Body Appreciation, Eating Behaviors, and Food Liking on Diet Quality in Adult Women (< 40 years old), Qualtric Survey Results
Author
May
Published
June 10, 2024
Load packages and call data
Load packages and call Qualtrics data file
I removed the participants who 1) took less than 15 minutes to complete the survey, and 2) responded that they like “seeing a mouse in their house”/like “being late for an important date”/like “the smell of garbage”/dislike “going on vacation”
Abbreviations: BAS = body appreciation score; BAScat = body appreciation score category, by median; CR = cognitive restraint; CRcat = cognitive restraint, by tertiles; EBs = eating behaviors; EM = emotional eating; EMcat = emotional eating category, by tertiles; SFBL = sweet foods and beverages liking; SFBLcat = sweet foods and beverages liking, by tertiles; sHEI = health eating index; UE = uncontrolled eating; UEcat = uncontrolled eating category, by tertiles; UHF = unhealthy fat liking; UHFcat = unhealthy fat liking, by tertiles
full.df %>%group_by(BMIcat) %>%summarize(mean =mean(sHEI), sd=sd(sHEI), n =n()) %>%ggplot(aes(x = BMIcat, y = mean, fill = BMIcat)) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="BMI and sHEI", x ="BMI Category", y ="Healthy Eating Index") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +scale_fill_npg() +theme_bw()
Code
## BAS by BMIBAS.BMI.aov <- full.df %>%aov(BAS ~ BMIcat, .)summary(BAS.BMI.aov)
Df Sum Sq Mean Sq F value Pr(>F)
BMIcat 3 1094 364.7 6.454 0.000325 ***
Residuals 233 13165 56.5
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
p.sig <- full.df %>%tukey_hsd(BAS ~ BMIcat) %>%add_significance() %>%rename(., BMIcat = term) full.df %>%group_by(BMIcat) %>%summarize(mean =mean(BAS), sd=sd(BAS), n =n()) %>%ggplot(aes(x = BMIcat, y = mean, fill = BMIcat)) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="BAS and BMI", x ="BMI Category", y ="Body Appreciation") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +stat_pvalue_manual(p.sig, hide.ns = T, label ="p.adj.signif", label.size =10, bracket.size =1, tip.length =0.05, y.position =c(45,52)) +ylim(0,60) +scale_fill_npg() +theme_bw()
Code
## Uncontrolled eating by BMIUE.BMI.aov <- full.df %>%aov(uncontrolled ~as.factor(BMIcat), .)summary(UE.BMI.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(BMIcat) 3 256 85.37 4.054 0.00781 **
Residuals 233 4907 21.06
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
p.sig <- full.df %>%tukey_hsd(uncontrolled ~ BMIcat) %>%add_significance() %>%rename(., BMIcat = term) full.df %>%group_by(BMIcat) %>%summarize(mean =mean(uncontrolled), sd=sd(uncontrolled), n =n()) %>%ggplot(aes(x = BMIcat, y = mean, fill = BMIcat)) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Uncontrolled eating and BMI", x ="BMI category", y ="Uncontrolled eating") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +stat_pvalue_manual(p.sig, hide.ns = T, label ="p.adj.signif",label.size =10, bracket.size =1, tip.length =0.05, y.position =c(25)) +ylim(0, 30) +scale_fill_npg() +theme_bw()
Code
## Restrictive by BMICR.BMI.aov <- full.df %>%aov(restraint ~as.factor(BMIcat), .)summary(CR.BMI.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(BMIcat) 3 224.6 74.86 6.385 0.000355 ***
Residuals 233 2731.7 11.72
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
p.sig <- full.df %>%tukey_hsd(restraint ~ BMIcat) %>%add_significance() %>%rename(., BMIcat = term) full.df %>%group_by(BMIcat) %>%summarize(mean =mean(restraint), sd=sd(restraint), n =n()) %>%ggplot(aes(x = BMIcat, y = mean, fill = BMIcat)) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Restrictive eating and BMI", x ="BMI category", y ="Restrictive eating") +stat_pvalue_manual(p.sig, hide.ns = T, label ="p.adj.signif",label.size =10, bracket.size =1, tip.length =0.05, y.position =c(20, 24, 28)) +scale_fill_npg() +ylim(0, 30) +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw()
Code
