 56 148261 DE 100 DE M
## 57 38776 ES 100 ES M
## 58 118000 US 100 US M
## 59 120000 US 50 US L
## 60 138350 US 100 US M
## 61 110000 US 100 US L
## 62 130800 ES 100 US M
## 63 21669 IT 50 IT S
## 64 412000 US 100 US L
## 65 45618 HR 100 HR S
## 66 62726 DE 50 DE S
## 67 49268 DE 0 DE S
## 68 190200 US 100 US M
## 69 105000 US 100 US S
## 70 91237 AT 0 AT S
## 71 62726 FR 50 LU S
## 72 42197 FR 50 FR S
## 73 82528 GB 50 GB L
## 74 150000 IN 100 US L
## 75 235000 US 100 US L
## 76 53192 FR 50 FR L
## 77 100000 US 100 US M
## 78 5409 IN 50 IN M
## 79 270000 US 100 US L
## 80 80000 US 100 US M
## 81 79197 DE 100 DE L
## 82 140000 US 100 US L
## 83 54238 GB 50 CA L
## 84 47282 ES 100 ES S
## 85 153667 IT 100 PL L
## 86 28476 PL 100 PL L
## 87 59102 FR 50 FR M
## 88 110000 US 100 US L
## 89 170000 US 100 US L
## 90 80000 BG 100 US S
## 91 88654 GR 100 DK L
## 92 76833 DE 100 DE S
## 93 19609 IN 100 IN L
## 94 276000 US 0 US L
## 95 29751 IN 50 IN L
## 96 89294 SG 50 SG L
## 97 12000 BR 100 US S
## 98 450000 US 100 US L
## 99 70000 US 100 US M
## 100 95746 DE 100 US S
## 101 75000 US 0 US L
## 102 150000 US 100 US L
## 103 36259 HU 50 US L
## 104 62000 US 0 US L
## 105 73000 US 0 US L
## 106 51519 GB 50 GB L
## 107 187442 CA 100 CA L
## 108 115000 US 100 US S
## 109 150000 US 100 US M
## 110 30428 IN 100 IN L
## 111 94564 DE 50 DE L
## 112 113476 GB 100 GB M
## 113 103160 GB 100 GB S
## 114 12000 PK 100 US M
## 115 45391 NL 100 NL L
## 116 225000 US 100 US L
## 117 50000 NG 100 NG L
## 118 40189 GR 100 GR M
## 119 90000 US 100 US S
## 120 200000 US 100 US L
## 121 60000 ES 50 RO M
## 122 200000 US 100 US M
## 123 50000 US 100 US M
## 124 110037 GB 0 GB L
## 125 10354 ES 50 ES M
## 126 151000 US 100 US L
## 127 120000 US 50 US S
## 128 9466 IN 0 IN S
## 129 20000 IN 100 IN S
## 130 40570 IN 50 IN L
## 131 100000 IQ 50 IQ S
## 132 49646 FR 50 FR M
## 133 38400 VN 100 US M
## 134 24000 BR 100 BR M
## 135 100000 US 0 US S
## 136 90000 US 100 US M
## 137 63711 JP 50 JP S
## 138 77364 JP 50 JP S
## 139 220000 US 0 US L
## 140 80000 US 100 US M
## 141 135000 US 100 US L
## 142 240000 US 0 US L
## 143 150000 US 0 US L
## 144 82500 US 100 US S
## 145 100000 US 100 US L
## 146 82744 BE 50 BE M
## 147 62649 FR 50 FR M
## 148 90000 US 100 US L
## 149 153000 US 100 US L
## 150 160000 BR 100 US S
## 151 168000 JP 0 JP S
## 152 150000 US 100 US M
## 153 75774 CA 100 CA L
## 154 13400 UA 100 UA L
## 155 144000 US 100 US L
## 156 127221 CA 50 CA L
## 157 119059 SG 100 IL M
## 158 423000 US 50 US L
## 159 120000 US 100 US M
## 160 125000 US 100 US S
## 161 230000 RU 50 RU L
## 162 85000 RU 0 RU M
## 163 28369 MT 50 MT L
## 164 63831 DE 50 DE L
## 165 130026 DE 50 DE M
## 166 165000 US 100 US L
## 167 80000 US 100 US L
## 168 250000 US 0 US L
## 169 55000 US 50 US S
## 170 150000 US 100 US L
## 171 170000 US 100 US L
## 172 82528 GB 100 GB L
## 173 60000 US 100 US S
## 174 235000 US 100 US L
## 175 60757 PT 50 PT L
## 176 174000 US 100 US L
## 177 2859 MX 0 MX S
## 178 40038 CL 100 CL L
## 179 81000 US 50 US S
## 180 5679 IN 100 US S
## 181 22611 IN 0 IN L
## 182 90734 DE 50 DE L
## 183 26005 RO 0 US L
## 184 61896 GB 50 GB L
## 185 12000 PK 50 PK M
## 186 4000 IR 100 IR M
## 187 50000 VN 100 GB M
## 188 69741 FR 100 ES S
## 189 76833 RO 50 GB S
## 190 74000 JP 50 JP S
## 191 152000 US 100 FR L
## 192 21844 CO 50 CO M
## 193 18000 MD 0 MD S
## 194 174000 US 100 US L
## 195 96113 CA 50 CA L
## 196 147000 US 50 US L
## 197 9272 KE 100 KE S
## 198 24342 IN 100 IN L
## 199 54094 IN 50 US L
## 200 90000 US 100 US S
## 201 61467 DE 50 AT M
## 202 195000 US 100 US M
## 203 37825 ES 100 ES L
## 204 50000 FR 100 US S
## 205 160000 US 100 US L
## 206 12901 BR 0 BR S
## 207 200000 US 100 US L
## 208 165000 US 0 US M
## 209 20000 IT 0 US L
## 210 120000 US 0 US L
## 211 24823 SI 50 SI L
## 212 56738 FR 50 FR S
## 213 66022 HK 50 GB S
## 214 5882 IN 0 CH L
## 215 24823 DE 50 DE M
## 216 185000 US 100 US L
## 217 28609 DK 50 DK S
## 218 90734 DE 50 DE L
## 219 88654 BE 100 BE M
## 220 140000 US 100 US L
## 221 46597 PL 100 PL L
## 222 116914 GB 50 GB L
## 223 33808 IN 0 IN M
## 224 56256 GB 50 GB L
## 225 225000 US 100 CA L
## 226 416000 US 100 US S
## 227 87738 CA 100 CA S
## 228 88654 DE 50 DE L
## 229 135000 US 0 US L
## 230 71786 CA 100 CA M
## 231 16228 IN 100 IN L
## 232 256000 US 100 US S
## 233 200000 US 100 US L
## 234 200000 US 100 US L
## 235 180000 US 100 US L
## 236 