I. Dataset

CC <- read.csv("CCM_Oct 29,2023.csv", header = T, na.strings=c(".", "", " ", "NA", "-99"))

II. Demographics

#Number of responses (rows)
nrow(CC)
## [1] 1007
#Age range
range(CC$Dem_Age, na.rm = T)
## [1] 18 93
#Average age
mean(CC$Dem_Age, na.rm = T)
## [1] 45.40321
#Standard deviation of age
sd(CC$Dem_Age, na.rm = T)
## [1] 16.20402
#Gender frequencies
table(CC$Dem_Gen)
## 
##   1   2   3 
## 507 488  12
#Ethnicity 
table(CC$Dem_Ethnicity)
## 
##   1   2   3   4   5   6   7 
##  61 129  44   1   4 758  10
CC$Ethnicity <- NA
CC$Ethnicity[CC$Dem_Ethnicity == 1] <- 'Asian'
CC$Ethnicity[CC$Dem_Ethnicity == 2] <- 'Black'
CC$Ethnicity[CC$Dem_Ethnicity == 3] <- 'Hispanic'
CC$Ethnicity[CC$Dem_Ethnicity == 4] <- 'Nat Amer'
CC$Ethnicity[CC$Dem_Ethnicity == 5] <- 'Nat Pac'
CC$Ethnicity[CC$Dem_Ethnicity == 6] <- 'White'
CC$Ethnicity[CC$Dem_Ethnicity == 7] <- 'Other'

describe(CC$Dem_Ethnicity)
## CC$Dem_Ethnicity 
##        n  missing distinct     Info     Mean      Gmd 
##     1007        0        7    0.571    5.058    1.518 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency     61   129    44     1     4   758    10
## Proportion 0.061 0.128 0.044 0.001 0.004 0.753 0.010
## 
## For the frequency table, variable is rounded to the nearest 0
# Education: Please indicate the highest level of education you have completed (1 = Elementary/Grammar School, 2 = Middle School, 3 = High School or Equivalent, 4 = Vocational/Technical School (2 years), 5 = Some College, 6 = College or University (4 years), 7 = Master's Degree (MS, MA, MBA, etc.), 8 = Doctoral Degree (PhD), 9 = Professional Degree (MD, JD, etc.). 