## Emotional eating by BMIEM.BMI.aov <- full.df %>%aov(emotional ~as.factor(BMIcat), .)summary(EM.BMI.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(BMIcat) 3 357 118.97 5.784 0.000788 ***
Residuals 233 4793 20.57
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
p.sig <- full.df %>%tukey_hsd(emotional ~ BMIcat) %>%add_significance() %>%rename(., BMIcat = term)full.df %>%group_by(BMIcat) %>%summarize(mean =mean(emotional), sd=sd(emotional), n =n()) %>%ggplot(aes(x = BMIcat, y = mean, fill = BMIcat)) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Emotional eating and BMI", x ="BMI category", y ="Emotional eating") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +stat_pvalue_manual(p.sig, hide.ns = T, label ="p.adj.signif", label.size =10, bracket.size =1, tip.length =0.05, y.position =c(20)) +scale_fill_npg() +ylim(0, 30) +theme_bw()
Code
## Sweet foods and beverages liking by BMISFBL.BMI.aov <- full.df %>%aov(sfbl.liking ~as.factor(BMIcat), .)summary(SFBL.BMI.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(BMIcat) 3 9680 3227 4.118 0.00717 **
Residuals 233 182553 783
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
full.df %>%group_by(BMIcat) %>%summarize(mean =mean(sfbl.liking), sd=sd(sfbl.liking), n =n()) %>%ggplot(aes(x = BMIcat, y = mean, fill = BMIcat)) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Sweet foods and beverages liking and BMI", x ="BMI category", y ="Sweet foods and beverages liking") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +scale_fill_npg() +theme_bw()
Code
## Unhealthy fat by BMIUHF.BMI.aov <- full.df %>%aov(unhealthyfat.liking ~as.factor(BMIcat), .)summary(UHF.BMI.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(BMIcat) 3 1851 617.2 0.805 0.492
Residuals 233 178614 766.6
full.df %>%group_by(BMIcat) %>%summarize(mean =mean(unhealthyfat.liking), sd=sd(unhealthyfat.liking), n =n()) %>%ggplot(aes(x = BMIcat, y = mean, fill = BMIcat)) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Unhealthy fat liking and BMI", x ="BMI category", y ="Unhealthy fat liking") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +scale_fill_npg() +theme_bw()
Differences - by sHEI
Code
## BMI by sHEIBMI.sHEI.aov <- full.df %>%aov(BMI ~as.factor(DQ), .)summary(BMI.sHEI.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(DQ) 2 211 105.52 2.077 0.128
Residuals 234 11890 50.81
Code
TukeyHSD(BMI.sHEI.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = BMI ~ as.factor(DQ), data = .)
$`as.factor(DQ)`
diff lwr upr p adj
2-1 -2.2975655 -4.972792 0.3776609 0.1083051
3-1 -1.3679823 -4.043209 1.3072442 0.4507185
3-2 0.9295833 -1.745643 3.6048097 0.6912526
Code
full.df %>%group_by(DQ) %>%summarize(mean =mean(BMI), sd=sd(BMI), n =n()) %>%ggplot(aes(x =as.factor(DQ), y = mean, fill =as.factor(DQ))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="BMI and sHEI", x ="Diet Quality", y ="Body Mass Index") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#F44336", "#FFD54F", "#66BB6A"))
Code
## BAS by sHEIBAS.sHEI.aov <- full.df %>%aov(BAS ~as.factor(DQ), .)summary(BAS.sHEI.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(DQ) 2 127 63.57 1.053 0.351
Residuals 234 14132 60.39
Code
TukeyHSD(BAS.sHEI.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = BAS ~ as.factor(DQ), data = .)
$`as.factor(DQ)`
diff lwr upr p adj
2-1 1.0506329 -1.865950 3.967215 0.6724990
3-1 -0.7341772 -3.650760 2.182405 0.8236092
3-2 -1.7848101 -4.701393 1.131772 0.3203912
Code
full.df %>%group_by(DQ) %>%summarize(mean =mean(BAS), sd=sd(BAS), n =n()) %>%ggplot(aes(x =as.factor(DQ), y = mean, fill =as.factor(DQ))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="BAS and sHEI", x ="Diet Quality", y ="Body Appreciation") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#F44336", "#FFD54F", "#66BB6A"))
Code
## Uncontrolled eating by sHEIUE.sHEI.aov <- full.df %>%aov(uncontrolled ~as.factor(DQ), .)summary(UE.sHEI.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(DQ) 2 6 3.245 0.147 0.863
Residuals 234 5156 22.035
Code
TukeyHSD(UE.sHEI.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = uncontrolled ~ as.factor(DQ), data = .)