110000 US 0 US S
## 237 63810 CA 100 CA M
## 238 46809 ES 100 ES M
## 239 4000 VN 0 VN M
## 240 21637 IN 50 IN M
## 241 103691 CA 100 CA L
## 242 80000 US 100 US L
## 243 110000 US 100 US L
## 244 165000 US 100 US L
## 245 18053 IN 100 AS S
## 246 72212 GB 50 GB L
## 247 36643 FR 50 FR L
## 248 12103 TR 0 TR M
## 249 96282 GB 50 GB L
## 250 170000 US 100 US M
## 251 115000 US 50 US L
## 252 90000 US 100 US S
## 253 600000 US 100 US L
## 254 28399 IN 100 IN M
## 255 93000 US 100 US L
## 256 99703 CA 50 CA M
## 257 200000 US 100 US L
## 258 173762 DE 100 DE M
## 259 185000 US 50 US L
## 260 141846 DE 0 DE L
## 261 130000 US 50 US L
## 262 63831 DE 50 DE L
## 263 16904 IN 100 IN S
## 264 66265 IN 0 IN L
## 265 25532 RS 100 DE S
## 266 160000 PR 50 US S
## 267 93150 US 0 US M
## 268 111775 US 0 US M
## 269 28016 TR 100 TR M
## 270 65013 DE 50 DE M
## 271 72500 US 100 US L
## 272 18907 BR 0 BR M
## 273 76833 DE 0 DE L
## 274 85000 NL 100 DE S
## 275 77684 FR 50 FR M
## 276 100000 US 100 US M
## 277 58000 US 50 US L
## 278 55000 ES 100 ES L
## 279 20171 TR 50 TR L
## 280 59102 LU 100 LU L
## 281 112000 US 100 US L
## 282 100000 JE 0 CN L
## 283 69741 NL 100 NL L
## 284 105000 US 100 US M
## 285 69999 CZ 50 CZ L
## 286 94665 IN 50 IN L
## 287 102839 SI 100 SI L
## 288 109000 US 50 US L
## 289 51064 IT 50 IT L
## 290 135000 US 100 US M
## 291 155000 US 100 US M
## 292 120600 US 100 US M
## 293 130000 US 0 US M
## 294 90000 US 0 US M
## 295 170000 US 100 US M
## 296 150000 US 100 US M
## 297 102100 US 100 US M
## 298 84900 US 100 US M
## 299 136620 US 100 US M
## 300 99360 US 100 US M
## 301 117789 GB 0 GB M
## 302 104702 GB 0 GB M
## 303 146000 US 100 US M
## 304 123000 US 100 US M
## 305 52351 GB 100 GB M
## 306 99000 US 0 US M
## 307 116000 US 0 US M
## 308 106260 US 0 US M
## 309 126500 US 0 US M
## 310 242000 US 100 US M
## 311 200000 US 100 US M
## 312 65438 GB 0 GB M
## 313 39263 GB 0 GB M
## 314 78526 GB 0 GB M
## 315 52351 GB 0 GB M
## 316 165220 US 100 US M
## 317 45807 GB 100 GB M
## 318 120160 US 100 US M
## 319 90320 US 100 US M
## 320 181940 US 0 US M
## 321 132320 US 0 US M
## 322 220110 US 0 US M
## 323 160080 US 0 US M
## 324 180000 US 0 US L
## 325 120000 US 0 US L
## 326 124190 US 100 US M
## 327 130000 US 100 US M
## 328 110000 US 100 US M
## 329 170000 US 100 US M
## 330 115500 US 100 US M
## 331 112900 US 100 US M
## 332 90320 US 100 US M
## 333 112900 US 100 US M
## 334 90320 US 100 US M
## 335 165400 US 100 US M
## 336 132320 US 100 US M
## 337 167000 US 100 US M
## 338 243900 US 100 US M
## 339 136600 US 100 US M
## 340 109280 US 100 US M
## 341 128875 US 100 US M
## 342 93700 US 100 US M
## 343 224000 US 100 US M
## 344 167875 US 100 US M
## 345 175000 US 100 US M
## 346 156600 US 100 US M
## 347 108800 US 0 US M
## 348 95550 US 0 US M
## 349 113000 US 0 US L
## 350 135000 US 100 US M
## 351 161342 US 100 US M
## 352 137141 US 100 US M
## 353 167000 US 100 US M
## 354 123000 US 100 US M
## 355 78526 GB 0 GB M
## 356 65438 GB 0 GB M
## 357 150000 US 0 US M
## 358 211500 US 100 US M
## 359 192400 CA 100 CA M
## 360 90700 CA 100 CA M
## 361 130000 CA 100 CA M
## 362 61300 CA 100 CA M
## 363 130000 CA 100 CA M
## 364 61300 CA 100 CA M
## 365 160000 US 0 US L
## 366 138600 US 100 US M
## 367 136000 US 0 US M
## 368 58000 US 0 US S
## 369 135000 US 100 US M
## 370 170000 US 100 US M
## 371 123000 US 100 US M
## 372 189650 US 0 US M
## 373 164996 US 0 US M
## 374 54957 GR 0 GR M
## 375 54957 GR 0 GR M
## 376 118187 CA 100 CA S
## 377 132000 US 0 US M
## 378 165400 US 100 US M
## 379 208775 US 100 US M
## 380 147800 US 100 US M
## 381 136994 US 100 US M
## 382 101570 US 100 US M
## 383 128875 US 100 US M
## 384 93700 US 100 US M
## 385 79039 IN 50 IN L
## 386 132320 US 100 US M
## 387 37300 GB 100 GB L
## 388 164000 US 0 US M
## 389 155000 US 100 US M
## 390 124333 GB 0 GB M
## 391 98158 GB 0 GB M
## 392 120000 US 0 US M
## 393 112900 US 100 US M
## 394 90320 US 100 US M
## 395 145000 US 100 US M
## 396 105400 US 100 US M
## 397 87932 FR 100 DE M
## 398 117789 GB 0 GB M
## 399 215300 US 100 US L
## 400 158200 US 100 US L
## 401 209100 US 100 US L
## 402 154600 US 100 US L
## 403 115934 US 0 US M
## 404 81666 US 0 US M
## 405 175000 US 100 US M
## 406 98158 GB 0 GB M
## 407 58000 US 0 US S
## 408 183600 US 100 US L
## 409 52351 GB 100 GB M
## 410 180000 US 100 US M
## 411 71982 GB 0 GB M
## 412 45807 GB 0 GB M
## 413 65949 GR 100 GR