GDELT Events: Russia

Author

Gagan Atreya

Published

March 7, 2024

Section 1. GDELT Events Recorded in Russia: 2020 - 2023

1.01 Breakdown of events by keywords

Keywords: State actions

  • ARREST
  • CONFISCATION
  • PERSECUTION
  • SEIZE

Keywords: Non-state actions

  • BLACK_MARKET
  • CRIME_CARTELS
  • DRUG_TRADE
  • HUMAN_TRAFFICKING
  • MIL_SELF_IDENTIFIED_ARMS_DEAL
  • ORGANIZED_CRIME
Display code
rm(list = ls())

#if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidyverse, data.table, vtable, 
               lubridate, ggcharts, plyr,
               gridExtra, RgoogleMaps, ggmap, mapproj)

## GDELT dataframe:
df <- fread("~/Desktop/soc_ace_2024/data/gdelt/gkg_v2/gkg_themes_russia_cleaned.csv")

## Create different dataframes for each event types based on keywords:
df_arrest <- df[df$count_arrest >= 1, ]
df_confiscation <- df[df$count_confiscation >= 1, ]
df_persecution <- df[df$count_persecution >= 1, ]
df_seize <- df[df$count_seize >= 1, ]
df_black_market <- df[df$count_black_market >= 1, ]
df_crime_cartels <- df[df$count_crime_cartels >= 1, ]
df_drug_trade <- df[df$count_drug_trade >= 1, ]
df_human_trafficking <- df[df$count_human_trafficking >= 1, ]
df_arms_deal <- df[df$count_arms_deal >= 1, ]
df_organized_crime <- df[df$count_organized_crime >= 1, ]

df_backup <- df

df$arrest <- ifelse(df$count_arrest >=1, 1, 0)
df$confiscation <- ifelse(df$count_confiscation >=1, 1, 0)
df$persecution <- ifelse(df$count_persecution >=1, 1, 0)
df$seize <- ifelse(df$count_seize >=1, 1, 0)
df$black_market <- ifelse(df$count_black_market >=1, 1, 0)
df$crime_cartels <- ifelse(df$count_crime_cartels >=1, 1, 0)
df$drug_trade <- ifelse(df$count_drug_trade >=1, 1, 0)
df$human_trafficking <- ifelse(df$count_human_trafficking >=1, 1, 0)
df$arms_deal <- ifelse(df$count_arms_deal >=1, 1, 0)
df$organized_crime <- ifelse(df$count_organized_crime >=1, 1, 0)

## table(df$arrest)
## table(df$confiscation)
## table(df$persecution)
## table(df$seize)
## table(df$black_market)
## table(df$crime_cartels)
## table(df$drug_trade)
## table(df$human_trafficking)
## table(df$arms_deal)
## table(df$organized_crime)

## State Actions:
dfstate <- cbind.data.frame(df$arrest, df$confiscation, df$persecution, df$seize)
colnames(dfstate)[1:4] <- c("Arrest", "Confiscation", "Persecution", "Seize")
dfstate[] <- sapply(dfstate, as.numeric)
dfstate[is.na(dfstate)] <- 0

tab01 <- data.frame(values=colSums(dfstate, 
                                 na.rm=TRUE), 
                  names = names(dfstate))

p01 <- ggplot(data=tab01, 
       aes(x=names, 
           y=values)) +
  geom_bar(stat="identity", 
           fill = "black", 
             color = "black", 
             size = 1.5,
             width = 0.75)+
    ylim(0, 14000)+
    labs(title = paste("Russia: state actions"),
         x = "",
         y = "Count")+
  theme_bw()

p01 <- p01+ theme(axis.text.x = element_text(angle = 45, hjust = 1))