$`as.factor(DQ)`
diff lwr upr p adj
2-1 0.4050633 -1.356653 2.166779 0.8504878
3-1 0.1898734 -1.571842 1.951589 0.9650067
3-2 -0.2151899 -1.976906 1.546526 0.9552823
Code
full.df %>%group_by(DQ) %>%summarize(mean =mean(uncontrolled), sd=sd(uncontrolled), n =n()) %>%ggplot(aes(x =as.factor(DQ), y = mean, fill =as.factor(DQ))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Uncontrolled eating and sHEI", x ="Diet Quality", y ="Uncontrolled eating") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#F44336", "#FFD54F", "#66BB6A"))
Code
## Restrictive by sHEICR.sHEI.aov <- full.df %>%aov(restraint ~as.factor(DQ), .)summary(CR.sHEI.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(DQ) 2 159.9 79.95 6.69 0.00149 **
Residuals 234 2796.4 11.95
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
TukeyHSD(CR.sHEI.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = restraint ~ as.factor(DQ), data = .)
$`as.factor(DQ)`
diff lwr upr p adj
2-1 1.3670886 0.06969748 2.664480 0.0362213
3-1 1.9620253 0.66463418 3.259416 0.0012686
3-2 0.5949367 -0.70245442 1.892328 0.5264129
Code
full.df %>%group_by(DQ) %>%summarize(mean =mean(restraint), sd=sd(restraint), n =n()) %>%ggplot(aes(x =as.factor(DQ), y = mean, fill =as.factor(DQ))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Restrictive eating and sHEI", x ="Diet Quality", y ="Restrictive eating") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#F44336", "#FFD54F", "#66BB6A"))
Code
## Emotional eating by sHEIEM.sHEI.aov <- full.df %>%aov(emotional ~as.factor(DQ), .)summary(EM.sHEI.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(DQ) 2 37 18.38 0.841 0.433
Residuals 234 5113 21.85
Code
TukeyHSD(EM.sHEI.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = emotional ~ as.factor(DQ), data = .)
$`as.factor(DQ)`
diff lwr upr p adj
2-1 0.000000 -1.754309 1.754309 1.0000000
3-1 -0.835443 -2.589752 0.918866 0.5006917
3-2 -0.835443 -2.589752 0.918866 0.5006917
Code
full.df %>%group_by(DQ) %>%summarize(mean =mean(emotional), sd=sd(emotional), n =n()) %>%ggplot(aes(x =as.factor(DQ), y = mean, fill =as.factor(DQ))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Emotional eating and sHEI", x ="Diet Quality", y ="Emotional eating") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#F44336", "#FFD54F", "#66BB6A"))
Code
## Sweet foods and beverages liking by sHEISFBL.sHEI.aov <- full.df %>%aov(sfbl.liking ~as.factor(DQ), .)summary(SFBL.sHEI.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(DQ) 2 5145 2572.5 3.218 0.0418 *
Residuals 234 187089 799.5
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
TukeyHSD(SFBL.sHEI.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = sfbl.liking ~ as.factor(DQ), data = .)
$`as.factor(DQ)`
diff lwr upr p adj
2-1 -3.052567 -13.66450 7.559366 0.7762447
3-1 -11.049955 -21.66189 -0.438022 0.0390832
3-2 -7.997388 -18.60932 2.614545 0.1793671
Code
full.df %>%group_by(DQ) %>%summarize(mean =mean(sfbl.liking), sd=sd(sfbl.liking), n =n()) %>%ggplot(aes(x =as.factor(DQ), y = mean, fill =as.factor(DQ))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Sweet foods and beverages liking and sHEI", x ="Diet Quality", y ="Sweet foods and beverages liking") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#F44336", "#FFD54F", "#66BB6A"))
Code
## Unhealthy fat by sHEIUHF.sHEI.aov <- full.df %>%aov(unhealthyfat.liking ~as.factor(DQ), .)summary(UHF.sHEI.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(DQ) 2 1465 732.3 0.957 0.385
Residuals 234 179001 765.0
Code
TukeyHSD(UHF.sHEI.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = unhealthyfat.liking ~ as.factor(DQ), data = .)