M
## 414 49461 GR 100 GR M
## 415 78526 GB 100 GB M
## 416 58894 GB 100 GB M
## 417 260000 US 100 US M
## 418 60000 AR 100 MX L
## 419 63900 US 0 US M
## 420 160000 US 100 US L
## 421 112300 US 100 US L
## 422 241000 US 100 US M
## 423 159000 US 100 US M
## 424 180000 US 0 US M
## 425 80000 US 0 US M
## 426 82900 US 0 US M
## 427 100800 US 100 US L
## 428 49461 ES 100 ES M
## 429 140400 US 0 US L
## 430 39263 GB 100 GB M
## 431 43966 ES 100 ES M
## 432 32974 ES 100 ES M
## 433 87932 ES 100 ES M
## 434 76940 ES 100 ES M
## 435 104702 GB 100 GB M
## 436 91614 GB 100 GB M
## 437 65949 ES 100 ES M
## 438 87932 GR 100 GR M
## 439 189650 US 0 US M
## 440 164996 US 0 US M
## 441 43966 GR 100 GR M
## 442 32974 GR 100 GR M
## 443 98158 GB 100 GB M
## 444 78526 GB 100 GB M
## 445 215300 US 0 US L
## 446 76940 GR 100 GR M
## 447 209100 US 100 US L
## 448 154600 US 100 US L
## 449 180000 US 100 US M
## 450 21983 PT 100 PT L
## 451 80000 US 100 US M
## 452 78791 CA 100 CA M
## 453 196979 CA 50 CA L
## 454 120000 US 100 US S
## 455 125000 US 0 US M
## 456 37236 US 50 US L
## 457 105000 US 100 US M
## 458 87932 DE 0 DE M
## 459 18442 IN 100 IN M
## 460 31615 IN 100 IN L
## 461 58255 PT 50 PT L
## 462 100000 US 50 US L
## 463 54957 DE 50 DE L
## 464 18442 IN 100 IN M
## 465 162674 DE 100 DE M
## 466 120000 US 100 US M
## 467 144000 US 50 US L
## 468 104890 US 100 US M
## 469 100000 US 100 US M
## 470 140000 US 100 US M
## 471 135000 US 100 US M
## 472 50000 US 100 US M
## 473 220000 US 100 US M
## 474 140000 US 100 US M
## 475 183228 GB 0 GB M
## 476 91614 GB 0 GB M
## 477 185100 US 100 US M
## 478 220000 US 100 US M
## 479 200000 US 100 US M
## 480 120000 US 100 US M
## 481 120000 AE 100 AE S
## 482 65000 AE 100 AE S
## 483 324000 US 100 US M
## 484 216000 US 100 US M
## 485 210000 US 100 US M
## 486 120000 US 100 US M
## 487 230000 US 100 US M
## 488 100000 DZ 50 DZ M
## 489 100000 CA 100 US M
## 490 31875 TN 100 CZ M
## 491 200000 MY 100 US M
## 492 75000 CA 100 CA S
## 493 35590 PL 100 PL L
## 494 78791 CA 100 CA M
## 495 100000 BR 100 US M
## 496 153000 US 50 US M
## 497 58035 PK 100 DE M
## 498 165000 US 100 US M
## 499 93427 FR 50 FR L
## 500 52396 CA 100 CA L
## 501 62651 NL 100 NL L
## 502 32974 EE 100 EE S
## 503 40000 JP 100 MY L
## 504 87425 AU 100 AU L
## 505 115000 US 100 US M
## 506 86703 AU 50 AU M
## 507 75000 BO 100 US L
## 508 64849 AT 0 AT L
## 509 120000 US 100 US L
## 510 157000 US 100 US L
## 511 150000 AU 100 AU S
## 512 70912 CA 50 CA L
## 513 65000 US 100 US S
## 514 71444 IE 100 IE S
## 515 20000 PK 0 PK M
## 516 48000 RU 100 US S
## 517 152500 US 100 US M
## 518 68147 FR 100 FR M
## 519 122346 CH 0 CH L
## 520 380000 US 100 US L
## 521 69336 CA 100 CA M
## 522 10000 PT 100 LU M
## 523 20000 GR 100 GR S
## 524 405000 US 100 US L
## 525 135000 US 100 US L
## 526 177000 US 100 US L
## 527 78000 US 100 US M
## 528 135000 US 100 US M
## 529 100000 US 100 US M
## 530 90320 US 100 US M
## 531 85000 CA 0 CA M
## 532 75000 CA 0 CA M
## 533 214000 US 100 US M
## 534 192600 US 100 US M
## 535 266400 US 100 US M
## 536 213120 US 100 US M
## 537 112900 US 100 US M
## 538 155000 US 100 US M
## 539 141300 US 0 US M
## 540 102100 US 0 US M
## 541 115934 US 100 US M
## 542 81666 US 100 US M
## 543 206699 US 0 US M
## 544 99100 US 0 US M
## 545 130000 US 100 US M
## 546 115000 US 100 US M
## 547 110500 US 100 US M
## 548 130000 US 100 US M
## 549 99050 US 100 US M
## 550 160000 US 100 US M
## 551 205300 US 0 US L
## 552 140400 US 0 US L
## 553 176000 US 100 US M
## 554 144000 US 100 US M
## 555 200100 US 100 US M
## 556 160000 US 100 US M
## 557 145000 US 100 US M
## 558 70500 US 0 US M
## 559 205300 US 0 US M
## 560 140400 US 0 US M
## 561 205300 US 0 US M
## 562 184700 US 0 US M
## 563 175100 US 100 US M
## 564 140250 US 100 US M
## 565 116150 US 100 US M
## 566 54000 US 0 US M
## 567 170000 US 100 US M
## 568 65438 GB 0 GB M
## 569 80000 US 100 US M
## 570 140000 US 100 US M
## 571 210000 US 100 US M
## 572 140000 US 100 US M
## 573 100000 US 100 US M
## 574 69000 US 100 US M
## 575 210000 US 100 US M
## 576 140000 US 100 US M
## 577 210000 US 100 US M
## 578 150075 US 100 US M
## 579 100000 US 100 US M
## 580 25000 US 100 US M
## 581 126500 US 100 US M
## 582 106260 US 100 US M
## 583 220110 US 100 US M
## 584 160080 US 100 US M
## 585 105000 US 100 US M
## 586 110925 US 100 US M
## 587 45807 GB 0 GB M
## 588 140000 US 100 US M
## 589 99000 US 0 US M
## 590 60000 US 100 US M
## 591 192564 US 100 US M
## 592 144854 US 100 US M
## 593 230000 US 100 US M
## 594 150000 US 100 US M
## 595 150260 US 100 US M
## 596 109280 US 100 US M
## 597 210000 US 100 US M
## 598 170000 US 100 US M
## 599 160000 US 100 US M
## 600 130000 US 100 US M
## 601 67000 CA 0 CA M
## 602 52000 CA 0 CA M
## 603 154000 US 100 US M
## 604 126000 US 100 US M
## 605 129000 US 0 US M
## 606 150000 US 100 US M
## 607 200000 IN 100 US L
#VISUALISASI PROPORSI