CC$EdNum <- as.numeric(as.character(CC$Dem_Edu))
CC$EDU <- factor(CC$EdNum, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), 
                     labels = c("Elementary/Grammar School", "Middle School", "High School or Equivalent", "Vocational/Technical School (2 years)", "Some College", "College or University (4 years)", "Master's Degree (MS, MA, MBA, etc.)", "Doctoral Degree (PhD)", "Professional Degree (MD, JD, etc.)", "Other"))
table(CC$EDU)
## 
##             Elementary/Grammar School                         Middle School 
##                                     0                                     5 
##             High School or Equivalent Vocational/Technical School (2 years) 
##                                   134                                    60 
##                          Some College       College or University (4 years) 
##                                   233                                   405 
##   Master's Degree (MS, MA, MBA, etc.)                 Doctoral Degree (PhD) 
##                                   126                                    19 
##    Professional Degree (MD, JD, etc.)                                 Other 
##                                    22                                     3
describe(CC$EdNum)
## CC$EdNum 
##        n  missing distinct     Info     Mean      Gmd 
##     1007        0        9    0.918    5.471    1.475 
##                                                                 
## Value          2     3     4     5     6     7     8     9    10
## Frequency      5   134    60   233   405   126    19    22     3
## Proportion 0.005 0.133 0.060 0.231 0.402 0.125 0.019 0.022 0.003
## 
## For the frequency table, variable is rounded to the nearest 0
length(CC$EdNum)
## [1] 1007
#Gender
CC$Dem_Gender <- as.numeric(as.character(CC$Dem_Gen))
describe(CC$Dem_Gen)
## CC$Dem_Gen 
##        n  missing distinct     Info     Mean      Gmd 
##     1007        0        3    0.759    1.508    0.524 
##                             
## Value          1     2     3
## Frequency    507   488    12
## Proportion 0.503 0.485 0.012
## 
## For the frequency table, variable is rounded to the nearest 0
#Age
CC$Demograph_Age <- as.numeric(as.character(CC$Dem_Age))
describe(CC$Demograph_Age)
## CC$Demograph_Age 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      997       10       67        1     45.4    18.66       21       24 
##      .25      .50      .75      .90      .95 
##       31       44       59       67       71 
## 
## lowest : 18 19 20 21 22, highest: 80 81 82 91 93
range(CC$Demograph_Age ,na.rm = T)
## [1] 18 93
#Political Orientation
##"Which of the following describes your political orientation?"
CC$polOR <- factor(CC$PI_Orientation, levels = c(1, 2, 3, 4, 5, 6, 7), 
                     labels = c("Strongly Conservative", "Moderately Conservative", "Slightly Conservative", "Neither Conservative Nor Liberal", "Slightly Liberal", "Moderately Liberal", "Strongly Liberal"))
table(CC$polOR)
## 
##            Strongly Conservative          Moderately Conservative 
##                               62                              102 
##            Slightly Conservative Neither Conservative Nor Liberal 
##                               72                              183 
##                 Slightly Liberal               Moderately Liberal 
##                              125                              239 
##                 Strongly Liberal 
##                              224
#Socioeconomic Status
describe(CC$Dem_SES)
## CC$Dem_SES 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       10    0.985    6.274     2.76        2        3 
##      .25      .50      .75      .90      .95 
##        4        7        8        9       10 
##                                                                       
## Value          1     2     3     4     5     6     7     8     9    10
## Frequency     35    40    91    97    99   108   183   148   122    83
## Proportion 0.035 0.040 0.090 0.096 0.098 0.107 0.182 0.147 0.121 0.083
## 
## For the frequency table, variable is rounded to the nearest 0
sd(CC$Dem_SES, na.rm = TRUE)
## [1] 2.432426
CC$SES <- factor(CC$Dem_SES, levels = c(1, 2, 3, 4, 5, 6, 7,8, 9, 10), 
                     labels = c("Under $10,000", "$10,000-$19,999", "$20,000-$29,999", "$30,000-$39,999", "$40,000-$49,999", "$50,000-$74,999", "$75,000-$99,999", "$100,000-$149,999", "$150,000 or more", "Prefer not to say"))
table(CC$SES)
## 
##     Under $10,000   $10,000-$19,999   $20,000-$29,999   $30,000-$39,999 
##                35                40                91                97 
##   $40,000-$49,999   $50,000-$74,999   $75,000-$99,999 $100,000-$149,999 
##                99               108               183               148 
##  $150,000 or more Prefer not to say 
##               122                83
hist(CC$Dem_SES, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

# Living Environment (1 = Urban; 2 = Suburban; 3 = Rural)
describe(CC$Dem_Living)
## CC$Dem_Living 
##        n  missing distinct     Info     Mean      Gmd 
##     1007        0        3    0.824    1.916   0.7145 
##                             
## Value          1     2     3
## Frequency    280   532   195
## Proportion 0.278 0.528 0.194
## 
## For the frequency table, variable is rounded to the nearest 0

III. Scales

a. Aversion to Tampering with Nature

#Aversion to Tampering with Nature
#Aversion to Tampering with Nature Item Definitions
CC$ATNS_1 <- as.numeric(as.character(CC$ATNS_1_36))
CC$ATNS_2 <- as.numeric(as.character(CC$ATNS_1_37))
CC$ATNS_3 <- as.numeric(as.character(CC$ATNS_1_38))
CC$ATNS_4 <- as.numeric(as.character(CC$ATNS_1_39))
CC$ATNS_5 <- as.numeric(as.character(CC$ATNS_1_40))

#Recode item 2
CC$ATNS_2R <- (100- CC$ATNS_2)