$`as.factor(DQ)`
diff lwr upr p adj
2-1 2.635443 -7.744589 13.015475 0.8208504
3-1 -3.436076 -13.816108 6.943956 0.7151903
3-2 -6.071519 -16.451551 4.308513 0.3532101
Code
full.df %>%group_by(DQ) %>%summarize(mean =mean(unhealthyfat.liking), sd=sd(unhealthyfat.liking), n =n()) %>%ggplot(aes(x =as.factor(DQ), y = mean, fill =as.factor(DQ))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Unhealthy fat liking and sHEI", x ="Diet Quality", y ="Unhealthy fat liking") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#F44336", "#FFD54F", "#66BB6A"))
Code
## Healthy fat by sHEIHF.sHEI.aov <- full.df %>%aov(healthyfat.liking ~as.factor(DQ), .)summary(HF.sHEI.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(DQ) 2 16689 8345 8.976 0.000175 ***
Residuals 234 217546 930
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
TukeyHSD(HF.sHEI.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = healthyfat.liking ~ as.factor(DQ), data = .)
$`as.factor(DQ)`
diff lwr upr p adj
2-1 6.701477 -4.741699 18.14465 0.3523283
3-1 20.179325 8.736149 31.62250 0.0001323
3-2 13.477848 2.034672 24.92102 0.0162328
Code
full.df %>%group_by(DQ) %>%summarize(mean =mean(healthyfat.liking), sd=sd(healthyfat.liking), n =n()) %>%ggplot(aes(x =as.factor(DQ), y = mean, fill =as.factor(DQ))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Healthy fat liking and sHEI", x ="Diet Quality", y ="Healthy fat liking") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#F44336", "#FFD54F", "#66BB6A"))
Differences - by BAS
Code
## BMI by BASBMI.BAS.aov <- full.df %>%aov(BMI ~as.factor(BAScat), .)summary(BMI.BAS.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(BAScat) 1 359 358.8 7.18 0.00789 **
Residuals 235 11742 50.0
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
TukeyHSD(BMI.BAS.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = BMI ~ as.factor(BAScat), data = .)
$`as.factor(BAScat)`
diff lwr upr p adj
2-1 -2.460794 -4.270012 -0.6515766 0.0078916
Code
full.df %>%group_by(BAScat) %>%summarize(mean =mean(BMI), sd=sd(BMI), n =n()) %>%ggplot(aes(x =as.factor(BAScat), y = mean, fill =as.factor(BAScat))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="BMI on BAS", x ="Body Appreciation", y ="Body Mass Index") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#66BB6A", "#F44336"))
Code
## Uncontrolled eating by BASUE.BAS.aov <- full.df %>%aov(uncontrolled ~as.factor(BAScat), .)summary(UE.BAS.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(BAScat) 1 162 162.29 7.627 0.0062 **
Residuals 235 5000 21.28
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
TukeyHSD(UE.BAS.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = uncontrolled ~ as.factor(BAScat), data = .)
$`as.factor(BAScat)`
diff lwr upr p adj
2-1 -1.655035 -2.835678 -0.4743917 0.0062042
Code
full.df %>%group_by(BAScat) %>%summarize(mean =mean(uncontrolled), sd=sd(uncontrolled), n =n()) %>%ggplot(aes(x =as.factor(BAScat), y = mean, fill =as.factor(BAScat))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="BAS on Uncontrolled Eating Behavior", x ="Body Appreciation", y ="Uncontrolled Eating") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#66BB6A", "#F44336"))
Code
## Restrictive eating by BASCR.BAS.aov <- full.df %>%aov(restraint ~as.factor(BAScat), .)summary(CR.BAS.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(BAScat) 1 155.4 155.41 13.04 0.000373 ***
Residuals 235 2800.9 11.92
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
TukeyHSD(CR.BAS.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = restraint ~ as.factor(BAScat), data = .)
$`as.factor(BAScat)`
diff lwr upr p adj
2-1 -1.61957 -2.503189 -0.7359506 0.0003729
Code
full.df %>%group_by(BAScat) %>%summarize(mean =mean(restraint), sd=sd(restraint), n =n()) %>%ggplot(aes(x =as.factor(BAScat), y = mean, fill =as.factor(BAScat))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="BAS on Restrictive Eating Behavior", x ="Body Appreciation", y ="Restrictive Eating") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#66BB6A", "#F44336"))
Code
## Emotional eating by BASEM.BAS.aov <- full.df %>%aov(emotional ~as.factor(BAScat), .)summary(EM.BAS.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(BAScat) 1 504 504.5 25.52 8.79e-07 ***
Residuals 235 4645 19.8
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
TukeyHSD(EM.BAS.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = emotional ~ as.factor(BAScat), data = .)
