Previously on STAT 412:
This week, we will use the data “m111survey” from the package “tigerstats”. Firstly, we have to install the package, then call it via library().
We may prefer to work with data frames, therefore we have to check class of the data.
## [1] "data.frame"
## [1] 71 12
It is a data-frame with 71 observations and 12 attributes. Now, let’s examine the class of each attribute. We have 5 numerical values, 1 integer and 6 factors with 2 or 3 levels.
## 'data.frame': 71 obs. of 12 variables:
## $ height : num 76 74 64 62 72 70.8 70 79 59 67 ...
## $ ideal_ht : num 78 76 NA 65 72 NA 72 76 61 67 ...
## $ sleep : num 9.5 7 9 7 8 10 4 6 7 7 ...
## $ fastest : int 119 110 85 100 95 100 85 160 90 90 ...
## $ weight_feel : Factor w/ 3 levels "1_underweight",..: 1 2 2 1 1 3 2 2 2 3 ...
## $ love_first : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ extra_life : Factor w/ 2 levels "no","yes": 2 2 1 1 2 1 2 2 2 1 ...
## $ seat : Factor w/ 3 levels "1_front","2_middle",..: 1 2 2 1 3 1 1 3 3 2 ...
## $ GPA : num 3.56 2.5 3.8 3.5 3.2 3.1 3.68 2.7 2.8 NA ...
## $ enough_Sleep : Factor w/ 2 levels "no","yes": 1 1 1 1 1 2 1 2 1 2 ...
## $ sex : Factor w/ 2 levels "female","male": 2 2 1 1 2 2 2 2 1 1 ...
## $ diff.ideal.act.: num 2 2 NA 3 0 NA 2 -3 2 0 ...
| height | ideal_ht | sleep | fastest | weight_feel | love_first | extra_life | seat | GPA | enough_Sleep | sex | diff.ideal.act. |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 76.0 | 78 | 9.5 | 119 | 1_underweight | no | yes | 1_front | 3.56 | no | male | 2 |
| 74.0 | 76 | 7.0 | 110 | 2_about_right | no | yes | 2_middle | 2.50 | no | male | 2 |
| 64.0 | NA | 9.0 | 85 | 2_about_right | no | no | 2_middle | 3.80 | no | female | NA |
| 62.0 | 65 | 7.0 | 100 | 1_underweight | no | no | 1_front | 3.50 | no | female | 3 |
| 72.0 | 72 | 8.0 | 95 | 1_underweight | no | yes | 3_back | 3.20 | no | male | 0 |
| 70.8 | NA | 10.0 | 100 | 3_overweight | no | no | 1_front | 3.10 | yes | male | NA |
| 70.0 | 72 | 4.0 | 85 | 2_about_right | no | yes | 1_front | 3.68 | no | male | 2 |
| 79.0 | 76 | 6.0 | 160 | 2_about_right | no | yes | 3_back | 2.70 | yes | male | -3 |
| 59.0 | 61 | 7.0 | 90 | 2_about_right | no | yes | 3_back | 2.80 | no | female | 2 |
| 67.0 | 67 | 7.0 | 90 | 3_overweight | no | no | 2_middle | NA | yes | female | 0 |
## [1] 5
## [1] 0
## [1] 68 12
However, the data includes 5 missing observations. To have an effective visualization for this recitation, we prefer to delete (with the purpose of exemplifying) the rows including missing values. Hence, we have 68 rows with fully observed data.
Data dictionary are given below:
Data Info: Results of a survey of MAT 111 students at Georgetown College.
Before the visualization part, it is worthwhile to examine the descriptive stats.
## height ideal_ht sleep fastest
## Min. :51.00 Min. :54.00 Min. :2.000 Min. : 60.0
## 1st Qu.:65.00 1st Qu.:67.00 1st Qu.:5.000 1st Qu.: 92.5
## Median :68.00 Median :68.50 Median :6.500 Median :104.5
## Mean :68.02 Mean :69.99 Mean :6.294 Mean :106.5
## 3rd Qu.:72.00 3rd Qu.:75.00 3rd Qu.:7.000 3rd Qu.:120.0
## Max. :79.00 Max. :90.00 Max. :9.500 Max. :190.0
## weight_feel love_first extra_life seat GPA
## 1_underweight: 9 no :42 no :38 1_front :26 Min. :1.900
## 2_about_right:24 yes:26 yes:30 2_middle:30 1st Qu.:2.875
## 3_overweight :35 3_back :12 Median :3.225
## Mean :3.188
## 3rd Qu.:3.553
## Max. :4.000
## enough_Sleep sex diff.ideal.act.
## no :45 female:38 Min. :-4.000
## yes:23 male :30 1st Qu.: 0.000
## Median : 2.000
## Mean : 1.974
## 3rd Qu.: 3.000
## Max. :18.000
Let’s continue with the “Lattice Graphs”!
We have mostly covered the plots to represent univariate and bivariate data. What about multivariate data? Lattice plots are commonly used to show the relation between multiple variables. They provide a variety of functions for creating different types of lattice plots such as scatter plots, density plots, and bivariate plots.
For lattice plots, you have to install the package lattice and then call it.