#Aversion to Tampering with Nature Scale Descriptives (No reversed codes)
describe(CC$ATNS_1)
## CC$ATNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1      100    0.999    49.63    30.88     5.00    15.00 
##      .25      .50      .75      .90      .95 
##    27.25    50.00    70.00    88.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  95  96  98  99 100
sd(CC$ATNS_1)
## [1] NA
range(CC$ATNS_1, na.rm=TRUE)
## [1]   0 100
describe(CC$ATNS_2)
## CC$ATNS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       99    0.999    42.53     32.5      0.0      2.0 
##      .25      .50      .75      .90      .95 
##     19.5     41.0     63.0     82.0     91.0 
## 
## lowest :   0   1   2   3   4, highest:  95  96  97  98 100
sd(CC$ATNS_2)
## [1] 28.28759
range(CC$ATNS_2, na.rm=TRUE)
## [1]   0 100
describe(CC$ATNS_3)
## CC$ATNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1005        2      101    0.999    49.43     32.8      0.0     10.4 
##      .25      .50      .75      .90      .95 
##     27.0     50.0     70.0     93.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
sd(CC$ATNS_3)
## [1] NA
range(CC$ATNS_3, na.rm=TRUE)
## [1]   0 100
describe(CC$ATNS_4)
## CC$ATNS_4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       99    0.998    61.51     30.6       12       21 
##      .25      .50      .75      .90      .95 
##       45       64       82      100      100 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
sd(CC$ATNS_4)
## [1] 26.89782
range(CC$ATNS_4, na.rm=TRUE)
## [1]   0 100
describe(CC$ATNS_5)
## CC$ATNS_5 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0      101    0.999    54.71    33.05      3.3     13.0 
##      .25      .50      .75      .90      .95 
##     32.0     57.0     76.0     96.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
sd(CC$ATNS_5)
## [1] 28.8092
range(CC$ATNS_5, na.rm=TRUE)
## [1]   0 100
#Aversion to Tampering with Nature Scale Histograms by Item (No reversed codes)
hist(CC$ATNS_1, main = 'ATNS #1: People who push for technological fixes to environmental problems are underestimating the risks.')

hist(CC$ATNS_2, main = 'ATNS #2: People who say we shouldn’t tamper with nature are just being naïve.')

hist(CC$ATNS_3, main = 'ATNS #3: Human beings have no right to meddle with the natural environment.')

hist(CC$ATNS_4, main = 'ATNS #4: I would prefer to live in a world where humans leave nature alone.')

hist(CC$ATNS_5, main = 'ATNS #5: Altering nature will be our downfall as a species.')