$`as.factor(BAScat)`
diff lwr upr p adj
2-1 -2.91796 -4.055901 -1.78002 9e-07
Code
full.df %>%group_by(BAScat) %>%summarize(mean =mean(emotional), sd=sd(emotional), n =n()) %>%ggplot(aes(x =as.factor(BAScat), y = mean, fill =as.factor(BAScat))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="BAS on Emotional Eating Behavior", x ="Body Appreciation", y ="Emotional Eating") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#66BB6A", "#F44336"))
Code
## Diet quality by BASDQ.BAS.aov <- full.df %>%aov(sHEI ~as.factor(BAScat), .)summary(DQ.BAS.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(BAScat) 1 109 109.25 1.428 0.233
Residuals 235 17979 76.51
Code
TukeyHSD(DQ.BAS.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = sHEI ~ as.factor(BAScat), data = .)
$`as.factor(BAScat)`
diff lwr upr p adj
2-1 -1.357911 -3.596608 0.880785 0.2332929
Code
full.df %>%group_by(BAScat) %>%summarize(mean =mean(sHEI), sd=sd(sHEI), n =n()) %>%ggplot(aes(x =as.factor(BAScat), y = mean, fill =as.factor(BAScat))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="BAS on Healthy Eating Index", x ="Body Appreciation", y ="Healthy Eating Index") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#66BB6A", "#F44336"))
Differences - by EBs
Code
## BMI by uncontrolled eatingBMI.UE.aov <- full.df %>%aov(BMI ~as.factor(UEcat), .)summary(BMI.UE.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(UEcat) 2 127 63.28 1.237 0.292
Residuals 234 11974 51.17
Code
TukeyHSD(BMI.UE.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = BMI ~ as.factor(UEcat), data = .)
$`as.factor(UEcat)`
diff lwr upr p adj
2-1 0.2574195 -2.427295 2.942134 0.9722000
3-1 1.6627532 -1.021961 4.347467 0.3117330
3-2 1.4053337 -1.279381 4.090048 0.4339452
Code
full.df %>%group_by(UEcat) %>%summarize(mean =mean(BMI), sd=sd(BMI), n =n()) %>%ggplot(aes(x =as.factor(UEcat), y = mean, fill =as.factor(UEcat))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Uncontrolled Eating on BMI", x ="Uncontrolled Eating", y ="BMI") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#66BB6A", "#FFD54F", "#F44336"))
Code
full.df %>%group_by(UEcat) %>%summarize(mean =mean(BMI), sd=sd(BMI), n =n()) %>%ggplot(aes(x =as.factor(UEcat), y = mean, fill =as.factor(UEcat))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Uncontrolled Eating on BMI", x ="Uncontrolled Eating", y ="BMI") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#66BB6A", "#FFD54F", "#F44336"))
Code
## sHEI by uncontrolled eatingsHEI.UE.aov <- full.df %>%aov(sHEI ~as.factor(UEcat), .)summary(sHEI.UE.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(UEcat) 2 37 18.48 0.24 0.787
Residuals 234 18051 77.14
Code
TukeyHSD(sHEI.UE.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = sHEI ~ as.factor(UEcat), data = .)
$`as.factor(UEcat)`
diff lwr upr p adj
2-1 0.3256962 -2.970561 3.621953 0.9705044
3-1 0.9517722 -2.344485 4.248029 0.7747575
3-2 0.6260759 -2.670181 3.922333 0.8953351
Code
full.df %>%group_by(UEcat) %>%summarize(mean =mean(sHEI), sd=sd(sHEI), n =n()) %>%ggplot(aes(x =as.factor(UEcat), y = mean, fill =as.factor(UEcat))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Uncontrolled Eating on sHEI", x ="Uncontrolled Eating", y ="Healthy Eating Index") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#66BB6A", "#FFD54F", "#F44336"))
Code
## BMI by restrictive eatingBMI.CR.aov <- full.df %>%aov(BMI ~as.factor(CRcat), .)summary(BMI.CR.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(CRcat) 2 446 223.07 4.479 0.0123 *
Residuals 234 11655 49.81
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
TukeyHSD(BMI.CR.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = BMI ~ as.factor(CRcat), data = .)