salary_data <- c(data.visdat$salary_currency)
salary_data
## [1] "EUR" "USD" "GBP" "USD" "USD" "USD" "USD" "HUF" "USD" "USD" "EUR" "INR"
## [13] "EUR" "USD" "USD" "USD" "JPY" "EUR" "INR" "USD" "CNY" "INR" "EUR" "USD"
## [25] "USD" "USD" "USD" "MXN" "USD" "CAD" "EUR" "USD" "EUR" "USD" "EUR" "EUR"
## [37] "USD" "USD" "USD" "USD" "USD" "EUR" "EUR" "USD" "GBP" "EUR" "GBP" "USD"
## [49] "USD" "EUR" "INR" "USD" "DKK" "EUR" "USD" "EUR" "EUR" "USD" "USD" "USD"
## [61] "USD" "USD" "EUR" "USD" "EUR" "EUR" "EUR" "USD" "USD" "EUR" "EUR" "EUR"
## [73] "GBP" "USD" "USD" "EUR" "USD" "INR" "USD" "USD" "EUR" "USD" "CAD" "EUR"
## [85] "EUR" "PLN" "EUR" "USD" "USD" "USD" "EUR" "EUR" "INR" "USD" "INR" "SGD"
## [97] "USD" "USD" "USD" "EUR" "USD" "USD" "HUF" "USD" "USD" "GBP" "CAD" "USD"
## [109] "USD" "INR" "EUR" "GBP" "GBP" "USD" "EUR" "USD" "USD" "EUR" "USD" "USD"
## [121] "USD" "USD" "USD" "GBP" "EUR" "USD" "USD" "INR" "USD" "INR" "USD" "EUR"
## [133] "USD" "USD" "USD" "USD" "JPY" "JPY" "USD" "USD" "USD" "USD" "USD" "USD"
## [145] "USD" "EUR" "EUR" "USD" "USD" "USD" "USD" "USD" "CAD" "USD" "USD" "CAD"
## [157] "SGD" "USD" "USD" "USD" "USD" "USD" "EUR" "EUR" "EUR" "USD" "USD" "USD"
## [169] "USD" "USD" "USD" "GBP" "USD" "USD" "EUR" "USD" "MXN" "CLP" "USD" "INR"
## [181] "INR" "EUR" "EUR" "GBP" "USD" "USD" "USD" "EUR" "EUR" "USD" "USD" "USD"
## [193] "USD" "USD" "CAD" "USD" "USD" "INR" "INR" "USD" "EUR" "USD" "EUR" "USD"
## [205] "USD" "BRL" "USD" "USD" "USD" "USD" "EUR" "EUR" "GBP" "INR" "EUR" "USD"
## [217] "DKK" "EUR" "EUR" "USD" "PLN" "GBP" "INR" "GBP" "USD" "USD" "CAD" "EUR"
## [229] "USD" "CAD" "INR" "USD" "USD" "USD" "USD" "USD" "CAD" "EUR" "USD" "INR"
## [241] "CAD" "USD" "USD" "USD" "INR" "GBP" "EUR" "TRY" "GBP" "USD" "USD" "USD"
## [253] "USD" "INR" "USD" "CAD" "USD" "EUR" "USD" "EUR" "USD" "EUR" "INR" "INR"
## [265] "EUR" "USD" "USD" "USD" "TRY" "EUR" "USD" "BRL" "EUR" "USD" "EUR" "USD"
## [277] "USD" "USD" "TRY" "EUR" "USD" "USD" "EUR" "USD" "USD" "INR" "EUR" "USD"
## [289] "EUR" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD"
## [301] "GBP" "GBP" "USD" "USD" "GBP" "USD" "USD" "USD" "USD" "USD" "USD" "GBP"
## [313] "GBP" "GBP" "GBP" "USD" "GBP" "USD" "USD" "USD" "USD" "USD" "USD" "USD"
## [325] "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD"
## [337] "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD"
## [349] "USD" "USD" "USD" "USD" "USD" "USD" "GBP" "GBP" "USD" "USD" "USD" "USD"
## [361] "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD"
## [373] "USD" "EUR" "EUR" "CAD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD"
## [385] "INR" "USD" "GBP" "USD" "USD" "GBP" "GBP" "USD" "USD" "USD" "USD" "USD"
## [397] "EUR" "GBP" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "GBP" "USD" "USD"
## [409] "GBP" "USD" "GBP" "GBP" "EUR" "EUR" "GBP" "GBP" "USD" "USD" "USD" "USD"
## [421] "USD" "USD" "USD" "USD" "USD" "USD" "USD" "EUR" "USD" "GBP" "EUR" "EUR"
## [433] "EUR" "EUR" "GBP" "GBP" "EUR" "EUR" "USD" "USD" "EUR" "EUR" "GBP" "GBP"
## [445] "USD" "EUR" "USD" "USD" "USD" "EUR" "USD" "CAD" "CAD" "USD" "USD" "CNY"
## [457] "USD" "EUR" "INR" "INR" "EUR" "USD" "EUR" "INR" "EUR" "USD" "USD" "USD"
## [469] "USD" "USD" "USD" "USD" "USD" "USD" "GBP" "GBP" "USD" "USD" "USD" "USD"
## [481] "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "EUR" "USD" "USD"
## [493] "PLN" "CAD" "USD" "USD" "EUR" "USD" "EUR" "CAD" "EUR" "EUR" "USD" "AUD"
## [505] "USD" "AUD" "USD" "EUR" "USD" "USD" "USD" "CAD" "USD" "EUR" "USD" "USD"
## [517] "USD" "EUR" "CHF" "USD" "CAD" "USD" "USD" "USD" "USD" "USD" "USD" "USD"
## [529] "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD"
## [541] "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD"
## [553] "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD"
## [565] "USD" "USD" "USD" "GBP" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD"
## [577] "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "GBP" "USD"
## [589] "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD" "USD"
## [601] "USD" "USD" "USD" "USD" "USD" "USD" "USD"
library(d3Tree)