#Cronbach's Alpha (4 and 5 reverse coded)
CC$ATNS_Scale <- data.frame(CC$ATNS_1, CC$ATNS_2R, CC$ATNS_3, CC$ATNS_4, CC$ATNS_5)
CC$ATNS_Score <- rowMeans(CC [, c("ATNS_1", "ATNS_2R", "ATNS_3", "ATNS_4", "ATNS_5")], na.rm=TRUE)
psych::alpha(CC$ATNS_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$ATNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.83      0.83    0.81      0.49 4.8 0.0085   55 21     0.52
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.81  0.83  0.85
## Duhachek  0.81  0.83  0.85
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CC.ATNS_1       0.85      0.85    0.81      0.58 5.6   0.0079 0.0053  0.58
## CC.ATNS_2R      0.81      0.81    0.78      0.51 4.2   0.0098 0.0211  0.51
## CC.ATNS_3       0.76      0.76    0.72      0.44 3.2   0.0122 0.0164  0.45
## CC.ATNS_4       0.77      0.77    0.73      0.45 3.3   0.0118 0.0156  0.45
## CC.ATNS_5       0.78      0.78    0.75      0.46 3.5   0.0115 0.0252  0.46
## 
##  Item statistics 
##               n raw.r std.r r.cor r.drop mean sd
## CC.ATNS_1  1006  0.62  0.63  0.47   0.43   50 27
## CC.ATNS_2R 1007  0.74  0.74  0.64   0.58   57 28
## CC.ATNS_3  1005  0.84  0.84  0.81   0.73   49 29
## CC.ATNS_4  1007  0.83  0.83  0.80   0.72   62 27
## CC.ATNS_5  1007  0.81  0.81  0.75   0.69   55 29
describe(CC$ATNS_Scale)
## CC$ATNS_Scale 
## 
##  5  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.ATNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1      100    0.999    49.63    30.88     5.00    15.00 
##      .25      .50      .75      .90      .95 
##    27.25    50.00    70.00    88.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  95  96  98  99 100
## --------------------------------------------------------------------------------
## CC.ATNS_2R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       99    0.999    57.47     32.5      9.0     18.0 
##      .25      .50      .75      .90      .95 
##     37.0     59.0     80.5     98.0    100.0 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.ATNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1005        2      101    0.999    49.43     32.8      0.0     10.4 
##      .25      .50      .75      .90      .95 
##     27.0     50.0     70.0     93.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.ATNS_4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       99    0.998    61.51     30.6       12       21 
##      .25      .50      .75      .90      .95 
##       45       64       82      100      100 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.ATNS_5 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0      101    0.999    54.71    33.05      3.3     13.0 
##      .25      .50      .75      .90      .95 
##     32.0     57.0     76.0     96.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$ATNS_Score)
## [1] 21.4981
#Pearsons r Correlation
correlation <- cor(CC$ATNS_Scale, method = 'pearson')
correlation
##            CC.ATNS_1 CC.ATNS_2R CC.ATNS_3 CC.ATNS_4 CC.ATNS_5
## CC.ATNS_1          1         NA        NA        NA        NA
## CC.ATNS_2R        NA  1.0000000        NA 0.5384829 0.4918514
## CC.ATNS_3         NA         NA         1        NA        NA
## CC.ATNS_4         NA  0.5384829        NA 1.0000000 0.6127687
## CC.ATNS_5         NA  0.4918514        NA 0.6127687 1.0000000

b. Benefit

# Benefit was rated on a one item scale (0 = Strongly disagree to 100 = Strongly agree) and represented naturalness perception of the technology rated.

## 1. This is likely to lead to achieving carbon neutral climate goals.

i. Descriptives

# Define Variables
CC$Ben_AFSCS <- CC$Ben_AFSCS_18
CC$Ben_BIO <- CC$Ben_BIO_18
CC$Ben_BECCS <- CC$Ben_BECCS_18
CC$Ben_DACCS <- CC$Ben_DACCS_18
CC$Ben_EW <- CC$Ben_EW_18
CC$Ben_OF <- CC$Ben_OF_18
CC$Ben_BF <- CC$Ben_BF_18
CC$Ben_NE <- CC$Ben_NE_18
CC$Ben_SE <- CC$Ben_SE_18
CC$Ben_WE <- CC$Ben_WE_18

#Descriptives
describe(CC$Ben_AFSCS)
## CC$Ben_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       80    0.999    68.42    26.15     22.1     37.0 
##      .25      .50      .75      .90      .95 
##     55.5     72.0     85.0     97.0    100.0 
## 
## lowest :   0   1   5  10  12, highest:  96  97  98  99 100
sd(CC$Ben_AFSCS, na.rm = TRUE)
## [1] 23.72132
hist(CC$Ben_AFSCS)

describe(CC$Ben_BIO)
## CC$Ben_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       85    0.999    53.47    29.28     6.10    20.00 
##      .25      .50      .75      .90      .95 
##    33.00    56.50    72.25    86.00    92.45 
## 
## lowest :   0   1   3   5   7, highest:  95  97  98  99 100
sd(CC$Ben_BIO, na.rm = TRUE)
## [1] 25.6215
hist(CC$Ben_BIO)