$`as.factor(CRcat)`
diff lwr upr p adj
2-1 2.5264459 -0.1221991 5.175091 0.0651407
3-1 3.1825961 0.5339511 5.831241 0.0137919
3-2 0.6561502 -1.9924948 3.304795 0.8286493
Code
full.df %>%group_by(CRcat) %>%summarize(mean =mean(BMI), sd=sd(BMI), n =n()) %>%ggplot(aes(x =as.factor(CRcat), y = mean, fill =as.factor(CRcat))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Restrictive Eating on BMI", x ="Restrictive Eating", y ="BMI") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#66BB6A", "#FFD54F", "#F44336"))
Code
## sHEI by restrictive eatingsHEI.CR.aov <- full.df %>%aov(sHEI ~as.factor(CRcat), .)summary(sHEI.CR.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(CRcat) 2 912 456.0 6.212 0.00235 **
Residuals 234 17176 73.4
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
TukeyHSD(sHEI.CR.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = sHEI ~ as.factor(CRcat), data = .)
$`as.factor(CRcat)`
diff lwr upr p adj
2-1 3.401646 0.1862746 6.617017 0.0352945
3-1 4.639873 1.4245025 7.855244 0.0022486
3-2 1.238228 -1.9771431 4.453599 0.6355780
Code
full.df %>%group_by(CRcat) %>%summarize(mean =mean(sHEI), sd=sd(sHEI), n =n()) %>%ggplot(aes(x =as.factor(CRcat), y = mean, fill =as.factor(CRcat))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Restrictive Eating on sHEI", x ="Restrictive Eating", y ="Healthy Eating Index") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#66BB6A", "#FFD54F", "#F44336"))
Code
## BMI by emotional eatingBMI.EM.aov <- full.df %>%aov(BMI ~as.factor(EMcat), .)summary(BMI.EM.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(EMcat) 2 279 139.35 2.758 0.0655 .
Residuals 234 11822 50.52
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
TukeyHSD(BMI.EM.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = BMI ~ as.factor(EMcat), data = .)
$`as.factor(EMcat)`
diff lwr upr p adj
2-1 0.749185 -1.91842018 3.416790 0.7854786
3-1 2.581548 -0.08605734 5.249153 0.0602315
3-2 1.832363 -0.83524236 4.499968 0.2391320
Code
full.df %>%group_by(EMcat) %>%summarize(mean =mean(BMI), sd=sd(BMI), n =n()) %>%ggplot(aes(x =as.factor(EMcat), y = mean, fill =as.factor(EMcat))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Emotional Eating on BMI", x ="Emotional Eating", y ="BMI") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#66BB6A", "#FFD54F", "#F44336"))
Code
## sHEI by emotional eatingsHEI.EM.aov <- full.df %>%aov(sHEI ~as.factor(EMcat), .)summary(sHEI.EM.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(EMcat) 2 128 63.86 0.832 0.436
Residuals 234 17960 76.75
Code
TukeyHSD(sHEI.EM.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = sHEI ~ as.factor(EMcat), data = .)
$`as.factor(EMcat)`
diff lwr upr p adj
2-1 1.7981013 -1.489859 5.086062 0.4022633
3-1 0.8821519 -2.405808 4.170112 0.8021938
3-2 -0.9159494 -4.203910 2.372011 0.7885306
Code
full.df %>%group_by(EMcat) %>%summarize(mean =mean(sHEI), sd=sd(sHEI), n =n()) %>%ggplot(aes(x =as.factor(EMcat), y = mean, fill =as.factor(EMcat))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Emotional Eating on sHEI", x ="Emotional Eating", y ="Healthy Eating Index") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#66BB6A", "#FFD54F", "#F44336"))
Differences - by Liking
Code
## BMI by sweet foods and beverages likingBMI.SFBL.aov <- full.df %>%aov(BMI ~as.factor(SFBLcat), .)summary(BMI.SFBL.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(SFBLcat) 2 498 249.04 5.022 0.00732 **
Residuals 234 11603 49.59
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
TukeyHSD(BMI.SFBL.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = BMI ~ as.factor(SFBLcat), data = .)
$`as.factor(SFBLcat)`
diff lwr upr p adj
2-1 2.126944 -0.5157936 4.769682 0.1414081
3-1 3.526054 0.8833168 6.168792 0.0052756
3-2 1.399110 -1.2436272 4.041848 0.4257833
Code
full.df %>%group_by(SFBLcat) %>%summarize(mean =mean(BMI), sd=sd(BMI), n =n()) %>%ggplot(aes(x =as.factor(SFBLcat), y = mean, fill =as.factor(SFBLcat))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Sweet foods and beverages liking on BMI", x ="Sweet Foods and Beverages Liking", y ="BMI") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#66BB6A", "#FFD54F", "#F44336"))
Code
## sHEI by sweet foods and beverages likingsHEI.SFBL.aov <- full.df %>%aov(sHEI ~as.factor(SFBLcat), .)summary(sHEI.SFBL.aov)
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(SFBLcat) 2 369 184.44 2.436 0.0897 .
