This R Markdown document contains all statistical analysis and visualization to date of Dari’s agroforestry project, as completed by Murray Sternberg.
One-way ANOVAs were performed to analyze the effects of agroforestry type (pecan vs. pine), cover crop type (for pecan, pine, and the two sites combined), and tillage (no-till vs. minimum tillage) on biological parameters. Two-way ANOVAs were perforemd to analyze the effects and interactions of tillage and agroforestry type, and tillage and cover crop type on biological parameters. For one-way ANOVAs with significant results, post-hoc testing of multiple comparisons between groups was done using Tukey’s HSD test.
Biological parameters (response variables) included microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), 24-hour soil microbial respiration, enzyme activities, microbial necromass, total soil carbon (TC), and total soil nitrogen (TN). Statistical significance was calculated with a significance level of 0.05.
TC & TN data is not yet available but will be analyzed and incorporated when the instrument is available.
This document is broken into 5 main sections, each representing a parameter to be analysed (shown in the table of contents), followed by visualizations of summary statistics. Each section starts off with a summary of significant and non-significant results. Within each section, there are 6 main subsections, each representing a statistical comparison:
Significance Summary:
When considering all 3 seasons of data, the following analyses were found to be significant:
The following analyses were not significant:
# perform anova
anova_MBCagrotype <- aov(MBIO_C ~ agro_type, data = mbc_nocntrl)
summary(anova_MBCagrotype)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 58316 58316 5.676 0.0212 *
## Residuals 48 493170 10274
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 10 observations deleted due to missingness
The ANOVA revealed that there was a statistically significant difference in microbial biomass C between agroforestry tree type (pecan vs. pine) when considering all 3 seasons of data (p < 0.001).
# perform anova for combined for all seasons
anova_MBCCCtype <- aov(MBIO_C ~ cc_type, data = mbio_all_avg)
summary(anova_MBCCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 10 148966 14897 1.351 0.236
## Residuals 43 474185 11028
## 10 observations deleted due to missingness
The ANOVA revealed that there was not a statistically significant difference in microbial biomass C between cover crop type when considering both sites combined (pecan and pine) with all 3 seasons of data.
# perform anova for pecan for all seasons
anova_MBCpecCCtype <- aov(MBIO_C ~ cc_type, data = mbcPEC)
summary(anova_MBCpecCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 5 75900 15180 1.434 0.25
## Residuals 23 243549 10589
## 7 observations deleted due to missingness
The ANOVA revealed that there was not a statistically significant difference in microbial biomass C between cover crop type (of the 6 types) for the pecan site when considering all 3 seasons of data.
# perform anova for pine for all seasons
anova_MBCpinCCtype <- aov(MBIO_C ~ cc_type, data = mbcPIN)
summary(anova_MBCpinCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 3 13010 4337 0.459 0.715
## Residuals 17 160711 9454
## 3 observations deleted due to missingness
The ANOVA revealed that there was not a statistically significant difference in microbial biomass C between cover crop type (of the 4 types) for the pine site when considering all 3 seasons of data.
# perform anova for all seasons
anova_mbcTIL <- aov(MBIO_C ~ tillage, data = mbcTIL)
summary(anova_mbcTIL)
## Df Sum Sq Mean Sq F value Pr(>F)
## tillage 1 50458 50458 4.834 0.0328 *
## Residuals 48 501028 10438
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 10 observations deleted due to missingness
The ANOVA revealed that there was not a statistically significant difference in microbial biomass C between tillage treatments (minimum tillage vs. no-till) when considering all 3 seasons of data.
# Performing two-way ANOVA for MBIO-C using Agroforestry Type & Tillage
anova_MBC_agtl <- aov(MBIO_C ~ agro_type * tillage, data = mbc_nocntrl)
summary(anova_MBC_agtl)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 58316 58316 6.141 0.0169 *
## tillage 1 49759 49759 5.240 0.0267 *
## agro_type:tillage 1 6616 6616 0.697 0.4082
## Residuals 46 436796 9496
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 10 observations deleted due to missingness
A two-way ANOVA showed that there was not a statistically significant interaction between the effects of agroforestry type and tillage.
# Performing two-way ANOVA for MBIO-C using Cover Crop Type & Tillage
anova_MBC_cctl <- aov(MBIO_C ~ cc_type * tillage, data = mbc_nocntrl)
summary(anova_MBC_cctl)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 9 147226 16358 1.510 0.1895
## tillage 1 39490 39490 3.646 0.0658 .
## cc_type:tillage 9 39862 4429 0.409 0.9203
## Residuals 30 324908 10830
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 10 observations deleted due to missingness
A two-way ANOVA showed that there was not a statistically significant interaction between the effects of cover crop type and tillage.
Significance Summary:
When considering all 3 seasons of data, the following analyses were found to be significant:
The following analyses were not significant:
# perform anova for all seasons
anova_MBNagrotype <- aov(MBIO_N ~ agro_type, data = mbn_nocntrl)
summary(anova_MBNagrotype)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 37 36.7 0.039 0.844
## Residuals 43 40100 932.6
The ANOVA revealed that there was not a statistically significant difference in microbial biomass N between agroforestry tree type (pecan vs. pine) when considering all 3 seasons of data.
# perform anova for combined for all seasons
anova_MBNCCtype <- aov(MBIO_N ~ cc_type, data = mbn)
summary(anova_MBNCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 10 7608 760.8 0.87 0.568
## Residuals 38 33238 874.7
The ANOVA revealed that there was not a statistically significant difference in microbial biomass N between cover crop type when considering both sites combined (pecan and pine) considering all 3 seasons of data.
# perform anova for pecan for all seasons
anova_MBNpecCCtype <- aov(MBIO_N ~ cc_type, data = mbnPEC)
summary(anova_MBNpecCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 5 4290 858 1.709 0.184
## Residuals 18 9036 502
The ANOVA revealed that there was not a statistically significant difference in microbial biomass N between cover crop type (of the 6 types) for the pecan site considering all 3 seasons of data.
# perform anova for pine for all seasons
anova_MBNpinCCtype <- aov(MBIO_N ~ cc_type, data = mbnPIN)
summary(anova_MBNpinCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 3 2857 952.2 0.677 0.578
## Residuals 17 23917 1406.9
The ANOVA revealed that there was not a statistically significant difference in microbial biomass N between cover crop type (of the 4 types) for the pine site considering all 3 seasons of data.
# perform anova for all seasons
anova_mbnTIL <- aov(MBIO_N ~ tillage, data = mbnTIL)
summary(anova_mbnTIL)
## Df Sum Sq Mean Sq F value Pr(>F)
## tillage 1 555 555.4 0.603 0.442
## Residuals 43 39582 920.5
The ANOVA revealed that there was not a statistically significant difference in microbial biomass N between tillage treatments (minimum tillage vs. no-till) considering all 3 seasons of data.