describe(CC$Ben_BECCS) 
## CC$Ben_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       87    0.999       55    29.13    10.00    18.00 
##      .25      .50      .75      .90      .95 
##    36.00    57.00    74.75    88.00    95.00 
## 
## lowest :   0   1   3   6   7, highest:  94  95  96  97 100
sd(CC$Ben_BECCS, na.rm = TRUE)
## [1] 25.51696
hist(CC$Ben_BECCS)

describe(CC$Ben_DACCS)
## CC$Ben_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       89    0.999    55.35    30.26      3.0     15.0 
##      .25      .50      .75      .90      .95 
##     37.0     59.0     75.0     90.0     99.4 
## 
## lowest :   0   1   2   3   5, highest:  93  95  96  98 100
sd(CC$Ben_DACCS, na.rm = TRUE)
## [1] 26.63817
hist(CC$Ben_DACCS)

describe(CC$Ben_EW)
## CC$Ben_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       83    0.999    52.15    27.98      0.0     13.8 
##      .25      .50      .75      .90      .95 
##     37.0     55.0     70.0     81.2     90.0 
## 
## lowest :   0   3   4   5   6, highest:  95  96  97  99 100
sd(CC$Ben_EW, na.rm = TRUE)
## [1] 24.84342
hist(CC$Ben_EW)

describe(CC$Ben_OF)
## CC$Ben_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       82    0.999    54.54    28.93      7.6     17.0 
##      .25      .50      .75      .90      .95 
##     36.0     58.0     74.5     86.0     91.7 
## 
## lowest :   0   2   4   5   7, highest:  92  93  95  96 100
sd(CC$Ben_OF, na.rm = TRUE)
## [1] 25.43145
hist(CC$Ben_OF)

describe(CC$Ben_BF)
## CC$Ben_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       82    0.999    51.92    30.47     3.05    10.00 
##      .25      .50      .75      .90      .95 
##    34.00    57.00    70.00    85.00    94.30 
## 
## lowest :   0   1   2   5   6, highest:  93  95  96  97 100
sd(CC$Ben_BF, na.rm = TRUE)
## [1] 26.71672
hist(CC$Ben_BF)

describe(CC$Ben_NE)
## CC$Ben_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       78    0.999    60.18    30.92      0.0     19.2 
##      .25      .50      .75      .90      .95 
##     44.0     66.0     80.0     92.4     98.4 
## 
## lowest :   0   6   9  10  11, highest:  94  95  97  98 100
sd(CC$Ben_NE, na.rm = TRUE)
## [1] 27.56813
hist(CC$Ben_NE)

describe(CC$Ben_SE)
## CC$Ben_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       75    0.998    66.31    29.55     10.4     25.0 
##      .25      .50      .75      .90      .95 
##     50.0     71.0     86.0    100.0    100.0 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
sd(CC$Ben_SE, na.rm = TRUE)
## [1] 26.49281
hist(CC$Ben_SE)

describe(CC$Ben_WE) 
## CC$Ben_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       71    0.998    64.88    28.99      9.6     25.0 
##      .25      .50      .75      .90      .95 
##     51.0     68.0     85.0    100.0    100.0 
## 
## lowest :   0   5   6   8  10, highest:  96  97  98  99 100
sd(CC$Ben_WE, na.rm = TRUE)
## [1] 26.12863
hist(CC$Ben_WE)

ii. Score(s) & Scale(s)

# Note: Benefit Scores & scales not present because measure is one item.)

c. Climate Change Belief

i. Descriptives

#Climate Change Belief Item Definitions
CC$CCB1 <- as.numeric(as.character(CC$CCB_1_48))
CC$CCB2 <- as.numeric(as.character(CC$CCB_1_49))
CC$CCB3 <- as.numeric(as.character(CC$CCB_1_50))
CC$CCB4 <- as.numeric(as.character(CC$CCB_1_51))

