# Gerando números aleatórios
a<- rnorm(10000)
hist(a,breaks = 250,freq = F,
     col="turquoise",lwd=3,xlab = "Lucro",
     ylab = "Densidade",main="Histograma")
curve(dnorm(x,mean(a),sd(a)),
  add = T, col="magenta", lwd=4)

set.seed(10);a2<- rnorm(10000)
hist(a2,breaks = 250,freq = F,
     col="turquoise",lwd=3,xlab = "Lucro",
     ylab = "Densidade",main="Histograma")
curve(dnorm(x,mean(a2),sd(a2)),
  add = T, col="magenta", lwd=4)


b<-rnorm(10000,100,10)
hist(b,breaks = 200,freq = F,
     col="blue",lwd=3,xlab = "Lucro",
     ylab = "Densidade",main="Histograma")
curve(dnorm(x,mean(b),sd(b)),
  add = T, col="magenta", lwd=4)


curve(pnorm(x,mean(b),sd(b)),
from = min(b),to=max(b),col="purple",
lwd=4, xlab = "Lucro",ylab = "Densidade")

#======= 1 Simulação =============================
n=1000000 # Número de Simulações
z<- c() # Vetor nulo
startime<- Sys.time() # Tempo da Simulação
startime
[1] "2024-03-08 11:13:37 -03"
library(triangulr) # FDP triangular
for (i in 1:n) {
  preco<- runif(1,23,30)
  custoMP<- rtri(1,3,15,7)
  custoMOD<- rnorm(1,10,.5)
  Demanda<- round(runif(1,6000,22000),0)
  CDF= 100000
  y=(preco-custoMP-custoMOD)*Demanda-CDF
  z[i]<- y
}
endtime<-Sys.time()
endtime # Tempo total da Simulação
[1] "2024-03-08 11:14:00 -03"
endtime-startime
Time difference of 23.24999 secs
hist(z,breaks = 300,freq = F,col="grey",
     lwd=4, xlab = "Lucro",
     ylab = "Densidade",main="Histograma")
curve(dnorm(x,mean(z),sd(z)),
      add = T, col="turquoise", lwd=4)
segments(0,0,0,1,col="orange",lwd=3)

cat("O risco é", pnorm(0,mean(z),sd(z)))
O risco é 0.4126859
LS0tDQp0aXRsZTogIkF1bGEgMSAtIFNpbXVsYcOnw6NvIE1vbnRlIENhcmxvIGVtIExpbmd1YWdlbSBSIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KDQpgYGB7cn0NCiMgR2VyYW5kbyBuw7ptZXJvcyBhbGVhdMOzcmlvcw0KYTwtIHJub3JtKDEwMDAwKQ0KaGlzdChhLGJyZWFrcyA9IDI1MCxmcmVxID0gRiwNCiAgICAgY29sPSJ0dXJxdW9pc2UiLGx3ZD0zLHhsYWIgPSAiTHVjcm8iLA0KICAgICB5bGFiID0gIkRlbnNpZGFkZSIsbWFpbj0iSGlzdG9ncmFtYSIpDQpjdXJ2ZShkbm9ybSh4LG1lYW4oYSksc2QoYSkpLA0KICBhZGQgPSBULCBjb2w9Im1hZ2VudGEiLCBsd2Q9NCkNCnNldC5zZWVkKDEwKTthMjwtIHJub3JtKDEwMDAwKQ0KaGlzdChhMixicmVha3MgPSAyNTAsZnJlcSA9IEYsDQogICAgIGNvbD0idHVycXVvaXNlIixsd2Q9Myx4bGFiID0gIkx1Y3JvIiwNCiAgICAgeWxhYiA9ICJEZW5zaWRhZGUiLG1haW49Ikhpc3RvZ3JhbWEiKQ0KY3VydmUoZG5vcm0oeCxtZWFuKGEyKSxzZChhMikpLA0KICBhZGQgPSBULCBjb2w9Im1hZ2VudGEiLCBsd2Q9NCkNCg0KYjwtcm5vcm0oMTAwMDAsMTAwLDEwKQ0KaGlzdChiLGJyZWFrcyA9IDIwMCxmcmVxID0gRiwNCiAgICAgY29sPSJibHVlIixsd2Q9Myx4bGFiID0gIkx1Y3JvIiwNCiAgICAgeWxhYiA9ICJEZW5zaWRhZGUiLG1haW49Ikhpc3RvZ3JhbWEiKQ0KY3VydmUoZG5vcm0oeCxtZWFuKGIpLHNkKGIpKSwNCiAgYWRkID0gVCwgY29sPSJtYWdlbnRhIiwgbHdkPTQpDQoNCmN1cnZlKHBub3JtKHgsbWVhbihiKSxzZChiKSksDQpmcm9tID0gbWluKGIpLHRvPW1heChiKSxjb2w9InB1cnBsZSIsDQpsd2Q9NCwgeGxhYiA9ICJMdWNybyIseWxhYiA9ICJEZW5zaWRhZGUiKQ0KYGBgDQpgYGB7cn0NCiM9PT09PT09IDEgU2ltdWxhw6fDo28gPT09PT09PT09PT09PT09PT09PT09PT09PT09PT0NCm49MTAwMDAwMCAjIE7Dum1lcm8gZGUgU2ltdWxhw6fDtWVzDQp6PC0gYygpICMgVmV0b3IgbnVsbw0Kc3RhcnRpbWU8LSBTeXMudGltZSgpICMgVGVtcG8gZGEgU2ltdWxhw6fDo28NCnN0YXJ0aW1lDQpsaWJyYXJ5KHRyaWFuZ3VscikgIyBGRFAgdHJpYW5ndWxhcg0KZm9yIChpIGluIDE6bikgew0KICBwcmVjbzwtIHJ1bmlmKDEsMjMsMzApDQogIGN1c3RvTVA8LSBydHJpKDEsMywxNSw3KQ0KICBjdXN0b01PRDwtIHJub3JtKDEsMTAsLjUpDQogIERlbWFuZGE8LSByb3VuZChydW5pZigxLDYwMDAsMjIwMDApLDApDQogIENERj0gMTAwMDAwDQogIHk9KHByZWNvLWN1c3RvTVAtY3VzdG9NT0QpKkRlbWFuZGEtQ0RGDQogIHpbaV08LSB5DQp9DQplbmR0aW1lPC1TeXMudGltZSgpDQplbmR0aW1lICMgVGVtcG8gdG90YWwgZGEgU2ltdWxhw6fDo28NCmVuZHRpbWUtc3RhcnRpbWUNCmhpc3QoeixicmVha3MgPSAzMDAsZnJlcSA9IEYsY29sPSJncmV5IiwNCiAgICAgbHdkPTQsIHhsYWIgPSAiTHVjcm8iLA0KICAgICB5bGFiID0gIkRlbnNpZGFkZSIsbWFpbj0iSGlzdG9ncmFtYSIpDQpjdXJ2ZShkbm9ybSh4LG1lYW4oeiksc2QoeikpLA0KICAgICAgYWRkID0gVCwgY29sPSJ0dXJxdW9pc2UiLCBsd2Q9NCkNCnNlZ21lbnRzKDAsMCwwLDEsY29sPSJvcmFuZ2UiLGx3ZD0zKQ0KY2F0KCJPIHJpc2NvIMOpIiwgcG5vcm0oMCxtZWFuKHopLHNkKHopKSkNCmBgYA0KDQoNCg==