# Performing two-way ANOVA for MBIO-N using Agroforestry Type & Tillage
anova_MBN_agtl <- aov(MBIO_N ~ agro_type * tillage, data = mbn_nocntrl)
summary(anova_MBN_agtl)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 37 36.7 0.040 0.842
## tillage 1 547 547.4 0.603 0.442
## agro_type:tillage 1 2306 2305.7 2.538 0.119
## Residuals 41 37247 908.5
A two-way ANOVA showed that there was not a statistically significant interaction between the effects of agroforestry type and tillage.
# Performing two-way ANOVA for MBIO-N using Cover Crop Type & Tillage
anova_MBN_cctl <- aov(MBIO_N ~ cc_type * tillage, data = mbn_nocntrl)
summary(anova_MBN_cctl)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 9 7183 798.2 0.777 0.639
## tillage 1 646 646.4 0.629 0.435
## cc_type:tillage 8 5584 698.0 0.679 0.705
## Residuals 26 26723 1027.8
A two-way ANOVA showed that there was not a statistically significant interaction between the effects of cover crop type and tillage.
Significance Summary:
When considering all 3 seasons of data, the following analyses were found to be significant:
The following analyses were not significant:
# perform anova
anova_CMINagrotype <- aov(`mg CO2/g dry weight` ~ agro_type, data = cmin_nocntrl)
summary(anova_CMINagrotype)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 71.0 71.02 32.99 3.93e-08 ***
## Residuals 178 383.1 2.15
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was a statistically significant difference in microbial respiration between agroforestry tree type (pecan vs. pine) (p < 0.001).
# perform anova
anova_CMINCCtype <- aov(`mg CO2/g dry weight` ~ cc_type, data = cmin_allcc)
summary(anova_CMINCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 9 108.1 12.009 5.899 3.71e-07 ***
## Residuals 170 346.1 2.036
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was a statistically significant difference in microbial respiration between cover crop type when considering both sites (pecan and pine) combined (p < 0.001).
Results of Tukey HSD test and visualization:
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = `mg CO2/g dry weight` ~ cc_type, data = cmin_allcc)
##
## $cc_type
## diff lwr upr p adj
## oat-clover-oat 0.256684648 -1.26815870 1.78152800 0.9999406
## oat-vetch-oat 0.792561578 -0.73228177 2.31740493 0.8125330
## rye-oat -0.765517050 -2.29036040 0.75932630 0.8418212
## rye-clover-oat 0.745738446 -0.77910490 2.27058179 0.8615394
## rye-vetch-oat 0.629976325 -0.89486702 2.15481967 0.9466521
## radish-oat -0.873354322 -2.39819767 0.65148903 0.7111691
## radish-oat-oat -1.455073291 -2.97991664 0.06977006 0.0751857
## radish-rye-oat -0.759458756 -2.28430210 0.76538459 0.8480173
## radish-vetch-oat -0.934395154 -2.45923850 0.59044820 0.6247918
## oat-vetch-oat-clover 0.535876930 -0.98896642 2.06072028 0.9812996
## rye-oat-clover -1.022201698 -2.54704505 0.50264165 0.4957286
## rye-clover-oat-clover 0.489053798 -1.03578955 2.01389715 0.9901349
## rye-vetch-oat-clover 0.373291677 -1.15155167 1.89813503 0.9987167
## radish-oat-clover -1.130038970 -2.65488232 0.39480438 0.3468704
## radish-oat-oat-clover -1.711757939 -3.23660129 -0.18691459 0.0148558
## radish-rye-oat-clover -1.016143404 -2.54098675 0.50869994 0.5045739
## radish-vetch-oat-clover -1.191079801 -2.71592315 0.33376355 0.2737073
## rye-oat-vetch -1.558078628 -3.08292198 -0.03323528 0.0408033
## rye-clover-oat-vetch -0.046823132 -1.57166648 1.47802022 1.0000000
## rye-vetch-oat-vetch -0.162585253 -1.68742860 1.36225810 0.9999989
## radish-oat-vetch -1.665915899 -3.19075925 -0.14107255 0.0203181
## radish-oat-oat-vetch -2.247634869 -3.77247822 -0.72279152 0.0002024
## radish-rye-oat-vetch -1.552020334 -3.07686368 -0.02717699 0.0423612
## radish-vetch-oat-vetch -1.726956731 -3.25180008 -0.20211338 0.0133626
## rye-clover-rye 1.511255496 -0.01358785 3.03609884 0.0542436
## rye-vetch-rye 1.395493375 -0.12934997 2.92033672 0.1043124
## radish-rye -0.107837271 -1.63268062 1.41700608 1.0000000
## radish-oat-rye -0.689556241 -2.21439959 0.83528711 0.9093053
## radish-rye-rye 0.006058294 -1.51878505 1.53090164 1.0000000
## radish-vetch-rye -0.168878103 -1.69372145 1.35596525 0.9999984
## rye-vetch-rye-clover -0.115762121 -1.64060547 1.40908123 0.9999999
## radish-rye-clover -1.619092768 -3.14393612 -0.09424942 0.0276932
## radish-oat-rye-clover -2.200811737 -3.72565509 -0.67596839 0.0003072
## radish-rye-rye-clover -1.505197202 -3.03004055 0.01964615 0.0562325
## radish-vetch-rye-clover -1.680133599 -3.20497695 -0.15529025 0.0184568
## radish-rye-vetch -1.503330647 -3.02817400 0.02151270 0.0568577
## radish-oat-rye-vetch -2.085049616 -3.60989296 -0.56020627 0.0008344
## radish-rye-rye-vetch -1.389435081 -2.91427843 0.13540827 0.1077236
## radish-vetch-rye-vetch -1.564371478 -3.08921483 -0.03952813 0.0392380
## radish-oat-radish -0.581718969 -2.10656232 0.94312438 0.9677044
## radish-rye-radish 0.113895566 -1.41094778 1.63873891 1.0000000
## radish-vetch-radish -0.061040832 -1.58588418 1.46380252 1.0000000
## radish-rye-radish-oat 0.695614535 -0.82922881 2.22045788 0.9047488
## radish-vetch-radish-oat 0.520678137 -1.00416521 2.04552149 0.9846579
## radish-vetch-radish-rye -0.174936397 -1.69977975 1.34990695 0.9999978
# perform anova for pecan
anova_CMINpecCCtype <- aov(`mg CO2/g dry weight` ~ cc_type, data = cminPEC)
summary(anova_CMINpecCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 5 31.93 6.387 2.414 0.0411 *
## Residuals 102 269.87 2.646
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was a statistically significant difference in microbial respiration between cover crop type (of the 6 types) for the pecan site (p < 0.05).