# p01 

## Non-nonstate Actions:
dfnonstate <- cbind.data.frame(df$black_market, df$crime_cartels, df$drug_trade, 
                               df$human_trafficking, df$arms_deal, df$organized_crime)

colnames(dfnonstate)[1:6] <- c("Black_market", "Cartels", "Drug_trade",
                               "Human_trafficking", "Arms_deal", "Organized_crime")

dfnonstate[] <- sapply(dfnonstate, as.numeric)
dfnonstate[is.na(dfnonstate)] <- 0

tab02 <- data.frame(values=colSums(dfnonstate, 
                                 na.rm=TRUE), 
                  names = names(dfnonstate))

p02 <- ggplot(data=tab02, 
       aes(x=names, 
           y=values)) +
  geom_bar(stat="identity", 
           fill = "black", 
             color = "black", 
             size = 1.5,
             width = 0.75)+
  ylim(0, 14000)+
    labs(title = paste("Russia: non-state actions"),
         x = "",
         y = "Count")+
  theme_bw()

p02 <- p02+ theme(axis.text.x = element_text(angle = 45, hjust = 1))

p01 | p02

1.02 Maps of events by keyword

The maps below display the count of event types by keyword in Russia.

Bigger circles around specific coordinates means higher count of events.
(Larger circles = more events in that area).

Blank map:

Display code
# Register ggmap API for mapping:

# summary(df$ActionGeo_Lat)
# summary(df$ActionGeo_Long)

ggmap::register_stadiamaps(key = "ecb62ab3-c884-4be1-9e19-4a49f5f8bed0")

mapoutline <- get_map(location = c(left = 20.00, ## bottom left (lon)
                                   bottom = 47.00, ## bottom left (lat)
                                   right = 179.90, # bottom right (lon)
                                   top = 76.00), 
                      maptype = "outdoors", 
                      source = "stadia",
                      color="bw")

print(ggmap(mapoutline))

1.03 Event type: all keywords

2020 - 2023

Display code
df$Event_count <- 1

df01 <- ddply(df, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: all keywords in Russia, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2020

Display code
df2020 <- df[df$year == "2020", ]
df2021 <- df[df$year == "2021", ]
df2022 <- df[df$year == "2022", ]
df2023 <- df[df$year == "2023", ]

## 2020:
df2020$Event_count <- 1
df202001 <- ddply(df2020, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map02 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202001,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: all keywords in Russia, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2021

Display code
## 2021:

df2021$Event_count <- 1
df202101 <- ddply(df2021, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map03 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202101,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: all keywords in Russia, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2022

Display code
## 2022:
df2022$Event_count <- 1
df202201 <- ddply(df2022, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map04 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202201,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: all keywords in Russia, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2023

Display code
## 2023:
df2023$Event_count <- 1
df202301 <- ddply(df2023, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map05 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202301,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: all keywords in Russia, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

1.04 Event type: state actions

2020 - 2023

Display code
df$state <- ifelse(df$arrest == 1, 1,
            ifelse(df$confiscation == 1, 1,
            ifelse(df$persecution == 1, 1,
            ifelse(df$seize == 1, 1, 0))))

dfstate <- df[(df$state == 1), ]

dfstate$Event_count <- 1

df01 <- ddply(dfstate, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: state actions in Russia, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2020

Display code
df2020 <- dfstate[dfstate$year == "2020", ]
df2021 <- dfstate[dfstate$year == "2021", ]
df2022 <- dfstate[dfstate$year == "2022", ]
df2023 <- dfstate[dfstate$year == "2023", ]

## 2020:
df2020$Event_count <- 1
df202001 <- ddply(df2020, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map02 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202001,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: state actions in Russia, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2021

Display code
## 2021:
df2021$Event_count <- 1
df202101 <- ddply(df2021, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map03 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202101,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: state actions in Russia, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2022

Display code
## 2022:
df2022$Event_count <- 1
df202201 <- ddply(df2022, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map04 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202201,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: state actions in Russia, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2023

Display code
## 2023:
df2023$Event_count <- 1
df202301 <- ddply(df2023, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map05 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202301,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: state actions in Russia, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

1.05 Event type: non-state actions

2020 - 2023

Display code
df$nonstate <- ifelse(df$black_market == 1, 1,
               ifelse(df$crime_cartels == 1, 1,
               ifelse(df$drug_trade == 1, 1,
               ifelse(df$human_trafficking == 1, 1,
               ifelse(df$arms_deal == 1, 1,
               ifelse(df$organized_crime == 1, 1, 0))))))

dfnonstate <- df[(df$nonstate == 1), ]

dfnonstate$Event_count <- 1

df01 <- ddply(dfnonstate, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: non-state actions in Russia, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2020