RQ: Is there a significant difference in height distributions among students based on gender?
library(lattice)
library(mosaic)
favstats(~height,data=m111survey) # to decide the number of breaks; if you use "height|sex" you can obtain the stats for height for each gender| min | Q1 | median | Q3 | max | mean | sd | n | missing | |
|---|---|---|---|---|---|---|---|---|---|
| 51 | 65 | 68 | 72 | 79 | 68.01838 | 5.379327 | 68 | 0 |
histogram(~height|factor(sex),data=m111survey,type="count",xlab="Height of Students in inches", ylab="Frequency",main="Histogram of Height",breaks=c(50,55,60,65,70,75,80)) #type=percent,count,density(default) #breaks=seq(from=50,to=80,by=5)Highest frequency belongs to the range between 60-65 for females and 70-75 for males. Observations for male are mainly gathered around 65-75 but, females have wider spread.
Info: 65 inches = 165cm 72inches = 183cm
The same graphs but different looks:
histogram(~height|factor(sex),data=m111survey,type="count",xlab="Height of Students in inches", ylab="Frequency",main="Histogram of Height",breaks=c(50,55,60,65,70,75,80),layout=c(1,2)) #c(1,2): 1 column, 2 rowsRQ1: How does the distribution of students’ GPA vary when considering both gender and love at first sight?
RQ2: Are there noticeable patterns or differences in GPA frequencies when accounting for both gender and love at first sight?
histogram(~GPA|factor(sex)*love_first,data=m111survey,type="count",xlab="GPA of Students", ylab="Frequency",main="Histogram of GPA")Those who don’t believe in love at first sight show varying GPAs for both males and females. On the other side, female students who believe in love at first sight are mostly successful, with a GPA higher than 2.5. Male students who believe in love at first sight are not many and scattered.
RQ1: How does the density of students’ heights vary based on their seating preferences, and is there a noticeable difference when considering gender?
RQ2: Are there specific patterns in height distribution within different seating arrangements, and do these patterns differ between male and female students?
densityplot(~ height|seat , data=m111survey, groups = sex, col=c("yellowgreen","darkblue"),par.settings = list(superpose.line = list(col=c("yellowgreen", "darkblue"))), plot.points = FALSE, auto.key = list(col=c("yellowgreen","darkblue")),lwd=2, main="Density-plot of Height by seat preferences and gender") #plot.points=FALSE: to prevent adding points at the Boys and girls sitting in the front and middle seem to have similar heights. But, if boys sit at the back, they’re mostly tall.
RQ1: How does the actual sleep duration relate to both the feeling of weight and the perceived amount of sleep, as reported by students (enough_sleep)?
RQ2: Are there any noticeable trends or differences in sleep duration based on individuals’ perception of their weight and their actual sleep habits?
##
## no yes
## 1_underweight 9 0
## 2_about_right 15 9
## 3_overweight 21 14
RQ: How does the relationship between actual height and ideal height vary between male and female students?
#xyplot(height ~ ideal_ht | sex , data=m111survey , pch=20 , cex=1.5 )[1,] you would see the plot left-hand side closer RQ: How does the relationship between actual height and ideal height vary across different GPA levels, taking into account seating preferences?
##
## Data:
## [1] 3.560 2.500 3.500 3.200 3.680 2.700 2.800 2.100 2.500 3.890 3.200 3.200
## [13] 2.200 3.500 3.550 3.750 3.500 3.400 2.770 3.000 3.167 3.200 3.413 3.700
## [25] 3.500 3.750 2.800 2.200 3.600 2.800 3.100 3.000 3.500 3.900 3.787 3.200
## [37] 3.700 2.000 3.100 3.500 3.700 2.550 3.730 3.500 3.200 3.100 3.900 3.250
## [49] 3.200 3.294 2.000 3.000 3.700 3.300 3.200 3.600 3.300 4.000 3.400 2.700
## [61] 2.900 1.900 2.800 3.500 3.300 3.700 2.914 2.700
##
## Intervals:
## min max count
## 1 1.897 3.203 34
## 2 2.897 3.553 34
## 3 3.247 4.003 34
##
## Overlap between adjacent intervals:
## [1] 17 17
ggplot() allows you to make complex plots with just a few lines of code because it’s based on a rich underlying theory, the grammar of graphics.
Firstly, we have to call ggplot2 package.
RQ: Is there a linear trend in the relationship between students’ actual height and their perceived ideal height
library(ggplot2)
ggplot(m111survey, aes(x = height, y = ideal_ht)) +
geom_point()+
geom_smooth(method="lm")RQ: How is the relationship between actual height and ideal height, and is there any observable pattern when considering the sleep duration and seating preferences?
RQ: How does the fastest driving time relate to students’ GPA? Is there any discernible pattern or correlation between the time spent on driving and academic performance among the surveyed students?
RQ: How does the distribution of fastest driving times vary among students with different levels of love_first?
RQ: Is there a noticeable variation in students’ GPA based on their seating preferences?
ggplot(m111survey, aes(x=seat, y=GPA, fill=seat)) + geom_violin(trim=FALSE) + geom_boxplot(width=0.2,fill="beige")RQ: How do the self-perceived weight feelings vary among the surveyed students, as indicated by the bar plot? Are there any notable differences in the frequencies of feeling underweight, about right, and overweight?
f=table(m111survey$weight_feel)
f_data=data.frame(f) #automatically write their frequencies regarding the group name
ggplot(f_data,aes(x=reorder(Var1,Freq),y=Freq,fill=Var1))+geom_bar(stat="identity")+
labs(title="Bar Plot of Weight_feel",y="Frequencies",x="Levels")+geom_text(aes(label=c("underweight","about right", "overweight")),vjust=-0.25,fontface="bold")“tidyverse” is a package that includes several sub-packages (e.g., dplyr, ggplot2, etc.) in it. These packages are really good at working with data. They make it easy to organize and analyze information effectively, helping users get valuable insights from their data.