Results of Tukey HSD test and visualization:
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = `mg CO2/g dry weight` ~ cc_type, data = cminPEC)
##
## $cc_type
## diff lwr upr p adj
## oat-clover-oat 0.25668465 -1.31819119 1.83156049 0.9969662
## oat-vetch-oat 0.79256158 -0.78231426 2.36743742 0.6891349
## rye-oat -0.76551705 -2.34039289 0.80935879 0.7197914
## rye-clover-oat 0.74573845 -0.82913740 2.32061429 0.7415541
## rye-vetch-oat 0.62997632 -0.94489952 2.20485217 0.8537166
## oat-vetch-oat-clover 0.53587693 -1.03899891 2.11075277 0.9206888
## rye-oat-clover -1.02220170 -2.59707754 0.55267414 0.4170885
## rye-clover-oat-clover 0.48905380 -1.08582204 2.06392964 0.9451661
## rye-vetch-oat-clover 0.37329168 -1.20158416 1.94816752 0.9828667
## rye-oat-vetch -1.55807863 -3.13295447 0.01679721 0.0542372
## rye-clover-oat-vetch -0.04682313 -1.62169897 1.52805271 0.9999993
## rye-vetch-oat-vetch -0.16258525 -1.73746109 1.41229059 0.9996659
## rye-clover-rye 1.51125550 -0.06362034 3.08613134 0.0676969
## rye-vetch-rye 1.39549338 -0.17938247 2.97036922 0.1132782
## rye-vetch-rye-clover -0.11576212 -1.69063796 1.45911372 0.9999373
# perform anova for pine
anova_CMINpinCCtype <- aov(`mg CO2/g dry weight` ~ cc_type, data = cminPIN)
summary(anova_CMINpinCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 3 5.13 1.711 1.527 0.215
## Residuals 68 76.19 1.121
The ANOVA revealed that there was not a statistically significant difference in microbial respiration between cover crop type (of the 4 types) for the pine site.
# perform anova
anova_cminTIL <- aov(`mg CO2/g dry weight` ~ tillage, data = cminTIL)
summary(anova_cminTIL)
## Df Sum Sq Mean Sq F value Pr(>F)
## tillage 1 0.4 0.3533 0.139 0.71
## Residuals 178 453.8 2.5494
The ANOVA revealed that there was not a statistically significant difference in microbial respiration between tillage treatments (minimum tillage vs. no-till).
# Performing two-way ANOVA for respiration using Agroforestry Type & Tillage
anova_CMIN_agtl <- aov(`mg CO2/g dry weight` ~ agro_type * tillage, data = cmin_nocntrl)
summary(anova_CMIN_agtl)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 71.0 71.02 33.196 3.65e-08 ***
## tillage 1 0.4 0.35 0.165 0.6850
## agro_type:tillage 1 6.3 6.26 2.928 0.0888 .
## Residuals 176 376.5 2.14
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
A two-way ANOVA showed that there was not a statistically significant interaction between the effects of agroforestry type and tillage.
# Performing two-way ANOVA for respiration using Cover Crop Type & Tillage
anova_CMIN_cctl <- aov(`mg CO2/g dry weight` ~ cc_type * tillage, data = cmin_nocntrl)
summary(anova_CMIN_cctl)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 9 108.1 12.009 5.947 3.68e-07 ***
## tillage 1 0.4 0.353 0.175 0.676
## cc_type:tillage 9 22.6 2.510 1.243 0.273
## Residuals 160 323.1 2.020
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
A two-way ANOVA showed that there was not a statistically significant interaction between the effects of cover crop type and tillage.
Significance Summary:
The following analyses were found to be significant:
The following analyses were not significant:
# perform anova for BG by agroforestry type
anova_ACT_BG_agrotype <- aov(BG ~ agro_type, data = activity_nocntrl)
summary(anova_ACT_BG_agrotype)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 3675557 3675557 78.77 2.13e-12 ***
## Residuals 58 2706357 46661
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was a statistically significant difference in activity of the enzyme BG between agroforestry tree type (pecan vs. pine) (p < 0.001).
# perform anova for NAG by agroforestry type
anova_ACT_NAG_agrotype <- aov(NAG ~ agro_type, data = activity_nocntrl)
summary(anova_ACT_NAG_agrotype)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 7810 7810 0.374 0.543
## Residuals 58 1210224 20866
The ANOVA revealed that there was not a statistically significant difference in activity of the enzyme NAG between agroforestry tree type (pecan vs. pine).
# perform anova for PHOS by agroforestry type
anova_ACT_PHOS_agrotype <- aov(PHOS ~ agro_type, data = activity_nocntrl)
summary(anova_ACT_PHOS_agrotype)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 5984926 5984926 40.77 3.13e-08 ***
## Residuals 58 8513787 146789
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was a statistically significant difference in activity of the enzyme PHOS between agroforestry tree type (pecan vs. pine) (p < 0.001).
Visualizing all enzymes together on the same scale:
# perform anova for BG
anova_ACT_BG_CCtype <- aov(BG ~ cc_type, data = activity_nocntrl)
summary(anova_ACT_BG_CCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 9 4096020 455113 9.955 1.48e-08 ***
## Residuals 50 2285893 45718
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was a statistically significant difference in activity of the enzyme BG between cover crop type when considering both sites (pecan and pine) combined (p < 0.001).