Residuals 234 17719 75.72
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
TukeyHSD(sHEI.SFBL.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = sHEI ~ as.factor(SFBLcat), data = .)
$`as.factor(SFBLcat)`
diff lwr upr p adj
2-1 -0.6673418 -3.933153 2.5984695 0.8799005
3-1 -2.9163291 -6.182140 0.3494822 0.0907329
3-2 -2.2489873 -5.514799 1.0168240 0.2374108
Code
full.df %>%group_by(SFBLcat) %>%summarize(mean =mean(sHEI), sd=sd(sHEI), n =n()) %>%ggplot(aes(x =as.factor(SFBLcat), y = mean, fill =as.factor(SFBLcat))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Sweet foods and beverages liking on sHEI", x ="Sweet Foods and Beverages Liking", y ="Healthy Eating Index") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_manual(values =c("#66BB6A", "#FFD54F", "#F44336"))
Df Sum Sq Mean Sq F value Pr(>F)
as.factor(HFcat) 2 166 83.19 1.631 0.198
Residuals 234 11935 51.00
Code
TukeyHSD(BMI.HF.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = BMI ~ as.factor(HFcat), data = .)
$`as.factor(HFcat)`
diff lwr upr p adj
2-1 -1.2977455 -3.9779922 1.382501 0.4892086
3-1 0.7280626 -1.9521841 3.408309 0.7977812
3-2 2.0258080 -0.6544386 4.706055 0.1775925
Code
full.df %>%group_by(HFcat) %>%summarize(mean =mean(BMI), sd=sd(BMI), n =n()) %>%ggplot(aes(x =as.factor(HFcat), y = mean, fill =as.factor(HFcat))) +geom_bar(stat ="identity", position =position_dodge()) +labs(title ="Healthy fats liking on BMI", x ="Healthy Fats Liking", y ="BMI") +geom_errorbar(aes(ymin = mean - sd/sqrt(n), ymax = mean + sd/sqrt(n), width =0.25)) +theme_bw() +scale_fill_npg()
estimate p.value statistic n gp Method
1 -0.2068261 0.02526042 -2.26698 118 1 pearson
Partial correlations - Sweet liking x EBs
Code
## Sweet foods and beverages liking x uncontrolledcorrfunc(full.df, sfbl.liking, uncontrolled, "Sweet foods and beverages liking x uncontrolled eating, overall")
estimate p.value statistic n gp Method
1 0.07716861 0.5018806 0.6747524 79 1 pearson
Code
## Medium SFBL full.df %>%filter(SFBLcat =="2") %>%corrfunc(., sfbl.liking, uncontrolled, "Sweet foods and beverages liking x uncontrolled eating, medium SFBL")
estimate p.value statistic n gp Method
1 -0.03032326 0.7921309 -0.2644737 79 1 pearson
Code
## High SFBL full.df %>%filter(SFBLcat =="3") %>%corrfunc(., sfbl.liking, uncontrolled, "Sweet foods and beverages liking x uncontrolled eating, high SFBL")
estimate p.value statistic n gp Method
1 -0.09949783 0.3861025 -0.8717277 79 1 pearson
Code
## Sweet foods and beverages liking x restrictivecorrfunc(full.df, sfbl.liking, restraint, "Sweet foods and beverages liking x restrictive eating, overall")
estimate p.value statistic n gp Method
1 0.008594863 0.9404665 0.07493105 79 1 pearson
Code
## Medium SFBL full.df %>%filter(SFBLcat =="2") %>%corrfunc(., sfbl.liking, restraint, "Sweet foods and beverages liking x restrictive eating, medium SFBL")
estimate p.value statistic n gp Method
1 0.02513713 0.8270744 0.2192097 79 1 pearson
Code
## High SFBL full.df %>%filter(SFBLcat =="3") %>%corrfunc(., sfbl.liking, restraint, "Sweet foods and beverages liking x restrictive eating, high SFBL")
estimate p.value statistic n gp Method
1 0.09853482 0.3907394 0.8632073 79 1 pearson
Code
## Sweet foods and beverages liking x emotionalcorrfunc(full.df, sfbl.liking, emotional, "Sweet foods and beverages liking x emotional eating, overall")
estimate p.value statistic n gp Method
1 -0.008345793 0.9421887 -0.07275947 79 1 pearson
Code