Quick reference guide:
mutate(): adds new columns or modifies current variables in the dataset
summarize(): collapses all rows and returns a one-row summary
group_by(): takes existing data and groups specific variables together for future operations
filter(): only retain specific rows of data that meet the specified requirement(s)
select(): select only the columns (variables) that you want to see
arrange(): allows you arrange values within a variable in ascending or descending order
Display the data exclusively for female students.
| height | ideal_ht | sleep | fastest | weight_feel | love_first | extra_life | seat | GPA | enough_Sleep | sex | diff.ideal.act. |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 62 | 65 | 7 | 100 | 1_underweight | no | no | 1_front | 3.50 | no | female | 3 |
| 59 | 61 | 7 | 90 | 2_about_right | no | yes | 3_back | 2.80 | no | female | 2 |
| 65 | 69 | 6 | 100 | 2_about_right | no | no | 1_front | 2.10 | yes | female | 4 |
| 62 | 62 | 7 | 60 | 3_overweight | no | no | 1_front | 2.50 | yes | female | 0 |
| 59 | 62 | 5 | 80 | 2_about_right | yes | yes | 1_front | 3.89 | no | female | 3 |
| 78 | 75 | 7 | 80 | 3_overweight | no | no | 2_middle | 3.20 | yes | female | -3 |
| height | ideal_ht | sleep | fastest | weight_feel | love_first | extra_life | seat | GPA | enough_Sleep | sex | diff.ideal.act. |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 59 | 62 | 5 | 80 | 2_about_right | yes | yes | 1_front | 3.890 | no | female | 3 |
| 65 | 70 | 8 | 120 | 3_overweight | yes | yes | 1_front | 3.750 | yes | female | 5 |
| 65 | 68 | 7 | 125 | 3_overweight | yes | no | 3_back | 3.500 | no | female | 3 |
| 66 | 66 | 7 | 120 | 3_overweight | yes | no | 1_front | 3.167 | yes | female | 0 |
| 68 | 68 | 4 | 90 | 3_overweight | yes | no | 2_middle | 3.200 | no | female | 0 |
| 54 | 54 | 4 | 130 | 3_overweight | yes | yes | 1_front | 3.413 | no | female | 0 |
| height | ideal_ht | sleep | fastest | weight_feel | love_first | extra_life | seat | GPA | enough_Sleep | sex | diff.ideal.act. |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 63 | 68 | 7.5 | 75 | 3_overweight | no | no | 1_front | 4.000 | yes | female | 5 |
| 74 | 76 | 5.0 | 115 | 3_overweight | yes | no | 1_front | 3.900 | no | male | 2 |
| 65 | 67 | 6.5 | 90 | 2_about_right | no | yes | 2_middle | 3.900 | yes | female | 2 |
| 59 | 62 | 5.0 | 80 | 2_about_right | yes | yes | 1_front | 3.890 | no | female | 3 |
| 63 | 67 | 7.5 | 105 | 3_overweight | yes | no | 1_front | 3.787 | yes | female | 4 |
| 65 | 70 | 8.0 | 120 | 3_overweight | yes | yes | 1_front | 3.750 | yes | female | 5 |
| height | ideal_ht | |
|---|---|---|
| 1 | 76 | 78 |
| 2 | 74 | 76 |
| 4 | 62 | 65 |
| 5 | 72 | 72 |
| 7 | 70 | 72 |
| 8 | 79 | 76 |
| height | ideal_ht | sleep | fastest | weight_feel | love_first | extra_life | seat | GPA | enough_Sleep | sex | diff.ideal.act. | ratio | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 76 | 78 | 9.5 | 119 | 1_underweight | no | yes | 1_front | 3.56 | no | male | 2 | 0.9743590 |
| 2 | 74 | 76 | 7.0 | 110 | 2_about_right | no | yes | 2_middle | 2.50 | no | male | 2 | 0.9736842 |
| 4 | 62 | 65 | 7.0 | 100 | 1_underweight | no | no | 1_front | 3.50 | no | female | 3 | 0.9538462 |
| 5 | 72 | 72 | 8.0 | 95 | 1_underweight | no | yes | 3_back | 3.20 | no | male | 0 | 1.0000000 |
| 7 | 70 | 72 | 4.0 | 85 | 2_about_right | no | yes | 1_front | 3.68 | no | male | 2 | 0.9722222 |
| 8 | 79 | 76 | 6.0 | 160 | 2_about_right | no | yes | 3_back | 2.70 | yes | male | -3 | 1.0394737 |
| avg_gpa | med_gpa |
|---|---|
| 3.187574 | 3.225 |
| seat | avg_height_byseat |
|---|---|
| 1_front | 65.22115 |
| 2_middle | 69.73333 |
| 3_back | 69.79167 |
Using %>% operator:
The operator helps you link different actions together. This makes your code shorter and easier to understand. It’s handy when you’re doing many things to data or working with different sets of data.