Results of Tukey HSD test and visualization:
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = BG ~ cc_type, data = activity_nocntrl)
##
## $cc_type
## diff lwr upr p adj
## oat-clover-oat 87.792927 -320.85173 496.437589 0.9993178
## oat-vetch-oat 91.425614 -317.21905 500.070276 0.9990585
## radish-oat -556.454702 -965.09936 -147.810041 0.0015050
## radish-oat-oat -330.662999 -739.30766 77.981663 0.2104587
## radish-rye-oat -332.644807 -741.28947 75.999854 0.2039012
## radish-vetch-oat -393.654478 -802.29914 14.990183 0.0677776
## rye-oat 224.351525 -184.29314 632.996187 0.7213328
## rye-clover-oat 176.494048 -232.15061 585.138709 0.9118013
## rye-vetch-oat 31.128892 -377.51577 439.773554 0.9999999
## oat-vetch-oat-clover 3.632687 -405.01197 412.277349 1.0000000
## radish-oat-clover -644.247630 -1052.89229 -235.602968 0.0001413
## radish-oat-oat-clover -418.455926 -827.10059 -9.811265 0.0407166
## radish-rye-oat-clover -420.437734 -829.08240 -11.793073 0.0390394
## radish-vetch-oat-clover -481.447405 -890.09207 -72.802744 0.0098246
## rye-oat-clover 136.558598 -272.08606 545.203260 0.9818123
## rye-clover-oat-clover 88.701120 -319.94354 497.345782 0.9992594
## rye-vetch-oat-clover -56.664035 -465.30870 351.980626 0.9999821
## radish-oat-vetch -647.880317 -1056.52498 -239.235655 0.0001277
## radish-oat-oat-vetch -422.088613 -830.73327 -13.443952 0.0376897
## radish-rye-oat-vetch -424.070421 -832.71508 -15.425760 0.0361246
## radish-vetch-oat-vetch -485.080092 -893.72475 -76.435431 0.0090079
## rye-oat-vetch 132.925911 -275.71875 541.570573 0.9848511
## rye-clover-oat-vetch 85.068433 -323.57623 493.713095 0.9994701
## rye-vetch-oat-vetch -60.296722 -468.94138 348.347939 0.9999695
## radish-oat-radish 225.791703 -182.85296 634.436365 0.7141015
## radish-rye-radish 223.809895 -184.83477 632.454557 0.7240365
## radish-vetch-radish 162.800224 -245.84444 571.444886 0.9444764
## rye-radish 780.806228 372.16157 1189.450889 0.0000029
## rye-clover-radish 732.948750 324.30409 1141.593411 0.0000116
## rye-vetch-radish 587.583594 178.93893 996.228256 0.0006615
## radish-rye-radish-oat -1.981808 -410.62647 406.662853 1.0000000
## radish-vetch-radish-oat -62.991479 -471.63614 345.653182 0.9999559
## rye-radish-oat 555.014524 146.36986 963.659186 0.0015625
## rye-clover-radish-oat 507.157047 98.51239 915.801708 0.0052644
## rye-vetch-radish-oat 361.791891 -46.85277 770.436553 0.1240609
## radish-vetch-radish-rye -61.009671 -469.65433 347.634990 0.9999663
## rye-radish-rye 556.996332 148.35167 965.640994 0.0014839
## rye-clover-radish-rye 509.138855 100.49419 917.783516 0.0050127
## rye-vetch-radish-rye 363.773699 -44.87096 772.418361 0.1196961
## rye-radish-vetch 618.006003 209.36134 1026.650665 0.0002907
## rye-clover-radish-vetch 570.148526 161.50386 978.793187 0.0010511
## rye-vetch-radish-vetch 424.783370 16.13871 833.428032 0.0355760
## rye-clover-rye -47.857478 -456.50214 360.787184 0.9999958
## rye-vetch-rye -193.222633 -601.86729 215.422028 0.8580500
## rye-vetch-rye-clover -145.365155 -554.00982 263.279506 0.9725259
# perform anova for NAG
anova_ACT_NAG_CCtype <- aov(NAG ~ cc_type, data = activity_nocntrl)
summary(anova_ACT_NAG_CCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 9 295300 32811 1.778 0.0961 .
## Residuals 50 922734 18455
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was not a statistically significant difference in activity of the enzyme NAG between cover crop type when considering both sites (pecan and pine) combined.
# perform anova for PHOS
anova_ACT_PHOS_CCtype <- aov(PHOS ~ cc_type, data = activity_nocntrl)
summary(anova_ACT_PHOS_CCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 9 10555380 1172820 14.87 2.29e-11 ***
## Residuals 50 3943332 78867
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was a statistically significant difference in activity of the enzyme PHOS between cover crop type when considering both sites (pecan and pine) combined (p < 0.001).
Results of Tukey HSD test and visualization:
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = PHOS ~ cc_type, data = activity_nocntrl)
##
## $cc_type
## diff lwr upr p adj
## oat-clover-oat 457.33191 -79.390259 994.054077 0.1575282
## oat-vetch-oat 40.94936 -495.772807 577.671530 0.9999999
## radish-oat 339.65369 -197.068478 876.375859 0.5395788
## radish-oat-oat 1104.51468 567.792512 1641.236849 0.0000005
## radish-rye-oat 1062.49458 525.772413 1599.216749 0.0000013
## radish-vetch-oat 898.14824 361.426074 1434.870410 0.0000467
## rye-oat 574.68084 37.958667 1111.403004 0.0269435
## rye-clover-oat 295.26278 -241.459386 831.984951 0.7190649
## rye-vetch-oat -129.12330 -665.845470 407.598867 0.9983380
## oat-vetch-oat-clover -416.38255 -953.104715 120.339621 0.2596585
## radish-oat-clover -117.67822 -654.400386 419.043950 0.9991978
## radish-oat-oat-clover 647.18277 110.460603 1183.904940 0.0074890
## radish-rye-oat-clover 605.16267 68.440504 1141.884840 0.0159591
## radish-vetch-oat-clover 440.81633 -95.905835 977.538501 0.1943207
## rye-oat-clover 117.34893 -419.373242 654.071095 0.9992155
## rye-clover-oat-clover -162.06913 -698.791295 374.653042 0.9909802
## rye-vetch-oat-clover -586.45521 -1123.177379 -49.733042 0.0220683
## radish-oat-vetch 298.70433 -238.017839 835.426497 0.7058304
## radish-oat-oat-vetch 1063.56532 526.843151 1600.287487 0.0000013
## radish-rye-oat-vetch 1021.54522 484.823051 1558.267387 0.0000032
## radish-vetch-oat-vetch 857.19888 320.476712 1393.921048 0.0001119
## rye-oat-vetch 533.73147 -2.990694 1070.453642 0.0524046
## rye-clover-oat-vetch 254.31342 -282.408747 791.035589 0.8565644
## rye-vetch-oat-vetch -170.07266 -706.794831 366.649505 0.9873504
## radish-oat-radish 764.86099 228.138822 1301.583158 0.0007608
## radish-rye-radish 722.84089 186.118722 1259.563058 0.0017636
## radish-vetch-radish 558.49455 21.772383 1095.216719 0.0352425
## rye-radish 235.02714 -301.695023 771.749313 0.9048896
## rye-clover-radish -44.39091 -581.113076 492.331260 0.9999998
## rye-vetch-radish -468.77699 -1005.499160 67.945176 0.1353519
## radish-rye-radish-oat -42.02010 -578.742268 494.702068 0.9999999
## radish-vetch-radish-oat -206.36644 -743.088607 330.355730 0.9551738
## rye-radish-oat -529.83384 -1066.556013 6.888323 0.0556903
## rye-clover-radish-oat -809.25190 -1345.974066 -272.529730 0.0003059
## rye-vetch-radish-oat -1233.63798 -1770.360150 -696.915814 0.0000000
## radish-vetch-radish-rye -164.34634 -701.068507 372.375829 0.9900442
## rye-radish-rye -487.81375 -1024.535913 48.908423 0.1040335
## rye-clover-radish-rye -767.23180 -1303.953966 -230.509630 0.0007251
## rye-vetch-radish-rye -1191.61788 -1728.340050 -654.895714 0.0000001
## rye-radish-vetch -323.46741 -860.189575 213.254762 0.6063429
## rye-clover-radish-vetch -602.88546 -1139.607628 -66.163291 0.0166086
## rye-vetch-radish-vetch -1027.27154 -1563.993712 -490.549375 0.0000028
## rye-clover-rye -279.41805 -816.140221 257.304115 0.7771198
## rye-vetch-rye -703.80414 -1240.526305 -167.081969 0.0025602
## rye-vetch-rye-clover -424.38608 -961.108252 112.336084 0.2368036
Visualizing all enzymes together on the same scale:
# perform anova for BG for pecan
anova_act_BG_pecCCtype <- aov(BG ~ cc_type, data = act_agPEC)
summary(anova_act_BG_pecCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 5 217557 43511 0.76 0.586
## Residuals 30 1718148 57272
The ANOVA revealed that there was not a statistically significant difference in activity of the enzyme BG between cover crop type (of the 6 types) for the pecan site.
