The maps below display the count of event types by keyword in Moldova.
Interpretation: Bigger circles around specific coordinates means higher count of events. (Larger circles = more events in that area).
Blank map:
Display code
# Register ggmap API for mapping:# summary(df$ActionGeo_Lat)# summary(df$ActionGeo_Long)ggmap::register_stadiamaps(key ="ecb62ab3-c884-4be1-9e19-4a49f5f8bed0")mapoutline <-get_map(location =c(left =26.00, ## bottom left (lon)bottom =45.00, ## bottom left (lat)right =32.00, # bottom right (lon)top =49.00), maptype ="outdoors", source ="stadia",color="bw")print(ggmap(mapoutline))
1.03 Event type: all keywords
2020 - 2023
Display code
df$Event_count <-1df01 <-ddply(df, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: all keywords in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2020
Display code
df2020 <- df[df$year =="2020", ]df2021 <- df[df$year =="2021", ]df2022 <- df[df$year =="2022", ]df2023 <- df[df$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: all keywords in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2021
Display code
## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: all keywords in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2022
Display code
## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: all keywords in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2023
Display code
## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: all keywords in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
1.04 Event type: state actions
2020 - 2023
Display code
df$state <-ifelse(df$arrest ==1, 1,ifelse(df$confiscation ==1, 1,ifelse(df$persecution ==1, 1,ifelse(df$seize ==1, 1, 0))))dfstate <- df[(df$state ==1), ]dfstate$Event_count <-1df01 <-ddply(dfstate, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: state actions in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2020
Display code
df2020 <- dfstate[dfstate$year =="2020", ]df2021 <- dfstate[dfstate$year =="2021", ]df2022 <- dfstate[dfstate$year =="2022", ]df2023 <- dfstate[dfstate$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: state actions in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2021
Display code
## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: state actions in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2022
Display code
## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: state actions in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2023
Display code
## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: state actions in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
1.05 Event type: non-state actions
2020 - 2023
Display code
df$nonstate <-ifelse(df$black_market ==1, 1,ifelse(df$crime_cartels ==1, 1,ifelse(df$drug_trade ==1, 1,ifelse(df$human_trafficking ==1, 1,ifelse(df$arms_deal ==1, 1,ifelse(df$organized_crime ==1, 1, 0))))))dfnonstate <- df[(df$nonstate ==1), ]dfnonstate$Event_count <-1df01 <-ddply(dfnonstate, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: non-state actions in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2020
Display code
df2020 <- dfnonstate[dfnonstate$year =="2020", ]df2021 <- dfnonstate[dfnonstate$year =="2021", ]df2022 <- dfnonstate[dfnonstate$year =="2022", ]df2023 <- dfnonstate[dfnonstate$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: non-state actions in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2021
Display code
## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: non-state actions in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2022
Display code
## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: non-state actions in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2023
Display code
## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: non-state actions in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
1.06 Event type: Arrest
2020 - 2023
Display code
dfarrest <- df[(df$arrest ==1), ]dfarrest$Event_count <-1df01 <-ddply(dfarrest, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arrest in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2020
Display code
### 2020df2020 <- dfarrest[dfarrest$year =="2020", ]df2021 <- dfarrest[dfarrest$year =="2021", ]df2022 <- dfarrest[dfarrest$year =="2022", ]df2023 <- dfarrest[dfarrest$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arrest in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2021
Display code
## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arrest in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2022
Display code
## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arrest in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2023
Display code
## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arrest in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
1.07 Event type: Confiscation
2020 - 2023
Display code
dfconfiscation <- df[(df$confiscation ==1), ]dfconfiscation$Event_count <-1df01 <-ddply(dfconfiscation, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: confiscation in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2020