| height | ideal_ht | sleep | fastest | weight_feel | love_first | extra_life | seat | GPA | enough_Sleep | sex | diff.ideal.act. | m | sd | med | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 76.00 | 78.0 | 9.5 | 119 | 1_underweight | no | yes | 1_front | 3.560 | no | male | 2.00 | 3.187574 | 0.5086646 | 3.225 |
| 2 | 74.00 | 76.0 | 7.0 | 110 | 2_about_right | no | yes | 2_middle | 2.500 | no | male | 2.00 | 3.187574 | 0.5086646 | 3.225 |
| 4 | 62.00 | 65.0 | 7.0 | 100 | 1_underweight | no | no | 1_front | 3.500 | no | female | 3.00 | 3.187574 | 0.5086646 | 3.225 |
| 5 | 72.00 | 72.0 | 8.0 | 95 | 1_underweight | no | yes | 3_back | 3.200 | no | male | 0.00 | 3.187574 | 0.5086646 | 3.225 |
| 7 | 70.00 | 72.0 | 4.0 | 85 | 2_about_right | no | yes | 1_front | 3.680 | no | male | 2.00 | 3.187574 | 0.5086646 | 3.225 |
| 8 | 79.00 | 76.0 | 6.0 | 160 | 2_about_right | no | yes | 3_back | 2.700 | yes | male | -3.00 | 3.187574 | 0.5086646 | 3.225 |
| 9 | 59.00 | 61.0 | 7.0 | 90 | 2_about_right | no | yes | 3_back | 2.800 | no | female | 2.00 | 3.187574 | 0.5086646 | 3.225 |
| 11 | 65.00 | 69.0 | 6.0 | 100 | 2_about_right | no | no | 1_front | 2.100 | yes | female | 4.00 | 3.187574 | 0.5086646 | 3.225 |
| 12 | 62.00 | 62.0 | 7.0 | 60 | 3_overweight | no | no | 1_front | 2.500 | yes | female | 0.00 | 3.187574 | 0.5086646 | 3.225 |
| 13 | 59.00 | 62.0 | 5.0 | 80 | 2_about_right | yes | yes | 1_front | 3.890 | no | female | 3.00 | 3.187574 | 0.5086646 | 3.225 |
| 14 | 78.00 | 75.0 | 7.0 | 80 | 3_overweight | no | no | 2_middle | 3.200 | yes | female | -3.00 | 3.187574 | 0.5086646 | 3.225 |
| 15 | 69.00 | 72.0 | 7.0 | 125 | 1_underweight | no | no | 2_middle | 3.200 | no | male | 3.00 | 3.187574 | 0.5086646 | 3.225 |
| 16 | 68.00 | 68.0 | 4.5 | 100 | 1_underweight | yes | yes | 2_middle | 2.200 | no | male | 0.00 | 3.187574 | 0.5086646 | 3.225 |
| 17 | 73.00 | 77.0 | 6.0 | 110 | 2_about_right | yes | yes | 3_back | 3.500 | no | male | 4.00 | 3.187574 | 0.5086646 | 3.225 |
| 18 | 73.00 | 75.0 | 8.0 | 120 | 2_about_right | no | yes | 2_middle | 3.550 | yes | male | 2.00 | 3.187574 | 0.5086646 | 3.225 |
| 19 | 65.00 | 70.0 | 8.0 | 120 | 3_overweight | yes | yes | 1_front | 3.750 | yes | female | 5.00 | 3.187574 | 0.5086646 | 3.225 |
| 20 | 65.00 | 68.0 | 7.0 | 125 | 3_overweight | yes | no | 3_back | 3.500 | no | female | 3.00 | 3.187574 | 0.5086646 | 3.225 |
| 21 | 66.00 | 68.0 | 7.0 | 75 | 3_overweight | no | no | 1_front | 3.400 | yes | female | 2.00 | 3.187574 | 0.5086646 | 3.225 |
| 22 | 67.75 | 70.0 | 7.0 | 90 | 3_overweight | no | no | 1_front | 2.770 | no | male | 2.25 | 3.187574 | 0.5086646 | 3.225 |
| 23 | 63.00 | 67.0 | 8.5 | 90 | 3_overweight | no | yes | 1_front | 3.000 | yes | female | 4.00 | 3.187574 | 0.5086646 | 3.225 |
| 24 | 66.00 | 66.0 | 7.0 | 120 | 3_overweight | yes | no | 1_front | 3.167 | yes | female | 0.00 | 3.187574 | 0.5086646 | 3.225 |
| 25 | 68.00 | 68.0 | 4.0 | 90 | 3_overweight | yes | no | 2_middle | 3.200 | no | female | 0.00 | 3.187574 | 0.5086646 | 3.225 |
| 26 | 54.00 | 54.0 | 4.0 | 130 | 3_overweight | yes | yes | 1_front | 3.413 | no | female | 0.00 | 3.187574 | 0.5086646 | 3.225 |
| 27 | 74.00 | 75.0 | 5.0 | 119 | 2_about_right | yes | yes | 1_front | 3.700 | no | male | 1.00 | 3.187574 | 0.5086646 | 3.225 |
| 28 | 68.00 | 66.0 | 4.5 | 112 | 2_about_right | yes | no | 1_front | 3.500 | no | female | -2.00 | 3.187574 | 0.5086646 | 3.225 |