Display code
df2020 <- dfnonstate[dfnonstate$year == "2020", ]
df2021 <- dfnonstate[dfnonstate$year == "2021", ]
df2022 <- dfnonstate[dfnonstate$year == "2022", ]
df2023 <- dfnonstate[dfnonstate$year == "2023", ]

## 2020:
df2020$Event_count <- 1
df202001 <- ddply(df2020, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map02 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202001,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: non-state actions in Russia, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2021

Display code
## 2021:
df2021$Event_count <- 1
df202101 <- ddply(df2021, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map03 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202101,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: non-state actions in Russia, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2022

Display code
## 2022:
df2022$Event_count <- 1
df202201 <- ddply(df2022, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map04 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202201,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: non-state actions in Russia, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2023

Display code
## 2023:
df2023$Event_count <- 1
df202301 <- ddply(df2023, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map05 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202301,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: non-state actions in Russia, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

1.06 Event type: Arrest

2020 - 2023

Display code
dfarrest <- df[(df$arrest == 1), ]

dfarrest$Event_count <- 1

df01 <- ddply(dfarrest, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: arrest in Russia, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2020

Display code
### 2020

df2020 <- dfarrest[dfarrest$year == "2020", ]
df2021 <- dfarrest[dfarrest$year == "2021", ]
df2022 <- dfarrest[dfarrest$year == "2022", ]
df2023 <- dfarrest[dfarrest$year == "2023", ]

## 2020:
df2020$Event_count <- 1
df202001 <- ddply(df2020, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map02 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202001,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: arrest in Russia, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2021

Display code
## 2021:
df2021$Event_count <- 1
df202101 <- ddply(df2021, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map03 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202101,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: arrest in Russia, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2022

Display code
## 2022:
df2022$Event_count <- 1
df202201 <- ddply(df2022, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map04 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202201,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: arrest in Russia, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2023

Display code
## 2023:
df2023$Event_count <- 1
df202301 <- ddply(df2023, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map05 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202301,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: arrest in Russia, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

1.07 Event type: Confiscation

2020 - 2023

Display code
dfconfiscation <- df[(df$confiscation == 1), ]

dfconfiscation$Event_count <- 1

df01 <- ddply(dfconfiscation, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: confiscation in Russia, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2020

Display code
### 2020

df2020 <- dfconfiscation[dfconfiscation$year == "2020", ]
df2021 <- dfconfiscation[dfconfiscation$year == "2021", ]
df2022 <- dfconfiscation[dfconfiscation$year == "2022", ]
df2023 <- dfconfiscation[dfconfiscation$year == "2023", ]

## 2020:
df2020$Event_count <- 1
df202001 <- ddply(df2020, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map02 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202001,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: confiscation in Russia, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2021

Display code
## 2021:
df2021$Event_count <- 1
df202101 <- ddply(df2021, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map03 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202101,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: confiscation in Russia, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2022

Display code
## 2022:
df2022$Event_count <- 1
df202201 <- ddply(df2022, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map04 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202201,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: confiscation in Russia, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2023

Display code
## 2023:
df2023$Event_count <- 1
df202301 <- ddply(df2023, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map05 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202301,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: confiscation in Russia, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

1.08 Event type: Persecution

2020 - 2023

Display code
dfpersecution <- df[(df$persecution == 1), ]

dfpersecution$Event_count <- 1

df01 <- ddply(dfpersecution, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: persecution in Russia, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2020

Display code
### 2020

df2020 <- dfpersecution[dfpersecution$year == "2020", ]
df2021 <- dfpersecution[dfpersecution$year == "2021", ]
df2022 <- dfpersecution[dfpersecution$year == "2022", ]
df2023 <- dfpersecution[dfpersecution$year == "2023", ]

## 2020:
df2020$Event_count <- 1
df202001 <- ddply(df2020, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map02 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202001,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: persecution in Russia, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2021

Display code
## 2021:
df2021$Event_count <- 1
df202101 <- ddply(df2021, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map03 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202101,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: persecution in Russia, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2022

Display code
## 2022:
df2022$Event_count <- 1
df202201 <- ddply(df2022, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map04 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202201,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: persecution in Russia, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2023

Display code
## 2023:
df2023$Event_count <- 1
df202301 <- ddply(df2023, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map05 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202301,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: persecution in Russia, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