## Medium SFBL full.df %>%filter(SFBLcat =="2") %>%corrfunc(., sfbl.liking, emotional, "Sweet foods and beverages liking x emotional eating, medium SFBL")
## Modelssugar.logit.M1 <-multinom(sugar.intake ~ sfbl.liking, data = full.df)
# weights: 45 (28 variable)
initial value 641.807898
iter 10 value 563.440008
iter 20 value 484.393656
iter 30 value 477.496400
final value 477.486345
converged
sugar.logit.M2 <-multinom(sugar.intake ~ sfbl.liking + BAS, data = full.df)
# weights: 60 (42 variable)
initial value 641.807898
iter 10 value 499.354722
iter 20 value 495.982750
iter 30 value 483.718057
iter 40 value 468.384885
iter 50 value 468.188931
final value 468.188724
converged
sugar.logit.M3 <-multinom(sugar.intake ~ sfbl.liking + uncontrolled, data = full.df)
# weights: 60 (42 variable)
initial value 641.807898
iter 10 value 528.815810
iter 20 value 521.935654
iter 30 value 486.433743
iter 40 value 473.788502
iter 50 value 473.379334
iter 60 value 473.372425
final value 473.372405
converged
sugar.logit.M4 <-multinom(sugar.intake ~ sfbl.liking + healthyfat.liking, data = full.df)
# weights: 60 (42 variable)
initial value 641.807898
iter 10 value 525.989496
iter 20 value 518.078922
iter 30 value 489.909419
iter 40 value 470.309538
iter 50 value 470.177758
final value 470.177656
converged
sugar.logit.M5 <-multinom(sugar.intake ~ sfbl.liking + BMI, data = full.df)
# weights: 60 (42 variable)
initial value 641.807898
iter 10 value 527.446666
iter 20 value 523.364217
iter 30 value 499.896121
iter 40 value 472.189422
iter 50 value 472.002983
final value 472.000723
converged
sugar.logit.M6 <-multinom(sugar.intake ~ sfbl.liking*BMI, data = full.df)
# weights: 75 (56 variable)
initial value 641.807898
iter 10 value 584.882554
iter 20 value 502.913820
iter 30 value 494.499175
iter 40 value 476.631208
iter 50 value 469.837925
iter 60 value 468.287957
iter 70 value 468.009095
iter 80 value 467.971699
iter 90 value 467.966239
iter 100 value 467.965757
final value 467.965757
stopped after 100 iterations
sugar.logit.M7 <-multinom(sugar.intake ~ sfbl.liking*uncontrolled, data = full.df)
# weights: 75 (56 variable)
initial value 641.807898
iter 10 value 605.037958
iter 20 value 541.546397
iter 30 value 508.190499
iter 40 value 485.904910
iter 50 value 470.478653
iter 60 value 468.330185
iter 70 value 467.649904
iter 80 value 467.428814
iter 90 value 467.341435
iter 100 value 467.297583
final value 467.297583
stopped after 100 iterations
sugar.logit.M8 <-multinom(sugar.intake ~ sfbl.liking*hinc, data = full.df)
# weights: 75 (56 variable)
initial value 641.807898
iter 10 value 572.490019
iter 20 value 526.318429
iter 30 value 509.203209
iter 40 value 484.450328
iter 50 value 462.877044
iter 60 value 461.822705
iter 70 value 461.779129
iter 80 value 461.777743
final value 461.777702
converged
sugar.logit.M9 <-multinom(sugar.intake ~ sfbl.liking*BMI + sfbl.liking*uncontrolled, data = full.df)
# weights: 105 (84 variable)
initial value 641.807898
iter 10 value 580.367033
iter 20 value 535.163630
iter 30 value 505.365644
iter 40 value 492.183660
iter 50 value 485.112377
iter 60 value 473.090310
iter 70 value 466.217070
iter 80 value 459.911488
iter 90 value 458.110448
iter 100 value 457.780060
final value 457.780060
stopped after 100 iterations
DQ.logit.M2 <-multinom(DQ ~ healthyfat.liking + sfbl.liking, data = full.df)
# weights: 12 (6 variable)
initial value 260.371112
iter 10 value 248.844932
iter 10 value 248.844932
iter 10 value 248.844932
final value 248.844932
converged