| 29 | 68.00 | 68.0 | 6.0 | 93 | 2_about_right | yes | yes | 1_front | 3.750 | no | female | 0.00 | 3.187574 | 0.5086646 | 3.225 |
| 30 | 69.00 | 67.0 | 6.0 | 145 | 3_overweight | no | no | 3_back | 2.800 | no | female | -2.00 | 3.187574 | 0.5086646 | 3.225 |
| 31 | 72.00 | 90.0 | 9.0 | 125 | 3_overweight | no | yes | 3_back | 2.200 | no | male | 18.00 | 3.187574 | 0.5086646 | 3.225 |
| 32 | 70.50 | 73.0 | 7.0 | 190 | 2_about_right | no | yes | 3_back | 3.600 | no | male | 2.50 | 3.187574 | 0.5086646 | 3.225 |
| 33 | 70.00 | 75.0 | 7.5 | 90 | 2_about_right | yes | yes | 2_middle | 2.800 | yes | male | 5.00 | 3.187574 | 0.5086646 | 3.225 |
| 34 | 75.00 | 78.0 | 7.0 | 143 | 3_overweight | yes | no | 2_middle | 3.100 | yes | male | 3.00 | 3.187574 | 0.5086646 | 3.225 |
| 35 | 72.00 | 75.0 | 7.0 | 120 | 2_about_right | yes | no | 2_middle | 3.000 | no | male | 3.00 | 3.187574 | 0.5086646 | 3.225 |
| 36 | 62.00 | 62.0 | 4.5 | 95 | 3_overweight | no | no | 2_middle | 3.500 | no | female | 0.00 | 3.187574 | 0.5086646 | 3.225 |
| 37 | 74.00 | 76.0 | 5.0 | 115 | 3_overweight | yes | no | 1_front | 3.900 | no | male | 2.00 | 3.187574 | 0.5086646 | 3.225 |
| 38 | 63.00 | 67.0 | 7.5 | 105 | 3_overweight | yes | no | 1_front | 3.787 | yes | female | 4.00 | 3.187574 | 0.5086646 | 3.225 |
| 39 | 69.00 | 66.0 | 6.0 | 100 | 3_overweight | no | no | 2_middle | 3.200 | no | female | -3.00 | 3.187574 | 0.5086646 | 3.225 |
| 40 | 60.00 | 66.0 | 5.0 | 95 | 3_overweight | yes | no | 2_middle | 3.700 | no | female | 6.00 | 3.187574 | 0.5086646 | 3.225 |
| 41 | 68.00 | 69.5 | 9.0 | 95 | 3_overweight | no | no | 2_middle | 2.000 | yes | female | 1.50 | 3.187574 | 0.5086646 | 3.225 |
| 42 | 73.00 | 76.0 | 8.0 | 110 | 3_overweight | no | yes | 2_middle | 3.100 | yes | male | 3.00 | 3.187574 | 0.5086646 | 3.225 |
| 43 | 66.00 | 68.0 | 9.0 | 91 | 3_overweight | yes | no | 1_front | 3.500 | no | female | 2.00 | 3.187574 | 0.5086646 | 3.225 |
| 44 | 70.00 | 67.0 | 5.5 | 85 | 3_overweight | yes | no | 2_middle | 3.700 | no | female | -3.00 | 3.187574 | 0.5086646 | 3.225 |
| 45 | 51.00 | 54.0 | 7.0 | 130 | 2_about_right | no | no | 1_front | 2.550 | no | female | 3.00 | 3.187574 | 0.5086646 | 3.225 |
| 46 | 67.00 | 68.0 | 7.0 | 104 | 3_overweight | yes | no | 2_middle | 3.730 | no | female | 1.00 | 3.187574 | 0.5086646 | 3.225 |
| 47 | 69.00 | 70.0 | 5.0 | 95 | 3_overweight | no | no | 2_middle | 3.500 | no | female | 1.00 | 3.187574 | 0.5086646 | 3.225 |
| 48 | 71.00 | 67.0 | 3.0 | 105 | 3_overweight | no | no | 2_middle | 3.200 | no | female | -4.00 | 3.187574 | 0.5086646 | 3.225 |
| 49 | 74.00 | 74.0 | 5.0 | 90 | 3_overweight | no | no | 2_middle | 3.100 | no | male | 0.00 | 3.187574 | 0.5086646 | 3.225 |
| 50 | 65.00 | 67.0 | 6.5 | 90 | 2_about_right | no | yes | 2_middle | 3.900 | yes | female | 2.00 | 3.187574 | 0.5086646 | 3.225 |
| 51 | 63.50 | 65.0 | 6.5 | 105 | 2_about_right | no | no | 2_middle | 3.250 | no | female | 1.50 | 3.187574 | 0.5086646 | 3.225 |
| 52 | 66.00 | 68.0 | 4.5 | 95 | 3_overweight | yes | yes | 2_middle | 3.200 | no | female | 2.00 | 3.187574 | 0.5086646 | 3.225 |
| 53 | 69.00 | 65.0 | 8.0 | 110 | 3_overweight | yes | yes | 3_back | 3.294 | no | female | -4.00 | 3.187574 | 0.5086646 | 3.225 |
| 54 | 75.00 | 77.0 | 7.0 | 105 | 3_overweight | no | no | 2_middle | 2.000 | yes | male | 2.00 | 3.187574 | 0.5086646 | 3.225 |