Display code
### 2020df2020 <- dfconfiscation[dfconfiscation$year =="2020", ]df2021 <- dfconfiscation[dfconfiscation$year =="2021", ]df2022 <- dfconfiscation[dfconfiscation$year =="2022", ]df2023 <- dfconfiscation[dfconfiscation$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: confiscation in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2021
Display code
## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: confiscation in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2022
Display code
## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: confiscation in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2023
Display code
## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: confiscation in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
1.08 Event type: Persecution
2020 - 2023
Display code
dfpersecution <- df[(df$persecution ==1), ]dfpersecution$Event_count <-1df01 <-ddply(dfpersecution, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: persecution in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2020
Display code
### 2020df2020 <- dfpersecution[dfpersecution$year =="2020", ]df2021 <- dfpersecution[dfpersecution$year =="2021", ]df2022 <- dfpersecution[dfpersecution$year =="2022", ]df2023 <- dfpersecution[dfpersecution$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: persecution in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2021
Display code
## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: persecution in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2022
Display code
## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: persecution in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2023
Display code
## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: persecution in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
1.09 Event type: Seize
2020 - 2023
Display code
dfseize <- df[(df$seize ==1), ]dfseize$Event_count <-1df01 <-ddply(dfseize, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: seize in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2020
Display code
### 2020df2020 <- dfseize[dfseize$year =="2020", ]df2021 <- dfseize[dfseize$year =="2021", ]df2022 <- dfseize[dfseize$year =="2022", ]df2023 <- dfseize[dfseize$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: seize in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2021
Display code
## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: seize in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2022
Display code
## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: seize in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2023
Display code
## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: seize in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
1.10 Event type: Black market
2020 - 2023
Display code
dfblack_market <- df[(df$black_market ==1), ]dfblack_market$Event_count <-1df01 <-ddply(dfblack_market, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: black_market in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2020
Display code
### 2020df2020 <- dfblack_market[dfblack_market$year =="2020", ]df2021 <- dfblack_market[dfblack_market$year =="2021", ]df2022 <- dfblack_market[dfblack_market$year =="2022", ]df2023 <- dfblack_market[dfblack_market$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: black_market in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2021
Display code
## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: black_market in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2022
Display code
## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: black_market in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2023
Display code
## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: black_market in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
1.11 Event type: Cartels
2020 - 2023
Display code
dfcrime_cartels <- df[(df$crime_cartels ==1), ]dfcrime_cartels$Event_count <-1df01 <-ddply(dfcrime_cartels, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: crime_cartels in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2020
Display code
### 2020df2020 <- dfcrime_cartels[dfcrime_cartels$year =="2020", ]df2021 <- dfcrime_cartels[dfcrime_cartels$year =="2021", ]df2022 <- dfcrime_cartels[dfcrime_cartels$year =="2022", ]df2023 <- dfcrime_cartels[dfcrime_cartels$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: crime_cartels in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2021
Display code
## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: crime_cartels in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2022
Display code
## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: crime_cartels in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2023
Display code
## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: crime_cartels in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
1.12 Event type: Drug trade
2020 - 2023
Display code