## Warning: package 'd3Tree' was built under R version 4.3.3
data_frame <- data.frame(salary_currency = salary_data)
data_frame
## salary_currency
## 1 EUR
## 2 USD
## 3 GBP
## 4 USD
## 5 USD
## 6 USD
## 7 USD
## 8 HUF
## 9 USD
## 10 USD
## 11 EUR
## 12 INR
## 13 EUR
## 14 USD
## 15 USD
## 16 USD
## 17 JPY
## 18 EUR
## 19 INR
## 20 USD
## 21 CNY
## 22 INR
## 23 EUR
## 24 USD
## 25 USD
## 26 USD
## 27 USD
## 28 MXN
## 29 USD
## 30 CAD
## 31 EUR
## 32 USD
## 33 EUR
## 34 USD
## 35 EUR
## 36 EUR
## 37 USD
## 38 USD
## 39 USD
## 40 USD
## 41 USD
## 42 EUR
## 43 EUR
## 44 USD
## 45 GBP
## 46 EUR
## 47 GBP
## 48 USD
## 49 USD
## 50 EUR
## 51 INR
## 52 USD
## 53 DKK
## 54 EUR
## 55 USD
## 56 EUR
## 57 EUR
## 58 USD
## 59 USD
## 60 USD
## 61 USD
## 62 USD
## 63 EUR
## 64 USD
## 65 EUR
## 66 EUR
## 67 EUR
## 68 USD
## 69 USD
## 70 EUR
## 71 EUR
## 72 EUR
## 73 GBP
## 74 USD
## 75 USD
## 76 EUR
## 77 USD
## 78 INR
## 79 USD
## 80 USD
## 81 EUR
## 82 USD
## 83 CAD
## 84 EUR
## 85 EUR
## 86 PLN
## 87 EUR
## 88 USD
## 89 USD
## 90 USD
## 91 EUR
## 92 EUR
## 93 INR
## 94 USD
## 95 INR
## 96 SGD
## 97 USD
## 98 USD
## 99 USD
## 100 EUR
## 101 USD
## 102 USD
## 103 HUF
## 104 USD
## 105 USD
## 106 GBP
## 107 CAD
## 108 USD
## 109 USD
## 110 INR
## 111 EUR
## 112 GBP
## 113 GBP
## 114 USD
## 115 EUR
## 116 USD
## 117 USD
## 118 EUR
## 119 USD
## 120 USD
## 121 USD
## 122 USD
## 123 USD
## 124 GBP
## 125 EUR
## 126 USD
## 127 USD
## 128 INR
## 129 USD
## 130 INR
## 131 USD
## 132 EUR
## 133 USD
## 134 USD
## 135 USD
## 136 USD
## 137 JPY
## 138 JPY
## 139 USD
## 140 USD
## 141 USD
## 142 USD
## 143 USD
## 144 USD
## 145 USD
## 146 EUR
## 147 EUR
## 148 USD
## 149 USD
## 150 USD
## 151 USD
## 152 USD
## 153 CAD
## 154 USD
## 155 USD
## 156 CAD
## 157 SGD
## 158 USD
## 159 USD
## 160 USD
## 161 USD
## 162 USD
## 163 EUR
## 164 EUR
## 165 EUR
## 166 USD
## 167 USD
## 168 USD
## 169 USD
## 170 USD
## 171 USD
## 172 GBP
## 173 USD
## 174 USD
## 175 EUR
## 176 USD
## 177 MXN
## 178 CLP
## 179 USD
## 180 INR
## 181 INR
## 182 EUR
## 183 EUR
## 184 GBP
## 185 USD
## 186 USD
## 187 USD
## 188 EUR
## 189 EUR
## 190 USD
## 191 USD
## 192 USD
## 193 USD
## 194 USD
## 195 CAD
## 196 USD
## 197 USD
## 198 INR
## 199 INR
## 200 USD
## 201 EUR
## 202 USD
## 203 EUR
## 204 USD
## 205 USD
## 206 BRL
## 207 USD
## 208 USD
## 209 USD
## 210 USD
## 211 EUR
## 212 EUR
## 213 GBP
## 214 INR
## 215 EUR
## 216 USD
## 217 DKK
## 218 EUR
## 219 EUR
## 220 USD
## 221 PLN
## 222 GBP
## 223 INR
## 224 GBP
## 225 USD
## 226 USD
## 227 CAD
## 228 EUR
## 229 USD
## 230 CAD
## 231 INR
## 232 USD
## 233 USD
## 234 USD
## 235 USD
## 236 USD
## 237 CAD
## 238 EUR
## 239 USD
## 240 INR
## 241 CAD
## 242 USD
## 243 USD
## 244 USD
## 245 INR
## 246 GBP
## 247 EUR
## 248 TRY
## 249 GBP
## 250 USD
## 251 USD
## 252 USD
## 253 USD
## 254 INR
## 255 USD
## 256 CAD
## 257 USD
## 258 EUR
## 259 USD
## 260 EUR
## 261 USD
## 262 EUR
## 263 INR
## 264 INR
## 265 EUR
## 266 USD
## 267 USD
## 268 USD
## 269 TRY
## 270 EUR
## 271 USD
## 272 BRL
## 273 EUR
## 274 USD
## 275 EUR
## 276 USD
## 277 USD
## 278 USD
## 279 TRY
## 280 EUR
## 281 USD
## 282 USD
## 283 EUR
## 284 USD
## 285 USD
## 286 INR
## 287 EUR
## 288 USD
## 289 EUR
## 290 USD
## 291 USD
## 292 USD
## 293 USD
## 294 USD
## 295 USD
## 296 USD
## 297 USD
## 298 USD
## 299 USD
## 300 USD
## 301 GBP
## 302 GBP
## 303 USD
## 304 USD
## 305 GBP
## 306 USD
## 307 USD
## 308 USD
## 309 USD
## 310 USD
## 311 USD
## 312 GBP
## 313 GBP
## 314 GBP
## 315 GBP
## 316 USD
## 317 GBP
## 318 USD
## 319 USD
## 320 USD
## 321 USD
## 322 USD
## 323 USD
## 324 USD
## 325 USD
## 326 USD
## 327 USD
## 328 USD
## 329 USD
## 330 USD
## 331 USD
## 332 USD
## 333 USD
## 334 USD
## 335 USD
## 336 USD
## 337 USD
## 338 USD
## 339 USD
## 340 USD
## 341 USD
## 342 USD
## 343 USD
## 344 USD
## 345 USD
## 346 USD
## 347 USD
## 348 USD
## 349 USD
## 350 USD
## 351 USD
## 352 USD
## 353 USD
## 354 USD
## 355 GBP
## 356 GBP
## 357 USD
## 358 USD
## 359 USD
## 360 USD
## 361 USD
## 362 USD
## 363 USD
## 364 USD
## 365 USD
## 366 USD
## 367 USD
## 368 USD
## 369 USD
## 370 USD
## 371 USD
## 372 USD
## 373 USD
## 374 EUR
## 375 EUR
## 376 CAD
## 377 USD
## 378 USD
## 379 USD
## 380 USD
## 381 USD
## 382 USD
## 383 USD
## 384 USD
## 385 INR
## 386 USD
## 