| 55 | 65.00 | 75.0 | 6.0 | 130 | 2_about_right | no | yes | 1_front | 3.000 | no | male | 10.00 | 3.187574 | 0.5086646 | 3.225 |
| 56 | 74.00 | 76.0 | 7.0 | 95 | 2_about_right | no | yes | 3_back | 3.700 | yes | male | 2.00 | 3.187574 | 0.5086646 | 3.225 |
| 57 | 64.00 | 66.0 | 6.0 | 95 | 3_overweight | yes | no | 1_front | 3.300 | no | female | 2.00 | 3.187574 | 0.5086646 | 3.225 |
| 58 | 76.00 | 77.0 | 7.0 | 100 | 2_about_right | no | yes | 2_middle | 3.200 | yes | male | 1.00 | 3.187574 | 0.5086646 | 3.225 |
| 59 | 64.00 | 68.0 | 6.0 | 110 | 3_overweight | no | yes | 2_middle | 3.600 | yes | female | 4.00 | 3.187574 | 0.5086646 | 3.225 |
| 60 | 71.50 | 74.0 | 6.0 | 108 | 2_about_right | no | no | 2_middle | 3.300 | no | male | 2.50 | 3.187574 | 0.5086646 | 3.225 |
| 61 | 63.00 | 68.0 | 7.5 | 75 | 3_overweight | no | no | 1_front | 4.000 | yes | female | 5.00 | 3.187574 | 0.5086646 | 3.225 |
| 62 | 64.00 | 68.0 | 7.5 | 102 | 3_overweight | no | no | 1_front | 3.400 | no | female | 4.00 | 3.187574 | 0.5086646 | 3.225 |
| 63 | 68.00 | 72.0 | 6.5 | 105 | 3_overweight | no | yes | 2_middle | 2.700 | yes | male | 4.00 | 3.187574 | 0.5086646 | 3.225 |
| 64 | 70.00 | 72.0 | 4.0 | 98 | 1_underweight | yes | yes | 3_back | 2.900 | no | male | 2.00 | 3.187574 | 0.5086646 | 3.225 |
| 65 | 68.00 | 72.0 | 4.0 | 135 | 1_underweight | no | yes | 2_middle | 1.900 | no | male | 4.00 | 3.187574 | 0.5086646 | 3.225 |
| 66 | 75.00 | 75.0 | 6.0 | 130 | 2_about_right | no | yes | 2_middle | 2.800 | yes | male | 0.00 | 3.187574 | 0.5086646 | 3.225 |
| 67 | 69.00 | 67.0 | 2.0 | 85 | 3_overweight | yes | no | 1_front | 3.500 | no | female | -2.00 | 3.187574 | 0.5086646 | 3.225 |
| 68 | 70.00 | 72.0 | 5.0 | 85 | 1_underweight | no | no | 2_middle | 3.300 | no | male | 2.00 | 3.187574 | 0.5086646 | 3.225 |
| 69 | 61.00 | 68.0 | 5.0 | 130 | 2_about_right | no | no | 1_front | 3.700 | no | female | 7.00 | 3.187574 | 0.5086646 | 3.225 |
| 70 | 65.00 | 66.0 | 8.0 | 120 | 2_about_right | yes | no | 3_back | 2.914 | yes | female | 1.00 | 3.187574 | 0.5086646 | 3.225 |
| 71 | 70.00 | 73.0 | 5.0 | 110 | 1_underweight | no | no | 1_front | 2.700 | no | male | 3.00 | 3.187574 | 0.5086646 | 3.225 |
| sleep | GPA | sex |
|---|---|---|
| 5.0 | 3.890 | female |
| 4.5 | 2.200 | male |
| 6.0 | 3.500 | male |
| 8.0 | 3.750 | female |
| 4.0 | 3.413 | female |
| 5.0 | 3.700 | male |
| 6.0 | 3.750 | female |
| 7.5 | 2.800 | male |
| 4.5 | 3.200 | female |
| 8.0 | 3.294 | female |
| 4.0 | 2.900 | male |
| weight_feel | n |
|---|---|
| 1_underweight | 9 |
| 2_about_right | 24 |
| 3_overweight | 35 |
| height | ideal_ht | sleep | fastest | weight_feel | love_first | extra_life | seat | GPA | enough_Sleep | sex | diff.ideal.act. | gender | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 76.00 | 78.0 | 9.5 | 119 | 1_underweight | no | yes | 1_front | 3.560 | no | male | 2.00 | boy |
| 2 | 74.00 | 76.0 | 7.0 | 110 | 2_about_right | no | yes | 2_middle | 2.500 | no | male | 2.00 | boy |
| 4 | 62.00 | 65.0 | 7.0 | 100 | 1_underweight | no | no | 1_front | 3.500 | no | female | 3.00 | girl |
| 5 | 72.00 | 72.0 | 8.0 | 95 | 1_underweight | no | yes | 3_back | 3.200 | no | male | 0.00 | boy |
| 7 | 70.00 | 72.0 | 4.0 | 85 | 2_about_right | no | yes | 1_front | 3.680 | no | male | 2.00 | boy |
| 8 | 79.00 | 76.0 | 6.0 | 160 | 2_about_right | no | yes | 3_back | 2.700 | yes | male | -3.00 | boy |