Results of Tukey HSD test and visualization:
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = BG ~ cc_type, data = act_agPEC)
##
## $cc_type
## diff lwr upr p adj
## oat-clover-oat 87.792927 -332.4596 508.0455 0.9873361
## oat-vetch-oat 91.425614 -328.8269 511.6782 0.9848124
## rye-oat 224.351525 -195.9010 644.6041 0.5900028
## rye-clover-oat 176.494048 -243.7585 596.7466 0.7946582
## rye-vetch-oat 31.128892 -389.1237 451.3814 0.9999113
## oat-vetch-oat-clover 3.632687 -416.6199 423.8852 1.0000000
## rye-oat-clover 136.558598 -283.6939 556.8111 0.9180826
## rye-clover-oat-clover 88.701120 -331.5514 508.9537 0.9867362
## rye-vetch-oat-clover -56.664035 -476.9166 363.5885 0.9983562
## rye-oat-vetch 132.925911 -287.3266 553.1785 0.9262587
## rye-clover-oat-vetch 85.068433 -335.1841 505.3210 0.9890166
## rye-vetch-oat-vetch -60.296722 -480.5493 359.9558 0.9977887
## rye-clover-rye -47.857478 -468.1100 372.3951 0.9992716
## rye-vetch-rye -193.222633 -613.4752 227.0299 0.7275811
## rye-vetch-rye-clover -145.365155 -565.6177 274.8874 0.8960663
# perform anova for NAG for pecan
anova_act_NAG_pecCCtype <- aov(NAG ~ cc_type, data = act_agPEC)
summary(anova_act_NAG_pecCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 5 247391 49478 3.159 0.0208 *
## Residuals 30 469951 15665
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was a statistically significant difference in activity of the enzyme NAG between cover crop type (of the 6 types) for the pecan site (p < 0.05).
Results of Tukey HSD test and visualization:
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = NAG ~ cc_type, data = act_agPEC)
##
## $cc_type
## diff lwr upr p adj
## oat-clover-oat 117.352561 -102.436667 337.14179 0.5898448
## oat-vetch-oat 106.580054 -113.209173 326.36928 0.6821303
## rye-oat 196.852704 -22.936524 416.64193 0.0997692
## rye-clover-oat 214.708682 -5.080545 434.49791 0.0585667
## rye-vetch-oat 6.995784 -212.793444 226.78501 0.9999987
## oat-vetch-oat-clover -10.772507 -230.561735 209.01672 0.9999885
## rye-oat-clover 79.500143 -140.289085 299.28937 0.8774162
## rye-clover-oat-clover 97.356121 -122.433107 317.14535 0.7567825
## rye-vetch-oat-clover -110.356778 -330.146006 109.43245 0.6501483
## rye-oat-vetch 90.272650 -129.516578 310.06188 0.8091463
## rye-clover-oat-vetch 108.128628 -111.660600 327.91786 0.6690888
## rye-vetch-oat-vetch -99.584271 -319.373499 120.20496 0.7393208
## rye-clover-rye 17.855978 -201.933249 237.64521 0.9998602
## rye-vetch-rye -189.856921 -409.646148 29.93231 0.1216047
## rye-vetch-rye-clover -207.712899 -427.502127 12.07633 0.0724811
# perform anova for PHOS for pecan
anova_act_PHOS_pecCCtype <- aov(PHOS ~ cc_type, data = act_agPEC)
summary(anova_act_PHOS_pecCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 5 2334269 466854 11.74 2.42e-06 ***
## Residuals 30 1193389 39780
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was a statistically significant difference in activity of the enzyme PHOS between cover crop type (of the 6 types) for the pecan site (p < 0.05).
Results of Tukey HSD test and visualization:
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = PHOS ~ cc_type, data = act_agPEC)
##
## $cc_type
## diff lwr upr p adj
## oat-clover-oat 457.33191 107.08757 807.57625 0.0050386
## oat-vetch-oat 40.94936 -309.29498 391.19370 0.9991725
## rye-oat 574.68084 224.43650 924.92517 0.0003184
## rye-clover-oat 295.26278 -54.98156 645.50712 0.1378947
## rye-vetch-oat -129.12330 -479.36764 221.12104 0.8686687
## oat-vetch-oat-clover -416.38255 -766.62689 -66.13821 0.0125790
## rye-oat-clover 117.34893 -232.89541 467.59326 0.9078541
## rye-clover-oat-clover -162.06913 -512.31346 188.17521 0.7223435
## rye-vetch-oat-clover -586.45521 -936.69955 -236.21087 0.0002399
## rye-oat-vetch 533.73147 183.48714 883.97581 0.0008475
## rye-clover-oat-vetch 254.31342 -95.93092 604.55776 0.2636466
## rye-vetch-oat-vetch -170.07266 -520.31700 180.17167 0.6809070
## rye-clover-rye -279.41805 -629.66239 70.82628 0.1793919
## rye-vetch-rye -703.80414 -1054.04847 -353.55980 0.0000142
## rye-vetch-rye-clover -424.38608 -774.63042 -74.14175 0.0105509
Visualizing all enzymes together on the same scale:
# perform anova for BG for pine
anova_act_BG_pinCCtype <- aov(BG ~ cc_type, data = act_agPIN)
summary(anova_act_BG_pinCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 3 202906 67635 2.383 0.0998 .
## Residuals 20 567745 28387
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was not a statistically significant difference in activity of the enzyme BG between cover crop type (of the 6 types) for the pine site.
# perform anova for NAG for pine
anova_act_NAG_pinCCtype <- aov(NAG ~ cc_type, data = act_agPIN)
summary(anova_act_NAG_pinCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 3 40099 13366 0.59 0.628
## Residuals 20 452783 22639
The ANOVA revealed that there was not a statistically significant difference in activity of the enzyme NAG between cover crop type (of the 6 types) for the pine site.
# perform anova for PHOS for pine
anova_act_PHOS_pinCCtype <- aov(PHOS ~ cc_type, data = act_agPIN)
summary(anova_act_PHOS_pinCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 3 2236185 745395 5.421 0.0068 **
## Residuals 20 2749943 137497
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was a statistically significant difference in activity of the enzyme PHOS between cover crop type (of the 6 types) for the pine site (p < 0.01).