387 GBP
## 388 USD
## 389 USD
## 390 GBP
## 391 GBP
## 392 USD
## 393 USD
## 394 USD
## 395 USD
## 396 USD
## 397 EUR
## 398 GBP
## 399 USD
## 400 USD
## 401 USD
## 402 USD
## 403 USD
## 404 USD
## 405 USD
## 406 GBP
## 407 USD
## 408 USD
## 409 GBP
## 410 USD
## 411 GBP
## 412 GBP
## 413 EUR
## 414 EUR
## 415 GBP
## 416 GBP
## 417 USD
## 418 USD
## 419 USD
## 420 USD
## 421 USD
## 422 USD
## 423 USD
## 424 USD
## 425 USD
## 426 USD
## 427 USD
## 428 EUR
## 429 USD
## 430 GBP
## 431 EUR
## 432 EUR
## 433 EUR
## 434 EUR
## 435 GBP
## 436 GBP
## 437 EUR
## 438 EUR
## 439 USD
## 440 USD
## 441 EUR
## 442 EUR
## 443 GBP
## 444 GBP
## 445 USD
## 446 EUR
## 447 USD
## 448 USD
## 449 USD
## 450 EUR
## 451 USD
## 452 CAD
## 453 CAD
## 454 USD
## 455 USD
## 456 CNY
## 457 USD
## 458 EUR
## 459 INR
## 460 INR
## 461 EUR
## 462 USD
## 463 EUR
## 464 INR
## 465 EUR
## 466 USD
## 467 USD
## 468 USD
## 469 USD
## 470 USD
## 471 USD
## 472 USD
## 473 USD
## 474 USD
## 475 GBP
## 476 GBP
## 477 USD
## 478 USD
## 479 USD
## 480 USD
## 481 USD
## 482 USD
## 483 USD
## 484 USD
## 485 USD
## 486 USD
## 487 USD
## 488 USD
## 489 USD
## 490 EUR
## 491 USD
## 492 USD
## 493 PLN
## 494 CAD
## 495 USD
## 496 USD
## 497 EUR
## 498 USD
## 499 EUR
## 500 CAD
## 501 EUR
## 502 EUR
## 503 USD
## 504 AUD
## 505 USD
## 506 AUD
## 507 USD
## 508 EUR
## 509 USD
## 510 USD
## 511 USD
## 512 CAD
## 513 USD
## 514 EUR
## 515 USD
## 516 USD
## 517 USD
## 518 EUR
## 519 CHF
## 520 USD
## 521 CAD
## 522 USD
## 523 USD
## 524 USD
## 525 USD
## 526 USD
## 527 USD
## 528 USD
## 529 USD
## 530 USD
## 531 USD
## 532 USD
## 533 USD
## 534 USD
## 535 USD
## 536 USD
## 537 USD
## 538 USD
## 539 USD
## 540 USD
## 541 USD
## 542 USD
## 543 USD
## 544 USD
## 545 USD
## 546 USD
## 547 USD
## 548 USD
## 549 USD
## 550 USD
## 551 USD
## 552 USD
## 553 USD
## 554 USD
## 555 USD
## 556 USD
## 557 USD
## 558 USD
## 559 USD
## 560 USD
## 561 USD
## 562 USD
## 563 USD
## 564 USD
## 565 USD
## 566 USD
## 567 USD
## 568 GBP
## 569 USD
## 570 USD
## 571 USD
## 572 USD
## 573 USD
## 574 USD
## 575 USD
## 576 USD
## 577 USD
## 578 USD
## 579 USD
## 580 USD
## 581 USD
## 582 USD
## 583 USD
## 584 USD
## 585 USD
## 586 USD
## 587 GBP
## 588 USD
## 589 USD
## 590 USD
## 591 USD
## 592 USD
## 593 USD
## 594 USD
## 595 USD
## 596 USD
## 597 USD
## 598 USD
## 599 USD
## 600 USD
## 601 USD
## 602 USD
## 603 USD
## 604 USD
## 605 USD
## 606 USD
## 607 USD
table(data.visdat$salary_currency)
##
## AUD BRL CAD CHF CLP CNY DKK EUR GBP HUF INR JPY MXN PLN SGD TRY USD
## 2 2 18 1 1 2 2 95 44 2 27 3 2 3 2 3 398
datavis <- data.frame(
jenis = c("AUD","BRL","CAD","CHF","CLP","CNY","DKK","EUR","GBP","HUF","INR","JPY","MXN","PLN","SGD","TRY","USD"),
jumlah = c(2, 2, 18, 1, 1, 2, 2, 95, 44, 2, 27, 3, 2, 3, 2, 3, 398)
)
treemap(datavis,
index="jenis",
vSize="jumlah",
type="index",
title="Proporsi salary currency",
fontcolor.labels = "white",
fontsize.labels = 10,
fontsize.title=13,
border.lwds = 0,
border.col = "white")
table(data.visdat$employment_type)
##
## CT FL FT PT
## 5 4 588 10
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.3.2
## Warning: package 'tibble' was built under R version 4.3.2
## Warning: package 'tidyr' was built under R version 4.3.2
## Warning: package 'readr' was built under R version 4.3.2
## Warning: package 'purrr' was built under R version 4.3.2
## Warning: package 'stringr' was built under R version 4.3.2
## Warning: package 'forcats' was built under R version 4.3.2
## Warning: package 'lubridate' was built under R version 4.3.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ lubridate 1.9.3 ✔ tibble 3.2.1
## ✔ purrr 1.0.2 ✔ tidyr 1.3.0
## ✔ readr 2.1.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ plyr::arrange() masks dplyr::arrange()
## ✖ purrr::compact() masks plyr::compact()
## ✖ plyr::count() masks dplyr::count()
## ✖ plyr::desc() masks dplyr::desc()
## ✖ plyr::failwith() masks dplyr::failwith()
## ✖ dplyr::filter() masks stats::filter()
## ✖ plyr::id() masks dplyr::id()
## ✖ dplyr::lag() masks stats::lag()
## ✖ plyr::mutate() masks dplyr::mutate()
## ✖ plyr::rename() masks dplyr::rename()
## ✖ plyr::summarise() masks dplyr::summarise()
## ✖ plyr::summarize() masks dplyr::summarize()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data.vis <- data_frame(
employment_type = c("Casual/Temporary", "Full-Time(permanent)", "Full-Time", "Part-Time"),
nilai = c(5, 4, 588, 10)
)