| 9 | 59.00 | 61.0 | 7.0 | 90 | 2_about_right | no | yes | 3_back | 2.800 | no | female | 2.00 | girl |
| 11 | 65.00 | 69.0 | 6.0 | 100 | 2_about_right | no | no | 1_front | 2.100 | yes | female | 4.00 | girl |
| 12 | 62.00 | 62.0 | 7.0 | 60 | 3_overweight | no | no | 1_front | 2.500 | yes | female | 0.00 | girl |
| 13 | 59.00 | 62.0 | 5.0 | 80 | 2_about_right | yes | yes | 1_front | 3.890 | no | female | 3.00 | girl |
| 14 | 78.00 | 75.0 | 7.0 | 80 | 3_overweight | no | no | 2_middle | 3.200 | yes | female | -3.00 | girl |
| 15 | 69.00 | 72.0 | 7.0 | 125 | 1_underweight | no | no | 2_middle | 3.200 | no | male | 3.00 | boy |
| 16 | 68.00 | 68.0 | 4.5 | 100 | 1_underweight | yes | yes | 2_middle | 2.200 | no | male | 0.00 | boy |
| 17 | 73.00 | 77.0 | 6.0 | 110 | 2_about_right | yes | yes | 3_back | 3.500 | no | male | 4.00 | boy |
| 18 | 73.00 | 75.0 | 8.0 | 120 | 2_about_right | no | yes | 2_middle | 3.550 | yes | male | 2.00 | boy |
| 19 | 65.00 | 70.0 | 8.0 | 120 | 3_overweight | yes | yes | 1_front | 3.750 | yes | female | 5.00 | girl |
| 20 | 65.00 | 68.0 | 7.0 | 125 | 3_overweight | yes | no | 3_back | 3.500 | no | female | 3.00 | girl |
| 21 | 66.00 | 68.0 | 7.0 | 75 | 3_overweight | no | no | 1_front | 3.400 | yes | female | 2.00 | girl |
| 22 | 67.75 | 70.0 | 7.0 | 90 | 3_overweight | no | no | 1_front | 2.770 | no | male | 2.25 | boy |
| 23 | 63.00 | 67.0 | 8.5 | 90 | 3_overweight | no | yes | 1_front | 3.000 | yes | female | 4.00 | girl |
| 24 | 66.00 | 66.0 | 7.0 | 120 | 3_overweight | yes | no | 1_front | 3.167 | yes | female | 0.00 | girl |
| 25 | 68.00 | 68.0 | 4.0 | 90 | 3_overweight | yes | no | 2_middle | 3.200 | no | female | 0.00 | girl |
| 26 | 54.00 | 54.0 | 4.0 | 130 | 3_overweight | yes | yes | 1_front | 3.413 | no | female | 0.00 | girl |
| 27 | 74.00 | 75.0 | 5.0 | 119 | 2_about_right | yes | yes | 1_front | 3.700 | no | male | 1.00 | boy |
| 28 | 68.00 | 66.0 | 4.5 | 112 | 2_about_right | yes | no | 1_front | 3.500 | no | female | -2.00 | girl |
| 29 | 68.00 | 68.0 | 6.0 | 93 | 2_about_right | yes | yes | 1_front | 3.750 | no | female | 0.00 | girl |
| 30 | 69.00 | 67.0 | 6.0 | 145 | 3_overweight | no | no | 3_back | 2.800 | no | female | -2.00 | girl |
| 31 | 72.00 | 90.0 | 9.0 | 125 | 3_overweight | no | yes | 3_back | 2.200 | no | male | 18.00 | boy |
| 32 | 70.50 | 73.0 | 7.0 | 190 | 2_about_right | no | yes | 3_back | 3.600 | no | male | 2.50 | boy |
| 33 | 70.00 | 75.0 | 7.5 | 90 | 2_about_right | yes | yes | 2_middle | 2.800 | yes | male | 5.00 | boy |
| 34 | 75.00 | 78.0 | 7.0 | 143 | 3_overweight | yes | no | 2_middle | 3.100 | yes | male | 3.00 | boy |
| 35 | 72.00 | 75.0 | 7.0 | 120 | 2_about_right | yes | no | 2_middle | 3.000 | no | male | 3.00 | boy |
| 36 | 62.00 | 62.0 | 4.5 | 95 | 3_overweight | no | no | 2_middle | 3.500 | no | female | 0.00 | girl |
| 37 | 74.00 | 76.0 | 5.0 | 115 | 3_overweight | yes | no | 1_front | 3.900 | no | male | 2.00 | boy |
| 38 | 63.00 | 67.0 | 7.5 | 105 | 3_overweight | yes | no | 1_front | 3.787 | yes | female | 4.00 | girl |
| 39 | 69.00 | 66.0 | 6.0 | 100 | 3_overweight | no | no | 2_middle | 3.200 | no | female | -3.00 | girl |
| 40 | 60.00 | 66.0 | 5.0 | 95 | 3_overweight | yes | no | 2_middle | 3.700 | no | female | 6.00 | girl |
| 41 | 68.00 | 69.5 | 9.0 | 95 | 3_overweight | no | no | 2_middle | 2.000 | yes | female | 1.50 | girl |
| 42 | 73.00 | 76.0 | 8.0 | 110 | 3_overweight | no | yes | 2_middle | 3.100 | yes | male | 3.00 | boy |