Results of Tukey HSD test and visualization:
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = PHOS ~ cc_type, data = act_agPIN)
##
## $cc_type
## diff lwr upr p adj
## radish-oat-radish 764.8610 165.65077 1364.0712 0.0094704
## radish-rye-radish 722.8409 123.63067 1322.0511 0.0146260
## radish-vetch-radish 558.4946 -40.71567 1157.7048 0.0732424
## radish-rye-radish-oat -42.0201 -641.23032 557.1901 0.9972300
## radish-vetch-radish-oat -206.3664 -805.57666 392.8438 0.7710296
## radish-vetch-radish-rye -164.3463 -763.55656 434.8639 0.8680051
Visualizing all enzymes together on the same scale:
# perform anova for BG
anova_act_BG_TIL <- aov(BG ~ tillage, data = act_agTIL)
summary(anova_act_BG_TIL)
## Df Sum Sq Mean Sq F value Pr(>F)
## tillage 1 58738 58738 0.539 0.466
## Residuals 58 6323175 109020
The ANOVA revealed that there was not a statistically significant difference in activity of the enzyme BG between tillage treatments (minimum tillage vs. no-till).
# perform anova for NAG
anova_act_NAG_TIL <- aov(NAG ~ tillage, data = act_agTIL)
summary(anova_act_NAG_TIL)
## Df Sum Sq Mean Sq F value Pr(>F)
## tillage 1 3749 3749 0.179 0.674
## Residuals 58 1214285 20936
The ANOVA revealed that there was not a statistically significant difference in activity of the enzyme NAG between tillage treatments (minimum tillage vs. no-till).
# perform anova for PHOS
anova_act_PHOS_TIL <- aov(PHOS ~ tillage, data = act_agTIL)
summary(anova_act_PHOS_TIL)
## Df Sum Sq Mean Sq F value Pr(>F)
## tillage 1 23466 23466 0.094 0.76
## Residuals 58 14475246 249573
The ANOVA revealed that there was not a statistically significant difference in activity of the enzyme PHOS between tillage treatments (minimum tillage vs. no-till).
Visualizing all enzymes together on the same scale:
# Performing two-way ANOVA for BG activity using Agroforestry Type & Tillage
anova_ACT_BG_agtl <- aov(BG ~ agro_type * tillage, data = activity_nocntrl)
summary(anova_ACT_BG_agtl)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 3675557 3675557 111.898 5.73e-15 ***
## tillage 1 58738 58738 1.788 0.187
## agro_type:tillage 1 808159 808159 24.603 6.91e-06 ***
## Residuals 56 1839460 32847
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
BG: A two-way ANOVA showed that there was a statistically significant interaction between the effects of agroforestry type and tillage (p < 0.001).
# Performing two-way ANOVA for BG activity using Cover Crop Type & Tillage
anova_ACT_BG_cctl <- aov(BG ~ cc_type * tillage, data = activity_nocntrl)
summary(anova_ACT_BG_cctl)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 9 4096020 455113 38.392 < 2e-16 ***
## tillage 1 58738 58738 4.955 0.0317 *
## cc_type:tillage 9 1752974 194775 16.430 7.38e-11 ***
## Residuals 40 474181 11855
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
BG: A two-way ANOVA showed that there was a statistically significant interaction between the effects of cover crop type and tillage (p < 0.001).
# Performing two-way ANOVA for NAG activity using Agroforestry Type & Tillage
anova_ACT_NAG_agtl <- aov(NAG ~ agro_type * tillage, data = activity_nocntrl)
summary(anova_ACT_NAG_agtl)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 7810 7810 0.453 0.503643
## tillage 1 3749 3749 0.218 0.642752
## agro_type:tillage 1 241210 241210 13.994 0.000433 ***
## Residuals 56 965265 17237
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
NAG: A two-way ANOVA showed that there was a statistically significant interaction between the effects of agroforestry type and tillage (p < 0.001).
# Performing two-way ANOVA for NAG activity using Cover Crop Type & Tillage
anova_ACT_NAG_cctl <- aov(NAG ~ cc_type * tillage, data = activity_nocntrl)
summary(anova_ACT_NAG_cctl)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 9 295300 32811 8.133 9.78e-07 ***
## tillage 1 3749 3749 0.929 0.341
## cc_type:tillage 9 757617 84180 20.866 1.82e-12 ***
## Residuals 40 161368 4034
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
NAG: A two-way ANOVA showed that there was a statistically significant interaction between the effects of cover crop type and tillage (p < 0.001).
# Performing two-way ANOVA for PHOS activity using Agroforestry Type & Tillage
anova_ACT_PHOS_agtl <- aov(PHOS ~ agro_type * tillage, data = activity_nocntrl)
summary(anova_ACT_PHOS_agtl)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 5984926 5984926 44.613 1.17e-08 ***
## tillage 1 23466 23466 0.175 0.67737
## agro_type:tillage 1 977860 977860 7.289 0.00916 **
## Residuals 56 7512461 134151
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PHOS: A two-way ANOVA showed that there was a statistically significant interaction between the effects of agroforestry type and tillage (p < 0.01).
# Performing two-way ANOVA for PHOS activity using Cover Crop Type & Tillage
anova_ACT_PHOS_cctl <- aov(PHOS ~ cc_type * tillage, data = activity_nocntrl)
summary(anova_ACT_PHOS_cctl)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 9 10555380 1172820 40.944 < 2e-16 ***
## tillage 1 23466 23466 0.819 0.371
## cc_type:tillage 9 2774085 308232 10.761 2.95e-08 ***
## Residuals 40 1145781 28645
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PHOS: A two-way ANOVA showed that there was a statistically significant interaction between the effects of cover crop type and tillage (p < 0.001).
Significance Summary:
The following analyses were found to be significant:
The following analyses were not significant:
# perform anova for total necromass
anova_NECagrotype <- aov(MicrobialResidualC_mg_g ~ agro_type, data = nec_nocntrl)
summary(anova_NECagrotype)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 0.00434 0.004336 0.319 0.579
## Residuals 18 0.24457 0.013587
The ANOVA revealed that there was not a statistically significant difference in total necromass between agroforestry tree type (pecan vs. pine).
# perform anova for fungal necromass
anova_NECFagrotype <- aov(FungalC_mg_g ~ agro_type, data = nec_nocntrl)
summary(anova_NECFagrotype)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 0.00001 0.000011 0.002 0.969
## Residuals 18 0.12798 0.007110
The ANOVA revealed that there was not a statistically significant difference in fungal necromass between agroforestry tree type (pecan vs. pine).
# perform anova for bacterial necromass
anova_NECBagrotype <- aov(BacterialC_mg_g ~ agro_type, data = nec_nocntrl)
summary(anova_NECBagrotype)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 0.003907 0.003907 3.143 0.0932 .
## Residuals 18 0.022380 0.001243
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was not a statistically significant difference in bacterial necromass between agroforestry tree type (pecan vs. pine).
