Background

The purpose of this study is to explore potential effects of AI and the medium in which it is being engage with on trust and ensuing adoption behaviors.

Procedure

In a 2 (AI vs. human) X 2 (chat vs. no chat) design, participants were asked to imagine a scenario in which they are a hiring manager who needs to read through ~100 applications for an open role. They then watch one of four screen recordings that simulate a request from the hiring manager to HR or an AI tool via a chat or a form, depending on condition. After the interaction, they are told that HR/AI tool got back to them with a recommended list of five applicants.

Then, participants are asked about their trust in the recommendation, as well as the likelihood that they will engage in a number of adoption behaviors, in random order.

Finally, they answer a demographic questionnaire.

Analysis plan

This study is extremely under-powered. The purpose of it is just to get a sense of some directional effects. Therefore, we will mostly look at the means and effect sizes, rather than p-values.

That said, we will conduct a 2X2 between-subjects ANOVA, testing the effects of condition on each of the five adoption behaviors.
Additionally, we will conduct mediation analyses with each of the mechanism measures as mediators, and the strongest DV’s from the ANOVA’s as outcome variables.

Demographics

Race

race N Perc
American Indian or Alaska Native 2 1.00
Asian 19 9.45
Black or African American 17 8.46
Hispanic, Latino, or Spanish origin 6 2.99
Other (please specify) 1 0.50
White 138 68.66
multiracial 17 8.46
NA 1 0.50

Gender

gender N Perc
man 122 60.70
other 3 1.49
woman 76 37.81

Age

age_mean age_sd
38.14 9.7

Education

edu N Perc
noHS 2 1.00
GED 33 16.42
2yearColl 25 12.44
4yearColl 103 51.24
MA 27 13.43
PHD 10 4.98
NA 1 0.50

Income

Employment

employment N Perc
Full-time 169 84.08
Full-time, Homemaker 1 0.50
Other 2 1.00
Part-time 25 12.44
Part-time, Homemaker 1 0.50
Part-time, Other 1 0.50
Permanently disabled 1 0.50
Unemployed 1 0.50

Work Experience

workex N Perc
Less than 5 years 19 9.45
5 - 10 years 46 22.89
10 - 20 years 67 33.33
More than 20 years 69 34.33

Recruiting Experience

recruitex N Perc
No experience or very limited 82 40.80
Some experience 101 50.25
Significant experience 18 8.96

Measures

Adoption

Please indicate the likelihood that you do each of the following (1 = Extremely Unlikely to 5 = Extremely Likely):

1. Accept the recommendation
2. Skim these five applications before proceeding
3. Ignore the recommendation
4. Select, at random, five other applications and read all ten to compare
5. Skim through all applications but read the five recommended applications more closely

Mechanisms

trust_qual: To what extent do you trust the [HR team / AI tool] to come up with the best candidates for this job?
trust_bias: To what extent do you trust the [HR team / AI tool] to judge the applications without bias?
trust_person: To what extent do you trust that the [HR team / AI tool]’s recommendations are personalized to your needs?

Analysis

DV1: Accept the recommendation

Descriptives

ai chat adopt_1_M adopt_1_SD
0 0 3.77 0.89
0 1 4.17 0.56
1 0 3.39 1.20
1 1 3.45 0.98

Two-way ANOVA

Effect DFn DFd F p p<.05 ges
ai 1 197 17.193 5.01e-05
0.080
chat 1 197 3.016 8.40e-02 0.015
ai:chat 1 197 1.585 2.09e-01 0.008

Bonferroni-corrected post-hoc comparisons: Chat

ai Effect DFn DFd F p p<.05 ges p.adj
0 chat 1 98 6.867 0.010
0.065000 0.02
1 chat 1 99 0.085 0.771 0.000859 1.00

Bonferroni-corrected post-hoc comparisons: AI

chat Effect DFn DFd F p p<.05 ges p.adj
0 ai 1 97 3.286 7.30e-02 0.033 1.46e-01
1 ai 1 100 19.586 2.46e-05
0.164 4.92e-05

Plot

DV2: Skim these five applications before proceeding

Descriptives

ai chat adopt_2_M adopt_2_SD
0 0 3.91 1.23
0 1 3.91 1.30
1 0 3.61 1.29
1 1 3.78 1.18

Two-way ANOVA

Effect DFn DFd F p p<.05 ges
ai 1 197 1.484 0.225 0.007
chat 1 197 0.267 0.606 0.001
ai:chat 1 197 0.216 0.643 0.001

Bonferroni-corrected post-hoc comparisons: Chat

ai Effect DFn DFd F p p<.05 ges p.adj
0 chat 1 98 0.001 0.971 1.36e-05 1.000
1 chat 1 99 0.494 0.484 5.00e-03 0.968

Bonferroni-corrected post-hoc comparisons: AI

chat Effect DFn DFd F p p<.05 ges p.adj
0 ai 1 97 1.373 0.244 0.014 0.488
1 ai 1 100 0.293 0.589 0.003 1.000

