library(nnet)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.0 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(GGally)
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
library(plotly)
##
## Attaching package: 'plotly'
##
## The following object is masked from 'package:ggplot2':
##
## last_plot
##
## The following object is masked from 'package:stats':
##
## filter
##
## The following object is masked from 'package:graphics':
##
## layout
# Load the mtcars dataset
data("mtcars")
mtcars <- na.omit(mtcars)
# Select only the mpg, hp, and wt variables
mtcars <- mtcars %>% select(mpg, hp, wt)
# Set seed for reproducibility
set.seed(123)
# Shuffle the dataset
mtcars <- mtcars[sample(nrow(mtcars)),]
# Splitting into training (60%), validation (20%), and holdout/test (20%) datasets
train_index <- 1:round(0.6 * nrow(mtcars))
val_index <- (max(train_index) + 1):(max(train_index) + round(0.2 * nrow(mtcars)))
train_data <- mtcars[train_index, ]
val_data <- mtcars[val_index, ]
test_data <- mtcars[-c(train_index, val_index), ]
# Normalize our data using mean and standard deviation of train set.
mean <- apply(train_data, 2, mean)
std <- apply(train_data, 2, sd)
train_data <- scale(train_data , center = mean , scale = std )
val_data <- scale(val_data , center = mean , scale = std )
test_data <- scale(test_data , center = mean , scale = std )
# Convert matrices back to data frames
train_data <- as.data.frame(train_data)
val_data <- as.data.frame(val_data)
test_data <- as.data.frame(test_data)
# Create a pair plot
p <- ggpairs(data.frame(train_data))
# Convert the ggplot to a plotly object for interactivity
p <- suppressWarnings(ggplotly(p))
# The plot will be printed automatically
p