# perform anova for combined
anova_NECCCtype <- aov(MicrobialResidualC_mg_g ~ cc_type, data = necdata)
summary(anova_NECCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 10 0.1914 0.01914 0.996 0.499
## Residuals 11 0.2114 0.01921
The ANOVA revealed that there was not a statistically significant difference in total necromass between cover crop type when considering both sites combined.
# perform anova for combined
anova_NECFCCtype <- aov(FungalC_mg_g ~ cc_type, data = necdata)
summary(anova_NECFCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 10 0.09917 0.009917 0.873 0.581
## Residuals 11 0.12502 0.011365
The ANOVA revealed that there was not a statistically significant difference in fungal necromass between cover crop type when considering both sites combined.
# perform anova for combined
anova_NECBCCtype <- aov(BacterialC_mg_g ~ cc_type, data = necdata)
summary(anova_NECBCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 10 0.02008 0.002008 1.701 0.198
## Residuals 11 0.01299 0.001181
The ANOVA revealed that there was not a statistically significant difference in bacterial necromass between cover crop type when considering both sites combined.
# perform anova for pecan
anova_NECpecCCtype <- aov(MicrobialResidualC_mg_g ~ cc_type, data = necPEC)
summary(anova_NECpecCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 5 0.11489 0.022978 5.614 0.029 *
## Residuals 6 0.02456 0.004093
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was a statistically significant difference in total necromass between cover crop type (of the 6 types) for the pecan site (p < 0.05).
Results of Tukey HSD test and visualization:
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = MicrobialResidualC_mg_g ~ cc_type, data = necPEC)
##
## $cc_type
## diff lwr upr p adj
## oat-clover-oat 0.26083978 0.006230636 0.51544892 0.0451230
## oat-vetch-oat 0.08341985 -0.171189287 0.33802899 0.7753391
## rye-oat -0.05465415 -0.309263291 0.19995499 0.9449987
## rye-clover-oat 0.08214542 -0.172463717 0.33675456 0.7848482
## rye-vetch-oat 0.09494528 -0.159663859 0.34955442 0.6854201
## oat-vetch-oat-clover -0.17741992 -0.432029063 0.07718922 0.1889825
## rye-oat-clover -0.31549393 -0.570103067 -0.06088479 0.0191415
## rye-clover-oat-clover -0.17869435 -0.433303493 0.07591479 0.1848127
## rye-vetch-oat-clover -0.16589449 -0.420503635 0.08871465 0.2310308
## rye-oat-vetch -0.13807400 -0.392683145 0.11653514 0.3696387
## rye-clover-oat-vetch -0.00127443 -0.255883571 0.25333471 1.0000000
## rye-vetch-oat-vetch 0.01152543 -0.243083712 0.26613457 0.9999568
## rye-clover-rye 0.13679957 -0.117809567 0.39140871 0.3773608
## rye-vetch-rye 0.14959943 -0.105009708 0.40420857 0.3053704
## rye-vetch-rye-clover 0.01279986 -0.241809282 0.26740900 0.9999276
# perform anova for pecan
anova_NECFpecCCtype <- aov(FungalC_mg_g ~ cc_type, data = necPEC)
summary(anova_NECFpecCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 5 0.06035 0.012071 5.152 0.0352 *
## Residuals 6 0.01406 0.002343
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was a statistically significant difference in fungal necromass between cover crop type (of the 6 types) for the pecan site (p < 0.05).
Results of Tukey HSD test and visualization:
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = FungalC_mg_g ~ cc_type, data = necPEC)
##
## $cc_type
## diff lwr upr p adj
## oat-clover-oat 0.196318486 0.0036745 0.38896247 0.0461523
## oat-vetch-oat 0.068408469 -0.1242355 0.26105246 0.7214169
## rye-oat -0.027873481 -0.2205175 0.16477051 0.9891946
## rye-clover-oat 0.074926009 -0.1177180 0.26757000 0.6527267
## rye-vetch-oat 0.059594166 -0.1330498 0.25223815 0.8094600
## oat-vetch-oat-clover -0.127910017 -0.3205540 0.06473397 0.2186983
## rye-oat-clover -0.224191967 -0.4168360 -0.03154798 0.0256357
## rye-clover-oat-clover -0.121392477 -0.3140365 0.07125151 0.2538653
## rye-vetch-oat-clover -0.136724320 -0.3293683 0.05591967 0.1784237
## rye-oat-vetch -0.096281950 -0.2889259 0.09636204 0.4390426
## rye-clover-oat-vetch 0.006517540 -0.1861264 0.19916153 0.9999898
## rye-vetch-oat-vetch -0.008814303 -0.2014583 0.18382968 0.9999545
## rye-clover-rye 0.102799490 -0.0898445 0.29544348 0.3830977
## rye-vetch-rye 0.087467647 -0.1051763 0.28011163 0.5227219
## rye-vetch-rye-clover -0.015331843 -0.2079758 0.17731214 0.9993222
# perform anova for pecan
anova_NECBpecCCtype <- aov(BacterialC_mg_g ~ cc_type, data = necPEC)
summary(anova_NECBpecCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 5 0.009786 0.0019572 5.342 0.0325 *
## Residuals 6 0.002198 0.0003664
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The ANOVA revealed that there was a statistically significant difference in bacterial necromass between cover crop type (of the 6 types) for the pecan site (p < 0.05).
Results of Tukey HSD test and visualization:
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = BacterialC_mg_g ~ cc_type, data = necPEC)
##
## $cc_type
## diff lwr upr p adj
## oat-clover-oat 0.064521290 -0.01165648 0.14069906 0.0968423
## oat-vetch-oat 0.015011384 -0.06116638 0.09118915 0.9605475
## rye-oat -0.026780670 -0.10295844 0.04939710 0.7285166
## rye-clover-oat 0.007219415 -0.06895835 0.08339718 0.9984424
## rye-vetch-oat 0.035351116 -0.04082665 0.11152888 0.5036867
## oat-vetch-oat-clover -0.049509906 -0.12568767 0.02666786 0.2327084
## rye-oat-clover -0.091301960 -0.16747973 -0.01512419 0.0223758
## rye-clover-oat-clover -0.057301876 -0.13347964 0.01887589 0.1475845
## rye-vetch-oat-clover -0.029170174 -0.10534794 0.04700759 0.6650019
## rye-oat-vetch -0.041792054 -0.11796982 0.03438571 0.3600720
## rye-clover-oat-vetch -0.007791970 -0.08396974 0.06838580 0.9977700
## rye-vetch-oat-vetch 0.020339732 -0.05583804 0.09651750 0.8800008
## rye-clover-rye 0.034000084 -0.04217768 0.11017785 0.5376017
## rye-vetch-rye 0.062131786 -0.01404598 0.13830955 0.1112640
## rye-vetch-rye-clover 0.028131701 -0.04804607 0.10430947 0.6927701
# perform anova for pine
anova_NECpinCCtype <- aov(MicrobialResidualC_mg_g ~ cc_type, data = necPIN)
summary(anova_NECpinCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 3 0.04128 0.01376 0.862 0.53
## Residuals 4 0.06385 0.01596
The ANOVA revealed that there was not a statistically significant difference in total necromass between cover crop type (of the 4 types) for the pine site.