| 43 | 66.00 | 68.0 | 9.0 | 91 | 3_overweight | yes | no | 1_front | 3.500 | no | female | 2.00 | girl |
| 44 | 70.00 | 67.0 | 5.5 | 85 | 3_overweight | yes | no | 2_middle | 3.700 | no | female | -3.00 | girl |
| 45 | 51.00 | 54.0 | 7.0 | 130 | 2_about_right | no | no | 1_front | 2.550 | no | female | 3.00 | girl |
| 46 | 67.00 | 68.0 | 7.0 | 104 | 3_overweight | yes | no | 2_middle | 3.730 | no | female | 1.00 | girl |
| 47 | 69.00 | 70.0 | 5.0 | 95 | 3_overweight | no | no | 2_middle | 3.500 | no | female | 1.00 | girl |
| 48 | 71.00 | 67.0 | 3.0 | 105 | 3_overweight | no | no | 2_middle | 3.200 | no | female | -4.00 | girl |
| 49 | 74.00 | 74.0 | 5.0 | 90 | 3_overweight | no | no | 2_middle | 3.100 | no | male | 0.00 | boy |
| 50 | 65.00 | 67.0 | 6.5 | 90 | 2_about_right | no | yes | 2_middle | 3.900 | yes | female | 2.00 | girl |
| 51 | 63.50 | 65.0 | 6.5 | 105 | 2_about_right | no | no | 2_middle | 3.250 | no | female | 1.50 | girl |
| 52 | 66.00 | 68.0 | 4.5 | 95 | 3_overweight | yes | yes | 2_middle | 3.200 | no | female | 2.00 | girl |
| 53 | 69.00 | 65.0 | 8.0 | 110 | 3_overweight | yes | yes | 3_back | 3.294 | no | female | -4.00 | girl |
| 54 | 75.00 | 77.0 | 7.0 | 105 | 3_overweight | no | no | 2_middle | 2.000 | yes | male | 2.00 | boy |
| 55 | 65.00 | 75.0 | 6.0 | 130 | 2_about_right | no | yes | 1_front | 3.000 | no | male | 10.00 | boy |
| 56 | 74.00 | 76.0 | 7.0 | 95 | 2_about_right | no | yes | 3_back | 3.700 | yes | male | 2.00 | boy |
| 57 | 64.00 | 66.0 | 6.0 | 95 | 3_overweight | yes | no | 1_front | 3.300 | no | female | 2.00 | girl |
| 58 | 76.00 | 77.0 | 7.0 | 100 | 2_about_right | no | yes | 2_middle | 3.200 | yes | male | 1.00 | boy |
| 59 | 64.00 | 68.0 | 6.0 | 110 | 3_overweight | no | yes | 2_middle | 3.600 | yes | female | 4.00 | girl |
| 60 | 71.50 | 74.0 | 6.0 | 108 | 2_about_right | no | no | 2_middle | 3.300 | no | male | 2.50 | boy |
| 61 | 63.00 | 68.0 | 7.5 | 75 | 3_overweight | no | no | 1_front | 4.000 | yes | female | 5.00 | girl |
| 62 | 64.00 | 68.0 | 7.5 | 102 | 3_overweight | no | no | 1_front | 3.400 | no | female | 4.00 | girl |
| 63 | 68.00 | 72.0 | 6.5 | 105 | 3_overweight | no | yes | 2_middle | 2.700 | yes | male | 4.00 | boy |
| 64 | 70.00 | 72.0 | 4.0 | 98 | 1_underweight | yes | yes | 3_back | 2.900 | no | male | 2.00 | boy |
| 65 | 68.00 | 72.0 | 4.0 | 135 | 1_underweight | no | yes | 2_middle | 1.900 | no | male | 4.00 | boy |
| 66 | 75.00 | 75.0 | 6.0 | 130 | 2_about_right | no | yes | 2_middle | 2.800 | yes | male | 0.00 | boy |
| 67 | 69.00 | 67.0 | 2.0 | 85 | 3_overweight | yes | no | 1_front | 3.500 | no | female | -2.00 | girl |
| 68 | 70.00 | 72.0 | 5.0 | 85 | 1_underweight | no | no | 2_middle | 3.300 | no | male | 2.00 | boy |
| 69 | 61.00 | 68.0 | 5.0 | 130 | 2_about_right | no | no | 1_front | 3.700 | no | female | 7.00 | girl |
| 70 | 65.00 | 66.0 | 8.0 | 120 | 2_about_right | yes | no | 3_back | 2.914 | yes | female | 1.00 | girl |
| 71 | 70.00 | 73.0 | 5.0 | 110 | 1_underweight | no | no | 1_front | 2.700 | no | male | 3.00 | boy |
References:
https://ggplot2-book.org/getting-started
https://ggplot2.tidyverse.org/reference/geom_point.html
Cohen, Y., & Cohen, J. Y. (2008). Statistics and Data with R: An applied approach through examples. John Wiley & Sons.
Mount, J., & Zumel, N. (2019). Practical data science with R. Simon and Schuster.
Yozgatlıgil,C. (2024). Stat 412-Lecture Notes.