dfdrug_trade <- df[(df$drug_trade ==1), ]dfdrug_trade$Event_count <-1df01 <-ddply(dfdrug_trade, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: drug_trade in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2020
Display code
### 2020df2020 <- dfdrug_trade[dfdrug_trade$year =="2020", ]df2021 <- dfdrug_trade[dfdrug_trade$year =="2021", ]df2022 <- dfdrug_trade[dfdrug_trade$year =="2022", ]df2023 <- dfdrug_trade[dfdrug_trade$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: drug_trade in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2021
Display code
## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: drug_trade in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2022
Display code
## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: drug_trade in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2023
Display code
## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: drug_trade in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
1.13 Event type: Human trafficking
2020 - 2023
Display code
dfhuman_trafficking <- df[(df$human_trafficking ==1), ]dfhuman_trafficking$Event_count <-1df01 <-ddply(dfhuman_trafficking, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: human_trafficking in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2020
Display code
### 2020df2020 <- dfhuman_trafficking[dfhuman_trafficking$year =="2020", ]df2021 <- dfhuman_trafficking[dfhuman_trafficking$year =="2021", ]df2022 <- dfhuman_trafficking[dfhuman_trafficking$year =="2022", ]df2023 <- dfhuman_trafficking[dfhuman_trafficking$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: human_trafficking in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2021
Display code
## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: human_trafficking in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2022
Display code
## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: human_trafficking in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2023
Display code
## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: human_trafficking in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
1.14 Event type: Arms deal
2020 - 2023
Display code
dfarms_deal <- df[(df$arms_deal ==1), ]dfarms_deal$Event_count <-1df01 <-ddply(dfarms_deal, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arms_deal in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2020
Display code
### 2020df2020 <- dfarms_deal[dfarms_deal$year =="2020", ]df2021 <- dfarms_deal[dfarms_deal$year =="2021", ]df2022 <- dfarms_deal[dfarms_deal$year =="2022", ]df2023 <- dfarms_deal[dfarms_deal$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arms_deal in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2021
Display code
## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arms_deal in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2022
Display code
## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arms_deal in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2023
Display code
## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arms_deal in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
1.15 Event type: Organized crime
2020 - 2023
Display code
dforganized_crime <- df[(df$organized_crime ==1), ]dforganized_crime$Event_count <-1df01 <-ddply(dforganized_crime, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: organized_crime in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2020
Display code
### 2020df2020 <- dforganized_crime[dforganized_crime$year =="2020", ]df2021 <- dforganized_crime[dforganized_crime$year =="2021", ]df2022 <- dforganized_crime[dforganized_crime$year =="2022", ]df2023 <- dforganized_crime[dforganized_crime$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: organized_crime in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2021
Display code
## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: organized_crime in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2022
Display code
## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: organized_crime in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
2023
Display code
## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: organized_crime in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())
Source Code
---title: "GDELT Events: Moldova"author: Gagan Atreyadate: todayformat: html: toc: true toc-location: left toc-depth: 4 theme: lumen fontsize: large code-fold: true code-tools: true code-summary: "Display code" code-overflow: wrapeditor: markdown: wrap: 72---# **Section 1. GDELT Events Recorded in Moldova: 2020 - 2023**## **1.01 Breakdown of events by keywords** #### **Keywords: State actions**- ARREST- CONFISCATION- PERSECUTION- SEIZE#### **Keywords: Non-state actions**- BLACK_MARKET- CRIME_CARTELS- DRUG_TRADE- HUMAN_TRAFFICKING- MIL_SELF_IDENTIFIED_ARMS_DEAL- ORGANIZED_CRIME```{r, error = F, message = F, warning = F}rm(list =ls())#if (!require("pacman")) install.packages("pacman")pacman::p_load(tidyverse, data.table, vtable, lubridate, ggcharts, plyr, gridExtra, RgoogleMaps, ggmap, mapproj)## GDELT dataframe:df <-fread("~/Desktop/soc_ace_2024/data/gdelt/gkg_v2/gkg_themes_moldova_cleaned.csv")## Create different dataframes for each event types based on keywords:df_arrest <- df[df$count_arrest >=1, ]df_confiscation <- df[df$count_confiscation >=1, ]df_persecution <- df[df$count_persecution >=1, ]df_seize <- df[df$count_seize >=1, ]df_black_market <- df[df$count_black_market >=1, ]df_crime_cartels <- df[df$count_crime_cartels >=1, ]df_drug_trade <- df[df$count_drug_trade >=1, ]df_human_trafficking <- df[df$count_human_trafficking >=1, ]df_arms_deal <- df[df$count_arms_deal >=1, ]df_organized_crime <- df[df$count_organized_crime >=1, ]df_backup <- dfdf$arrest <-ifelse(df$count_arrest >=1, 1, 0)df$confiscation <-ifelse(df$count_confiscation >=1, 1, 0)df$persecution <-ifelse(df$count_persecution >=1, 1, 0)df$seize <-ifelse(df$count_seize >=1, 1, 0)df$black_market <-ifelse(df$count_black_market >=1, 1, 0)df$crime_cartels <-ifelse(df$count_crime_cartels >=1, 1, 0)df$drug_trade <-ifelse(df$count_drug_trade >=1, 1, 0)df$human_trafficking <-ifelse(df$count_human_trafficking >=1, 1, 0)df$arms_deal <-ifelse(df$count_arms_deal >=1, 1, 0)df$organized_crime <-ifelse(df$count_organized_crime >=1, 1, 0)## table(df$arrest)## table(df$confiscation)## table(df$persecution)## table(df$seize)## table(df$black_market)## table(df$crime_cartels)## table(df$drug_trade)## table(df$human_trafficking)## table(df$arms_deal)## table(df$organized_crime)## State Actions:dfstate <-cbind.data.frame(df$arrest, df$confiscation, df$persecution, df$seize)colnames(dfstate)[1:4] <-c("Arrest", "Confiscation", "Persecution", "Seize")dfstate[] <-sapply(dfstate, as.numeric)dfstate[is.na(dfstate)] <-0tab01 <-data.frame(values=colSums(dfstate, na.rm=TRUE), names =names(dfstate))p01 <-ggplot(data=tab01, aes(x=names, y=values)) +geom_bar(stat="identity", fill ="black", color ="black", size =1.5,width =0.75)+ylim(0, 80)+labs(title =paste("Moldova: state actions"),x ="",y ="Count")+theme_bw()p01 <- p01+theme(axis.text.x =element_text(angle =45, hjust =1))#p01 ## Non-nonstate Actions:dfnonstate <-cbind.data.frame(df$black_market, df$crime_cartels, df$drug_trade, df$human_trafficking, df$arms_deal, df$organized_crime)colnames(dfnonstate)[1:6] <-c("Black_market", "Cartels", "Drug_trade","Human_trafficking", "Arms_deal", "Organized_crime")dfnonstate[] <-sapply(dfnonstate, as.numeric)dfnonstate[is.na(dfnonstate)] <-0tab02 <-data.frame(values=colSums(dfnonstate, na.rm=TRUE), names =names(dfnonstate))p02 <-ggplot(data=tab02, aes(x=names, y=values)) +geom_bar(stat="identity", fill ="black", color ="black", size =1.5,width =0.75)+ylim(0, 80)+labs(title =paste("Moldova: non-state actions"),x ="",y ="Count")+theme_bw()p02 <- p02+theme(axis.text.x =element_text(angle =45, hjust =1))p01 | p02```## **1.02 Maps of events by keyword** The maps below display the count of event types by keyword in Moldova. **Interpretation:** <br>Bigger circles around specific coordinates means higher count of events. <br>(Larger circles = more events in that area).**Blank map:** ```{r, error = F, message = F, warning = F}# Register ggmap API for mapping:# summary(df$ActionGeo_Lat)# summary(df$ActionGeo_Long)ggmap::register_stadiamaps(key ="ecb62ab3-c884-4be1-9e19-4a49f5f8bed0")mapoutline <-get_map(location =c(left =26.00, ## bottom left (lon)bottom =45.00, ## bottom left (lat)right =32.00, # bottom right (lon)top =49.00), maptype ="outdoors", source ="stadia",color="bw")print(ggmap(mapoutline))```## **1.03 Event type: all keywords** ### 2020 - 2023```{r, error = F, message = F, warning = F}df$Event_count <-1df01 <-ddply(df, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: all keywords in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2020```{r, error = F, message = F, warning = F}df2020 <- df[df$year =="2020", ]df2021 <- df[df$year =="2021", ]df2022 <- df[df$year =="2022", ]df2023 <- df[df$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: all keywords in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2021```{r, error = F, message = F, warning = F}## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: all keywords in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2022```{r, error = F, message = F, warning = F}## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: all keywords in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2023```{r, error = F, message = F, warning = F}## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: all keywords in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```## **1.04 Event type: state actions** ### 2020 - 2023```{r, error = F, message = F, warning = F}df$state <-ifelse(df$arrest ==1, 1,ifelse(df$confiscation ==1, 1,ifelse(df$persecution ==1, 1,ifelse(df$seize ==1, 1, 0))))dfstate <- df[(df$state ==1), ]dfstate$Event_count <-1df01 <-ddply(dfstate, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: state actions in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2020```{r, error = F, message = F, warning = F}df2020 <- dfstate[dfstate$year =="2020", ]df2021 <- dfstate[dfstate$year =="2021", ]df2022 <- dfstate[dfstate$year =="2022", ]df2023 <- dfstate[dfstate$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: state actions in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2021```{r, error = F, message = F, warning = F}## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: state actions in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2022```{r, error = F, message = F, warning = F}## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: state actions in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2023```{r, error = F, message = F, warning = F}## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: state actions in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```## **1.05 Event type: non-state actions** ### 2020 - 2023```{r, error = F, message = F, warning = F}df$nonstate <-ifelse(df$black_market ==1, 1,ifelse(df$crime_cartels ==1, 1,ifelse(df$drug_trade ==1, 1,ifelse(df$human_trafficking ==1, 1,ifelse(df$arms_deal ==1, 1,ifelse(df$organized_crime ==1, 1, 0))))))dfnonstate <- df[(df$nonstate ==1), ]dfnonstate$Event_count <-1df01 <-ddply(dfnonstate, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: non-state actions in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2020```{r, error = F, message = F, warning = F}df2020 <- dfnonstate[dfnonstate$year =="2020", ]df2021 <- dfnonstate[dfnonstate$year =="2021", ]df2022 <- dfnonstate[dfnonstate$year =="2022", ]df2023 <- dfnonstate[dfnonstate$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: non-state actions in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2021```{r, error = F, message = F, warning = F}## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: non-state actions in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2022```{r, error = F, message = F, warning = F}## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: non-state actions in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2023```{r, error = F, message = F, warning = F}## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: non-state actions in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```## **1.06 Event type: Arrest** ### 2020 - 2023```{r, error = F, message = F, warning = F}dfarrest <- df[(df$arrest ==1), ]dfarrest$Event_count <-1df01 <-ddply(dfarrest, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arrest in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2020```{r, error = F, message = F, warning = F}### 2020df2020 <- dfarrest[dfarrest$year =="2020", ]df2021 <- dfarrest[dfarrest$year =="2021", ]df2022 <- dfarrest[dfarrest$year =="2022", ]df2023 <- dfarrest[dfarrest$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arrest in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2021```{r, error = F, message = F, warning = F}## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arrest in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2022```{r, error = F, message = F, warning = F}## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arrest in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2023```{r, error = F, message = F, warning = F}## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arrest in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```## **1.07 Event type: Confiscation** ### 2020 - 2023```{r, error = F, message = F, warning = F}dfconfiscation <- df[(df$confiscation ==1), ]dfconfiscation$Event_count <-1df01 <-ddply(dfconfiscation, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: confiscation in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2020```{r, error = F, message = F, warning = F}### 2020df2020 <- dfconfiscation[dfconfiscation$year =="2020", ]df2021 <- dfconfiscation[dfconfiscation$year =="2021", ]df2022 <- dfconfiscation[dfconfiscation$year =="2022", ]df2023 <- dfconfiscation[dfconfiscation$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: confiscation in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2021```{r, error = F, message = F, warning = F}## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: confiscation in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2022```{r, error = F, message = F, warning = F}## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: confiscation in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2023```{r, error = F, message = F, warning = F}## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: confiscation in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```## **1.08 Event type: Persecution** ### 2020 - 2023```{r, error = F, message = F, warning = F}dfpersecution <- df[(df$persecution ==1), ]dfpersecution$Event_count <-1df01 <-ddply(dfpersecution, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: persecution in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2020```{r, error = F, message = F, warning = F}### 2020df2020 <- dfpersecution[dfpersecution$year =="2020", ]df2021 <- dfpersecution[dfpersecution$year =="2021", ]df2022 <- dfpersecution[dfpersecution$year =="2022", ]df2023 <- dfpersecution[dfpersecution$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: persecution in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2021```{r, error = F, message = F, warning = F}## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: persecution in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2022```{r, error = F, message = F, warning = F}## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: persecution in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2023```{r, error = F, message = F, warning = F}## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: persecution in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```## **1.09 Event type: Seize** ### 2020 - 2023```{r, error = F, message = F, warning = F}dfseize <- df[(df$seize ==1), ]dfseize$Event_count <-1df01 <-ddply(dfseize, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: seize in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2020```{r, error = F, message = F, warning = F}### 2020df2020 <- dfseize[dfseize$year =="2020", ]df2021 <- dfseize[dfseize$year =="2021", ]df2022 <- dfseize[dfseize$year =="2022", ]df2023 <- dfseize[dfseize$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: seize in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2021```{r, error = F, message = F, warning = F}## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: seize in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2022```{r, error = F, message = F, warning = F}## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: seize in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2023```{r, error = F, message = F, warning = F}## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: seize in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```## **1.10 Event type: Black market** ### 2020 - 2023```{r, error = F, message = F, warning = F}dfblack_market <- df[(df$black_market ==1), ]dfblack_market$Event_count <-1df01 <-ddply(dfblack_market, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: black_market in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2020```{r, error = F, message = F, warning = F}### 2020df2020 <- dfblack_market[dfblack_market$year =="2020", ]df2021 <- dfblack_market[dfblack_market$year =="2021", ]df2022 <- dfblack_market[dfblack_market$year =="2022", ]df2023 <- dfblack_market[dfblack_market$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: black_market in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2021```{r, error = F, message = F, warning = F}## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: black_market in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2022```{r, error = F, message = F, warning = F}## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: black_market in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2023```{r, error = F, message = F, warning = F}## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: black_market in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```## **1.11 Event type: Cartels** ### 2020 - 2023```{r, error = F, message = F, warning = F}dfcrime_cartels <- df[(df$crime_cartels ==1), ]dfcrime_cartels$Event_count <-1df01 <-ddply(dfcrime_cartels, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: crime_cartels in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2020```{r, error = F, message = F, warning = F}### 2020df2020 <- dfcrime_cartels[dfcrime_cartels$year =="2020", ]df2021 <- dfcrime_cartels[dfcrime_cartels$year =="2021", ]df2022 <- dfcrime_cartels[dfcrime_cartels$year =="2022", ]df2023 <- dfcrime_cartels[dfcrime_cartels$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: crime_cartels in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2021```{r, error = F, message = F, warning = F}## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: crime_cartels in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2022```{r, error = F, message = F, warning = F}## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: crime_cartels in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2023```{r, error = F, message = F, warning = F}## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: crime_cartels in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```## **1.12 Event type: Drug trade** ### 2020 - 2023```{r, error = F, message = F, warning = F}dfdrug_trade <- df[(df$drug_trade ==1), ]dfdrug_trade$Event_count <-1df01 <-ddply(dfdrug_trade, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: drug_trade in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2020```{r, error = F, message = F, warning = F}### 2020df2020 <- dfdrug_trade[dfdrug_trade$year =="2020", ]df2021 <- dfdrug_trade[dfdrug_trade$year =="2021", ]df2022 <- dfdrug_trade[dfdrug_trade$year =="2022", ]df2023 <- dfdrug_trade[dfdrug_trade$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: drug_trade in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2021```{r, error = F, message = F, warning = F}## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: drug_trade in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2022```{r, error = F, message = F, warning = F}## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: drug_trade in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2023```{r, error = F, message = F, warning = F}## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: drug_trade in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```## **1.13 Event type: Human trafficking** ### 2020 - 2023```{r, error = F, message = F, warning = F}dfhuman_trafficking <- df[(df$human_trafficking ==1), ]dfhuman_trafficking$Event_count <-1df01 <-ddply(dfhuman_trafficking, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: human_trafficking in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2020```{r, error = F, message = F, warning = F}### 2020df2020 <- dfhuman_trafficking[dfhuman_trafficking$year =="2020", ]df2021 <- dfhuman_trafficking[dfhuman_trafficking$year =="2021", ]df2022 <- dfhuman_trafficking[dfhuman_trafficking$year =="2022", ]df2023 <- dfhuman_trafficking[dfhuman_trafficking$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: human_trafficking in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2021```{r, error = F, message = F, warning = F}## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: human_trafficking in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2022```{r, error = F, message = F, warning = F}## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: human_trafficking in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2023```{r, error = F, message = F, warning = F}## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: human_trafficking in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```## **1.14 Event type: Arms deal** ### 2020 - 2023```{r, error = F, message = F, warning = F}dfarms_deal <- df[(df$arms_deal ==1), ]dfarms_deal$Event_count <-1df01 <-ddply(dfarms_deal, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arms_deal in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2020```{r, error = F, message = F, warning = F}### 2020df2020 <- dfarms_deal[dfarms_deal$year =="2020", ]df2021 <- dfarms_deal[dfarms_deal$year =="2021", ]df2022 <- dfarms_deal[dfarms_deal$year =="2022", ]df2023 <- dfarms_deal[dfarms_deal$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arms_deal in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2021```{r, error = F, message = F, warning = F}## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arms_deal in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2022```{r, error = F, message = F, warning = F}## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arms_deal in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2023```{r, error = F, message = F, warning = F}## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: arms_deal in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```## **1.15 Event type: Organized crime** ### 2020 - 2023```{r, error = F, message = F, warning = F}dforganized_crime <- df[(df$organized_crime ==1), ]dforganized_crime$Event_count <-1df01 <-ddply(dforganized_crime, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map01 <-print(ggmap(mapoutline) +geom_point(data = df01,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: organized_crime in Moldova, 2020 - 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2020```{r, error = F, message = F, warning = F}### 2020df2020 <- dforganized_crime[dforganized_crime$year =="2020", ]df2021 <- dforganized_crime[dforganized_crime$year =="2021", ]df2022 <- dforganized_crime[dforganized_crime$year =="2022", ]df2023 <- dforganized_crime[dforganized_crime$year =="2023", ]## 2020:df2020$Event_count <-1df202001 <-ddply(df2020, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map02 <-print(ggmap(mapoutline) +geom_point(data = df202001,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: organized_crime in Moldova, 2020"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2021```{r, error = F, message = F, warning = F}## 2021:df2021$Event_count <-1df202101 <-ddply(df2021, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map03 <-print(ggmap(mapoutline) +geom_point(data = df202101,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: organized_crime in Moldova, 2021"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2022```{r, error = F, message = F, warning = F}## 2022:df2022$Event_count <-1df202201 <-ddply(df2022, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map04 <-print(ggmap(mapoutline) +geom_point(data = df202201,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: organized_crime in Moldova, 2022"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```### 2023```{r, error = F, message = F, warning = F}## 2023:df2023$Event_count <-1df202301 <-ddply(df2023, .(ActionGeo_Lat, ActionGeo_Long), summarize, Event_count =sum(Event_count))## Fill up the map with our data:map05 <-print(ggmap(mapoutline) +geom_point(data = df202301,aes(x = ActionGeo_Long, y = ActionGeo_Lat,size = Event_count), alpha =0.5, colour="black")+ggtitle("Event type: organized_crime in Moldova, 2023"))+theme_bw()+theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())```