## Warning: `data_frame()` was deprecated in tibble 1.1.0.
## ℹ Please use `tibble()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
ggplot(data.vis, aes(x = 2, y = nilai, fill = employment_type)) +
geom_bar(stat = "identity", color = "white", width = 1) +
coord_polar(theta = "y") +
geom_text(aes(label = paste0(employment_type, ": ", nilai),
y = nilai),
position = position_stack(vjust = 0.5),
color = "white") +
scale_fill_manual(values = c("Casual/Temporary" = "red",
"Full-Time(permanent)" = "yellow",
"Full-Time" = "green",
"Part-Time" = "blue")) + # Sesuaikan warna fill
theme_void() +
xlim(0.5, 2.5) +
labs(title = "Persentase") +
theme(legend.position = "right")
data.visdatnew1 <- subset(data.visdat[,c("company_size", "experience_level")],company_size == "L")
data.visdatnew1 <- data.visdatnew1[,"experience_level"]
data.visdatnew2 <-subset(data.visdat[,c("company_size", "experience_level")], company_size == "M")
data.visdatnew2 <- data.visdatnew2[,"experience_level"]
data.visdatnew3 <-subset(data.visdat[,c("company_size", "experience_level")], company_size == "S")
data.visdatnew3 <- data.visdatnew3[,"experience_level"]
kategori.data.visdatnew1 <- table(data.visdatnew1)
kategori.data.visdatnew2 <- table(data.visdatnew2)
kategori.data.visdatnew3 <- table(data.visdatnew3)
data.data.visdatnew1 <- data.frame(value=(names(kategori.data.visdatnew1)), frequency = as.numeric(kategori.data.visdatnew1))
data.data.visdatnew2 <- data.frame(value=(names(kategori.data.visdatnew2)), frequency = as.numeric(kategori.data.visdatnew2))
data.data.visdatne3 <- data.frame(value=(names(kategori.data.visdatnew3)), frequency = as.numeric(kategori.data.visdatnew3))
data.baru1 <- data.frame(data.data.visdatnew1, data.data.visdatnew2, data.data.visdatne3[,"frequency"])
colnames(data.baru1) <- c("experience_level", "L", "M", "S")
data.compzize <- melt(data.baru1, id.vars = "experience_level")
{r} table(data.visdat$job_title)
{r} Research.Scientist <- subset(data.visdat, job_title == “Research Scientist”) mean.data.rs <- mean(Research.Scientist$salary_in_usd) mean.data.rs
Product.Data.Analyst <- subset(data.visdat, job_title == “Product Data Analyst”) mean.data.pda <- mean(Product.Data.Analyst$salary_in_usd) mean.data.pda
Principal.Data.Analyst <- subset(data.visdat, job_title == “Principal Data Analyst”) mean.data.pda2 <- mean(Principal.Data.Analyst$salary_in_usd) mean.data.pda2
Infrastructure.Engineer <- subset(data.visdat, job_title == “Machine Learning Infrastructure Engineer”) mean.data.ie <- mean(Infrastructure.Engineer$salary_in_usd) mean.data.ie
Lead.Data.Analyst <- subset(data.visdat, job_title == “Lead Data Analyst”) mean.data.lda <- mean(Lead.Data.Analyst$salary_in_usd) mean.data.lda
Head.of.Data <- subset(data.visdat, job_title == “Head of Data”) mean.data.hod <- mean(Head.of.Data$salary_in_usd) mean.data.hod
ETL.Developer<- subset(data.visdat, job_title == “ETL Developer”) mean.data.etl <- mean(ETL.Developer$salary_in_usd) mean.data.etl
Data.Science.Engineer<- subset(data.visdat, job_title == “Data Science Engineer”) mean.data.dse <- mean(Data.Science.Engineer$salary_in_usd) mean.data.dse
Data.Engineer <- subset(data.visdat, job_title == “Data Engineer”) mean.data.er <- mean(Data.Engineer$salary_in_usd) mean.data.er
Software.Engineer<- subset(data.visdat, job_title == “Computer Vision Software Engineer”) mean.data.se <- mean(Software.Engineer$salary_in_usd) mean.data.se
Business.Data.Analyst<- subset(data.visdat, job_title == “Business Data Analyst”) mean.data.bda <- mean(Business.Data.Analyst$salary_in_usd) mean.data.bda
BI.Data.Analyst <- subset(data.visdat, job_title == “BI Data Analyst”) mean.data.bi <- mean(BI.Data.Analyst$salary_in_usd) mean.data.bi
Analytics.Engineer <- subset(data.visdat, job_title == “Analytics Engineer”) mean.data.ae <- mean(Analytics.Engineer$salary_in_usd) mean.data.ae
Principal.Data.Scientist <- subset(data.visdat, job_title == “Principal Data Scientist”) mean.data.pds <- mean(Principal.Data.Scientist$salary_in_usd) mean.data.pds
Machine.Learning.Scientist <- subset(data.visdat, job_title == “Machine Learning Scientist”) mean.data.mls <- mean(Machine.Learning.Scientist$salary_in_usd) mean.data.mls
Machine.Learning.Engineer <- subset(data.visdat, job_title == “Machine Learning Engineer”) mean.data.mle <- mean(Machine.Learning.Engineer$salary_in_usd) mean.data.mle
Lead.Data.Scientist <- subset(data.visdat, job_title == “Lead Data Scientist”) mean.data.lds <- mean(Lead.Data.Scientist$salary_in_usd) mean.data.lds
Financial.Data.Analyst <- subset(data.visdat, job_title == “Financial Data Analyst”) mean.data.fda <- mean(Financial.Data.Analyst$salary_in_usd) mean.data.fda