1.09 Event type: Seize

2020 - 2023

Display code
dfseize <- df[(df$seize == 1), ]

dfseize$Event_count <- 1

df01 <- ddply(dfseize, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: seize in Russia, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2020

Display code
### 2020

df2020 <- dfseize[dfseize$year == "2020", ]
df2021 <- dfseize[dfseize$year == "2021", ]
df2022 <- dfseize[dfseize$year == "2022", ]
df2023 <- dfseize[dfseize$year == "2023", ]

## 2020:
df2020$Event_count <- 1
df202001 <- ddply(df2020, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map02 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202001,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: seize in Russia, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2021

Display code
## 2021:
df2021$Event_count <- 1
df202101 <- ddply(df2021, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map03 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202101,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: seize in Russia, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2022

Display code
## 2022:
df2022$Event_count <- 1
df202201 <- ddply(df2022, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map04 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202201,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: seize in Russia, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2023

Display code
## 2023:
df2023$Event_count <- 1
df202301 <- ddply(df2023, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map05 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202301,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: seize in Russia, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

1.10 Event type: Black market

2020 - 2023

Display code
dfblack_market <- df[(df$black_market == 1), ]

dfblack_market$Event_count <- 1

df01 <- ddply(dfblack_market, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: black_market in Russia, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2020

Display code
### 2020

df2020 <- dfblack_market[dfblack_market$year == "2020", ]
df2021 <- dfblack_market[dfblack_market$year == "2021", ]
df2022 <- dfblack_market[dfblack_market$year == "2022", ]
df2023 <- dfblack_market[dfblack_market$year == "2023", ]

## 2020:
df2020$Event_count <- 1
df202001 <- ddply(df2020, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map02 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202001,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: black_market in Russia, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2021

Display code
## 2021:
df2021$Event_count <- 1
df202101 <- ddply(df2021, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map03 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202101,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: black_market in Russia, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2022

Display code
## 2022:
df2022$Event_count <- 1
df202201 <- ddply(df2022, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map04 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202201,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: black_market in Russia, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2023

Display code
## 2023:
df2023$Event_count <- 1
df202301 <- ddply(df2023, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map05 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202301,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: black_market in Russia, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

1.11 Event type: Cartels

2020 - 2023

Display code
dfcrime_cartels <- df[(df$crime_cartels == 1), ]

dfcrime_cartels$Event_count <- 1

df01 <- ddply(dfcrime_cartels, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: crime_cartels in Russia, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2020

Display code
### 2020

df2020 <- dfcrime_cartels[dfcrime_cartels$year == "2020", ]
df2021 <- dfcrime_cartels[dfcrime_cartels$year == "2021", ]
df2022 <- dfcrime_cartels[dfcrime_cartels$year == "2022", ]
df2023 <- dfcrime_cartels[dfcrime_cartels$year == "2023", ]

## 2020:
df2020$Event_count <- 1
df202001 <- ddply(df2020, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map02 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202001,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: crime_cartels in Russia, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2021

Display code
## 2021:
df2021$Event_count <- 1
df202101 <- ddply(df2021, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map03 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202101,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: crime_cartels in Russia, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2022

Display code
## 2022:
df2022$Event_count <- 1
df202201 <- ddply(df2022, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map04 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202201,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: crime_cartels in Russia, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2023

Display code
## 2023:
df2023$Event_count <- 1
df202301 <- ddply(df2023, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map05 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202301,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: crime_cartels in Russia, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

1.12 Event type: Drug trade

2020 - 2023

Display code
dfdrug_trade <- df[(df$drug_trade == 1), ]

dfdrug_trade$Event_count <- 1

df01 <- ddply(dfdrug_trade, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: drug_trade in Russia, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2020

Display code
### 2020

df2020 <- dfdrug_trade[dfdrug_trade$year == "2020", ]
df2021 <- dfdrug_trade[dfdrug_trade$year == "2021", ]
df2022 <- dfdrug_trade[dfdrug_trade$year == "2022", ]
df2023 <- dfdrug_trade[dfdrug_trade$year == "2023", ]

## 2020:
df2020$Event_count <- 1
df202001 <- ddply(df2020, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map02 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202001,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: drug_trade in Russia, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2021

Display code
## 2021:
df2021$Event_count <- 1
df202101 <- ddply(df2021, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map03 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202101,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: drug_trade in Russia, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2022