Plot

DV3: Ignore the recommendation

Descriptives

ai chat adopt_3_M adopt_3_SD
0 0 1.83 0.87
0 1 1.68 0.91
1 0 2.24 1.08
1 1 2.29 1.10

Two-way ANOVA

Effect DFn DFd F p p<.05 ges
ai 1 197 13.075 0.00038
0.062000
chat 1 197 0.120 0.73000 0.000608
ai:chat 1 197 0.509 0.47600 0.003000

Bonferroni-corrected post-hoc comparisons: Chat

ai Effect DFn DFd F p p<.05 ges p.adj
0 chat 1 98 0.701 0.405 0.00700 0.81
1 chat 1 99 0.056 0.813 0.00057 1.00

Bonferroni-corrected post-hoc comparisons: AI

chat Effect DFn DFd F p p<.05 ges p.adj
0 ai 1 97 4.350 0.040
0.043 0.080
1 ai 1 100 9.108 0.003
0.083 0.006

Plot

DV4: Select, at random, five other applications and read all ten to compare

Descriptives

ai chat adopt_4_M adopt_4_SD
0 0 2.60 1.32
0 1 2.21 1.20
1 0 3.04 1.37
1 1 2.91 1.39

Two-way ANOVA

Effect DFn DFd F p p<.05 ges
ai 1 197 9.204 0.003
0.045
chat 1 197 1.969 0.162 0.010
ai:chat 1 197 0.470 0.494 0.002

Bonferroni-corrected post-hoc comparisons: Chat

ai Effect DFn DFd F p p<.05 ges p.adj
0 chat 1 98 2.384 0.126 0.024 0.252
1 chat 1 99 0.238 0.627 0.002 1.000

Bonferroni-corrected post-hoc comparisons: AI

chat Effect DFn DFd F p p<.05 ges p.adj
0 ai 1 97 2.645 0.107 0.027 0.214
1 ai 1 100 7.211 0.008
0.067 0.016

Plot

MECH1: trust_qual

To what extent do you trust the [HR team / AI tool] to come up with the best candidates for this job?

Descriptives

ai chat trust_qual_M trust_qual_SD
0 0 3.81 0.88
0 1 4.19 0.65
1 0 3.17 1.20
1 1 3.38 1.06

Two-way ANOVA

Effect DFn DFd F p p<.05 ges
ai 1 197 27.854 3.00e-07
0.124
chat 1 197 4.600 3.30e-02
0.023
ai:chat 1 197 0.395 5.31e-01 0.002

Bonferroni-corrected post-hoc comparisons: Chat

ai Effect DFn DFd F p p<.05 ges p.adj
0 chat 1 98 5.941 0.017
0.057 0.034
1 chat 1 99 0.854 0.358 0.009 0.716

Bonferroni-corrected post-hoc comparisons: AI

chat Effect DFn DFd F p p<.05 ges p.adj
0 ai 1 97 9.268 3.00e-03
0.087 6.00e-03
1 ai 1 100 20.701 1.51e-05
0.172 3.02e-05

Plot

MECH2: trust_bias

To what extent do you trust the [HR team / AI tool] to judge the applications without bias?

Descriptives

ai chat trust_bias_M trust_bias_SD
0 0 3.70 1.03
0 1 4.21 0.72
1 0 3.65 1.08
1 1 3.64 1.19

Two-way ANOVA

Effect DFn DFd F p p<.05 ges
ai 1 197 4.577 0.034
0.023
chat 1 197 2.941 0.088 0.015
ai:chat 1 197 3.325 0.070 0.017

Bonferroni-corrected post-hoc comparisons: Chat

ai Effect DFn DFd F p p<.05 ges p.adj
0 chat 1 98 8.180 0.005
7.70e-02 0.01
1 chat 1 99 0.005 0.945 4.85e-05 1.00

Bonferroni-corrected post-hoc comparisons: AI

chat Effect DFn DFd F p p<.05 ges p.adj
0 ai 1 97 0.047 0.829 0.000483 1.00
1 ai 1 100 8.370 0.005
0.077000 0.01

Plot

MECH3: trust_person

To what extent do you trust that the [HR team / AI tool]’s recommendations are personalized to your needs?

Descriptives

ai chat trust_person_M trust_person_SD
0 0 3.70 0.93
0 1 4.23 0.73
1 0 3.39 1.08
1 1 3.44 1.12

Two-way ANOVA

Effect DFn DFd F p p<.05 ges
ai 1 197 15.791 9.92e-05
0.074
chat 1 197 4.369 3.80e-02
0.022
ai:chat 1 197 3.119 7.90e-02 0.016

Bonferroni-corrected post-hoc comparisons: Chat

ai Effect DFn DFd F p p<.05 ges p.adj
0 chat 1 98 10.075 0.002
0.093000 0.004
1 chat 1 99 0.042 0.838 0.000422 1.000

Bonferroni-corrected post-hoc comparisons: AI

chat Effect DFn DFd F p p<.05 ges p.adj
0 ai 1 97 2.292 1.33e-01 0.023 0.2660000
1 ai 1 100 17.537 6.08e-05
0.149 0.0001216

Plot