# perform anova for pine
anova_NECFpinCCtype <- aov(FungalC_mg_g ~ cc_type, data = necPIN)
summary(anova_NECFpinCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 3 0.01781 0.005937 0.664 0.616
## Residuals 4 0.03575 0.008938
The ANOVA revealed that there was not a statistically significant difference in fungal necromass between cover crop type (of the 4 types) for the pine site.
# perform anova for pine
anova_NECBpinCCtype <- aov(BacterialC_mg_g ~ cc_type, data = necPIN)
summary(anova_NECBpinCCtype)
## Df Sum Sq Mean Sq F value Pr(>F)
## cc_type 3 0.005444 0.001814 1.466 0.35
## Residuals 4 0.004952 0.001238
The ANOVA revealed that there was not a statistically significant difference in bacterial necromass between cover crop type (of the 4 types) for the pine site.
# perform anova
anova_necTIL <- aov(MicrobialResidualC_mg_g ~ tillage, data = necTIL)
summary(anova_necTIL)
## Df Sum Sq Mean Sq F value Pr(>F)
## tillage 1 0.00052 0.00052 0.038 0.848
## Residuals 18 0.24839 0.01380
The ANOVA revealed that there was not a statistically significant difference in total necromass between tillage treatments (minimum tillage vs. no-till).
# perform anova
anova_necFTIL <- aov(FungalC_mg_g ~ tillage, data = necTIL)
summary(anova_necFTIL)
## Df Sum Sq Mean Sq F value Pr(>F)
## tillage 1 0.00033 0.000332 0.047 0.831
## Residuals 18 0.12766 0.007092
The ANOVA revealed that there was not a statistically significant difference in total necromass between tillage treatments (minimum tillage vs. no-till).
# perform anova
anova_necBTIL <- aov(BacterialC_mg_g ~ tillage, data = necTIL)
summary(anova_necBTIL)
## Df Sum Sq Mean Sq F value Pr(>F)
## tillage 1 0.000021 0.000021 0.014 0.906
## Residuals 18 0.026266 0.001459
The ANOVA revealed that there was not a statistically significant difference in bacterial necromass between tillage treatments (minimum tillage vs. no-till).
# Performing two-way ANOVA for total necromass using Agroforestry Type & Tillage
anova_NECt_agtl <- aov(MicrobialResidualC_mg_g ~ agro_type * tillage, data = nec_nocntrl)
summary(anova_NECt_agtl)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 0.00434 0.004336 0.288 0.599
## tillage 1 0.00052 0.000520 0.034 0.855
## agro_type:tillage 1 0.00285 0.002851 0.189 0.669
## Residuals 16 0.24120 0.015075
A two-way ANOVA showed that there was not a statistically significant interaction between the effects of agroforestry type and tillage.
# Performing two-way ANOVA for total necromass using Cover Crop Type & Tillage
anova_NECt_cctl <- aov(MicrobialResidualC_mg_g ~ cc_type * tillage, data = nec_nocntrl)
summary(anova_NECt_cctl)
## Df Sum Sq Mean Sq
## cc_type 9 0.16050 0.017833
## tillage 1 0.00052 0.000520
## cc_type:tillage 9 0.08788 0.009765
A two-way ANOVA was not able to be performed for cover crop type and tillage, likely due to a lack of replication / variability (only one season of data, so only 1 observation for each cover crop / tillage combination).
# Performing two-way ANOVA for fungal necromass using Agroforestry Type & Tillage
anova_NECf_agtl <- aov(FungalC_mg_g ~ agro_type * tillage, data = nec_nocntrl)
summary(anova_NECf_agtl)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 0.00001 0.000011 0.001 0.971
## tillage 1 0.00033 0.000332 0.042 0.841
## agro_type:tillage 1 0.00033 0.000329 0.041 0.841
## Residuals 16 0.12732 0.007957
A two-way ANOVA showed that there was not a statistically significant interaction between the effects of agroforestry type and tillage.
# Performing two-way ANOVA for fungal necromass using Cover Crop Type & Tillage
anova_NECf_cctl <- aov(FungalC_mg_g ~ cc_type * tillage, data = nec_nocntrl)
summary(anova_NECf_cctl)
## Df Sum Sq Mean Sq
## cc_type 9 0.07818 0.008686
## tillage 1 0.00033 0.000332
## cc_type:tillage 9 0.04948 0.005498
A two-way ANOVA was not able to be performed for cover crop type and tillage, likely due to a lack of replication / variability (only one season of data, so only 1 observation for each cover crop / tillage combination).
# Performing two-way ANOVA for bacterial necromass using Agroforestry Type & Tillage
anova_NECb_agtl <- aov(BacterialC_mg_g ~ agro_type * tillage, data = nec_nocntrl)
summary(anova_NECb_agtl)
## Df Sum Sq Mean Sq F value Pr(>F)
## agro_type 1 0.003907 0.003907 2.961 0.105
## tillage 1 0.000021 0.000021 0.016 0.901
## agro_type:tillage 1 0.001243 0.001243 0.942 0.346
## Residuals 16 0.021116 0.001320
A two-way ANOVA showed that there was not a statistically significant interaction between the effects of agroforestry type and tillage.
# Performing two-way ANOVA for bacterial necromass using Cover Crop Type & Tillage
anova_NECb_cctl <- aov(BacterialC_mg_g ~ cc_type * tillage, data = nec_nocntrl)
summary(anova_NECb_cctl)
## Df Sum Sq Mean Sq
## cc_type 9 0.019137 0.0021263
## tillage 1 0.000021 0.0000210
## cc_type:tillage 9 0.007129 0.0007922
A two-way ANOVA was not able to be performed for cover crop type and tillage, likely due to a lack of replication / variability (only one season of data, so only 1 observation for each cover crop / tillage combination).
This first correlation matrix using corrplot( ) uses data from only the third season (because we only have necromass data for the third season, so otherwise it would have to be removed):
This next correlation matrix using corrplot( ) uses data from all seasons (so necromass has been removed):
This first scatter plot uses the function chart.Correlation( ) with data from all 3 seasons, without necromass being removed (this means that there are many NAs in the data from the first 2 seasons, but the function still seems to work):
This next scatter plot uses the function chart.Correlation( ) of all parameters with NAs removed, so effectively just for the third season (necromass would show up as NA before that):
This final scatter plot uses the function chart.Correlation( ) with data from only the parameters that we have data all three seasons for (so necromass has been removed):