Display code
## 2022:
df2022$Event_count <- 1
df202201 <- ddply(df2022, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map04 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202201,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: drug_trade in Russia, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2023

Display code
## 2023:
df2023$Event_count <- 1
df202301 <- ddply(df2023, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map05 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202301,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: drug_trade in Russia, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

1.13 Event type: Human trafficking

2020 - 2023

Display code
dfhuman_trafficking <- df[(df$human_trafficking == 1), ]

dfhuman_trafficking$Event_count <- 1

df01 <- ddply(dfhuman_trafficking, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: human_trafficking in Russia, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2020

Display code
### 2020

df2020 <- dfhuman_trafficking[dfhuman_trafficking$year == "2020", ]
df2021 <- dfhuman_trafficking[dfhuman_trafficking$year == "2021", ]
df2022 <- dfhuman_trafficking[dfhuman_trafficking$year == "2022", ]
df2023 <- dfhuman_trafficking[dfhuman_trafficking$year == "2023", ]

## 2020:
df2020$Event_count <- 1
df202001 <- ddply(df2020, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map02 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202001,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: human_trafficking in Russia, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2021

Display code
## 2021:
df2021$Event_count <- 1
df202101 <- ddply(df2021, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map03 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202101,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: human_trafficking in Russia, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2022

Display code
## 2022:
df2022$Event_count <- 1
df202201 <- ddply(df2022, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map04 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202201,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: human_trafficking in Russia, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2023

Display code
## 2023:
df2023$Event_count <- 1
df202301 <- ddply(df2023, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map05 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202301,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: human_trafficking in Russia, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

1.14 Event type: Arms deal

2020 - 2023

Display code
dfarms_deal <- df[(df$arms_deal == 1), ]

dfarms_deal$Event_count <- 1

df01 <- ddply(dfarms_deal, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: arms_deal in Russia, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2020

Display code
### 2020

df2020 <- dfarms_deal[dfarms_deal$year == "2020", ]
df2021 <- dfarms_deal[dfarms_deal$year == "2021", ]
df2022 <- dfarms_deal[dfarms_deal$year == "2022", ]
df2023 <- dfarms_deal[dfarms_deal$year == "2023", ]

## 2020:
df2020$Event_count <- 1
df202001 <- ddply(df2020, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map02 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202001,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: arms_deal in Russia, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2021

Display code
## 2021:
df2021$Event_count <- 1
df202101 <- ddply(df2021, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map03 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202101,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: arms_deal in Russia, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2022

Display code
## 2022:
df2022$Event_count <- 1
df202201 <- ddply(df2022, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map04 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202201,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: arms_deal in Russia, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2023

Display code
## 2023:
df2023$Event_count <- 1
df202301 <- ddply(df2023, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map05 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202301,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: arms_deal in Russia, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

1.15 Event type: Organized crime

2020 - 2023

Display code
dforganized_crime <- df[(df$organized_crime == 1), ]

dforganized_crime$Event_count <- 1

df01 <- ddply(dforganized_crime, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: organized_crime in Russia, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2020

Display code
### 2020

df2020 <- dforganized_crime[dforganized_crime$year == "2020", ]
df2021 <- dforganized_crime[dforganized_crime$year == "2021", ]
df2022 <- dforganized_crime[dforganized_crime$year == "2022", ]
df2023 <- dforganized_crime[dforganized_crime$year == "2023", ]

## 2020:
df2020$Event_count <- 1
df202001 <- ddply(df2020, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map02 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202001,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: organized_crime in Russia, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2021

Display code
## 2021:
df2021$Event_count <- 1
df202101 <- ddply(df2021, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map03 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202101,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: organized_crime in Russia, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2022

Display code
## 2022:
df2022$Event_count <- 1
df202201 <- ddply(df2022, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map04 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202201,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: organized_crime in Russia, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2023

Display code
## 2023:
df2023$Event_count <- 1
df202301 <- ddply(df2023, 
            .(ActionGeo_Lat, ActionGeo_Long), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map05 <- print(ggmap(mapoutline) + 
                 geom_point(data = df202301,
                            aes(x = ActionGeo_Long, 
                                y = ActionGeo_Lat,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event type: organized_crime in Russia, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())