Director.of.Data.Science <- subset(data.visdat, job_title == “Director of Data Science”) mean.data.dods <- mean(Director.of.Data.Science$salary_in_usd) mean.data.dods
data.scientist <- subset(data.visdat, job_title == “Data Scientist”) mean.data.s <- mean(data.scientist$salary_in_usd) mean.data.s
Data.Science.Consultant <- subset(data.visdat, job_title == “Data Science Consultant”) mean.data.dsc <- mean(Data.Science.Consultant$salary_in_usd) mean.data.dsc
Data.Architect <- subset(data.visdat, job_title == “Data Architect”) mean.data.da <- mean(Data.Architect$salary_in_usd) mean.data.da
Data.Analytics.Engineer <- subset(data.visdat, job_title == “Data Analytics Engineer”) mean.data.dae <- mean(Data.Analytics.Engineer$salary_in_usd) mean.data.dae
Computer.Vision.Engineer <- subset(data.visdat, job_title == “Computer Vision Engineer”) mean.data.vse <- mean(Computer.Vision.Engineer$salary_in_usd) mean.data.vse
Big.Data.Engineer <- subset(data.visdat, job_title == “Big Data Engineer”) mean.data.bde <- mean(Big.Data.Engineer$salary_in_usd) mean.data.bde
Applied.Machine.Learning.Scientist<- subset(data.visdat, job_title == “Applied Machine Learning Scientist”) mean.data.amls <- mean(Applied.Machine.Learning.Scientist$salary_in_usd) mean.data.amls
AI.Scientist <- subset(data.visdat, job_title == “AI Scientist”) mean.data.ais <- mean(AI.Scientist$salary_in_usd) mean.data.ais
Research.Scientist <- subset(data.visdat, job_title == “Research Scientist”) mean.data.rs <- mean(Research.Scientist$salary_in_usd) mean.data.rs
Principal.Data.Engineer <- subset(data.visdat, job_title == “Principal Data Engineer”) mean.data.pde <- mean(Principal.Data.Engineer$salary_in_usd) mean.data.pde
ML.Engineer <- subset(data.visdat, job_title == “ML Engineer”) mean.data.mle <- mean(ML.Engineer$salary_in_usd) mean.data.mle
Machine.Learning.Developer <- subset(data.visdat, job_title == “Machine Learning Developer”) mean.data.mld <- mean(Machine.Learning.Developer$salary_in_usd) mean.data.mld
Lead.Data.Engineer <- subset(data.visdat, job_title == “Lead Data Engineer”) mean.data.lde <- mean(Lead.Data.Engineer$salary_in_usd) mean.data.lde
Head.of.Data.Science <- subset(data.visdat, job_title == “Head of Data Science”) mean.data.hods<- mean(Head.of.Data.Science$salary_in_usd) mean.data.hods
Director.of.Data.Engineering <- subset(data.visdat, job_title == “Director of Data Engineering”) mean.data.dode<- mean(Director.of.Data.Engineering$salary_in_usd) mean.data.dode
Data.Science.Manager <- subset(data.visdat, job_title == “Data Science Manager”) mean.data.dsm<- mean(Data.Science.Manager$salary_in_usd) mean.data.dsm
Data.Engineering.Manager <- subset(data.visdat, job_title == “Data Engineering Manager”) mean.data.dem<- mean(Data.Engineering.Manager$salary_in_usd) mean.data.dem
Data.Analytics.Manager<- subset(data.visdat, job_title == “Data Analytics Manager”) mean.data.dam<- mean( Data.Analytics.Manager$salary_in_usd) mean.data.dam
Data.Analyst<- subset(data.visdat, job_title == “Data Analyst”) mean.data.da <- mean(Data.Analyst$salary_in_usd) mean.data.da
Cloud.Data.Engineer<- subset(data.visdat, job_title == “Cloud Data Engineer”) mean.data.cde <- mean(Cloud.Data.Engineer$salary_in_usd) mean.data.cde
Applied.Data.Scientist<- subset(data.visdat, job_title == “Applied Data Scientist”) mean.data.ads <- mean(Applied.Data.Scientist$salary_in_usd) mean.data.ads
{r} library(dplyr)
{r} data <- data.frame(nama = c(“Research.Scientist”,“Product.Data.Analyst”,“Principal.Data.Analyst”,“Machine.Learning.Infrastructure.Engineer”, “Lead.Data.Analyst”,“Head.of.Data”,“ETL.Developer”,“Data.Science.Engineer”,“Data.Engineer”,“Computer.Vision.Software.Engineer”,“Business.Data.Analyst”,“BI.Data.Analyst”,“Analytics.Engineer”,“Principal.Data.Scientist”,“Machine.Learning.Scientist”,“Machine.Learning.Engineer”,“Lead.Data.Scientist”,“Financial.Data.Analyst”,“Director.of.Data.Science”,“Data.Scientist”,“Data.Science.Consultant”,“Data.Architect”,“Data.Analytics.ngineer”,“Computer.Vision.Engineer”,“Big.Data.Engineer”,“Applied.Machine.Learning.Scientist”,“AI.Scientist”,“Research.Scientist”,“Principal.Data.Engineer”,“ML.Engineer”,“Machine.Learning.Developer”,“Lead.Data.Engineer”,“Head.of.Data.Science”,“Director.of.Data.Engineering”,“Data.Science.Manager”,“Data.Engineering.Manager”,“Data.Analytics.Manager”,“Data.Analyst”,“Cloud.Data.Engineer”,“Applied.Data.Scientist”), salary = c(109019.5, 13036, 122500, 101145, 92203, 160162.6, 54957, 75803.33, 112725, 105248.7, 76691.2, 74755.17, 175000, 215242.4, 158412.5, 104880.1, 115190, 275000, 195074, 108187.8, 69420.71, 177873.9, 64799.25, 44419.33, 51974, 142068.8, 66135.57, 109019.5, 328333.3, 117504, 85860.67, 139724.5, 146718.8, 156738, 158328.5, 123227.2, 127134.3, 92893.06, 124647, 175655))
print(“Data Awal:”) print(data)
{r}
data[order(data$salary), ]