#Climate Change Belief Descriptives
describe(CC$CCB1)
## CC$CCB1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       73    0.859    86.91    19.52    33.25    58.00 
##      .25      .50      .75      .90      .95 
##    83.25   100.00   100.00   100.00   100.00 
## 
## lowest :   0   8  11  13  15, highest:  96  97  98  99 100
range(CC$CCB1, na.rm=TRUE)
## [1]   0 100
sd(CC$CCB1, na.rm=TRUE)
## [1] 21.93689
describe(CC$CCB2)
## CC$CCB2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       87     0.89     83.6    23.83       19       50 
##      .25      .50      .75      .90      .95 
##       79       98      100      100      100 
## 
## lowest :   0   3   5   7   8, highest:  96  97  98  99 100
range(CC$CCB2, na.rm=TRUE)
## [1]   0 100
sd(CC$CCB2, na.rm=TRUE)
## [1] 25.67106
describe(CC$CCB3)
## CC$CCB3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       89    0.936    79.65    27.61        4       35 
##      .25      .50      .75      .90      .95 
##       70       91      100      100      100 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
range(CC$CCB3, na.rm=TRUE)
## [1]   0 100
sd(CC$CCB3, na.rm=TRUE)
## [1] 28.29363
describe(CC$CCB4)
## CC$CCB4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       86     0.98    76.35    27.33       15       40 
##      .25      .50      .75      .90      .95 
##       65       85      100      100      100 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
range(CC$CCB4, na.rm=TRUE)
## [1]   0 100
sd(CC$CCB4, na.rm=TRUE)
## [1] 26.23131
#Climate Change Belief Histograms
hist(CC$CCB1, main = 'Climate Change Belief #1: Climate change is happening."')

hist(CC$CCB2, main = 'Climate Change Belief #2:Climate change poses a risk to human health, safety, and prosperity."')

hist(CC$CCB3, main = 'Climate Change Belief #3:Human activity is largely responsible for recent climate change."')

hist(CC$CCB4, main = 'Climate Change Belief #4: Reducing greenhouse gas emissions will reduce global warming and climate change."')

ii. Score(s) & Scale(s)

#Score & Scale
CC$CCB_Score <- rowMeans(CC[, c('CCB1', 'CCB2', 'CCB3','CCB4')], na.rm=T)
describe(CC$CCB_Score)
## CC$CCB_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0      250    0.987    81.61    23.23    25.00    47.05 
##      .25      .50      .75      .90      .95 
##    75.00    91.25    98.88   100.00   100.00 
## 
## lowest : 0     2     3.75  4     4.75 , highest: 99    99.25 99.5  99.75 100
CC$CCB_Scale <- data.frame(CC$CCB_1_48, CC$CCB_1_49, CC$CCB_1_50, CC$CCB_1_51)
describe(CC$CCB_Scale)
## CC$CCB_Scale 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.CCB_1_48 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       73    0.859    86.91    19.52    33.25    58.00 
##      .25      .50      .75      .90      .95 
##    83.25   100.00   100.00   100.00   100.00 
## 
## lowest :   0   8  11  13  15, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CCB_1_49 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       87     0.89     83.6    23.83       19       50 
##      .25      .50      .75      .90      .95 
##       79       98      100      100      100 
## 
## lowest :   0   3   5   7   8, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CCB_1_50 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       89    0.936    79.65    27.61        4       35 
##      .25      .50      .75      .90      .95 
##       70       91      100      100      100 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CCB_1_51 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       86     0.98    76.35    27.33       15       40 
##      .25      .50      .75      .90      .95 
##       65       85      100      100      100 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
#Cronbach's Alpha
psych::alpha(CC$CCB_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$CCB_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.94      0.94    0.93       0.8  16 0.0031   82 24      0.8
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.93  0.94  0.94
## Duhachek  0.93  0.94  0.95
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r  S/N alpha se  var.r med.r
## CC.CCB_1_48      0.93      0.93    0.90      0.82 13.4   0.0038 0.0013  0.82
## CC.CCB_1_49      0.90      0.91    0.87      0.77  9.8   0.0049 0.0033  0.78
## CC.CCB_1_50      0.91      0.92    0.89      0.78 11.0   0.0048 0.0069  0.78
## CC.CCB_1_51      0.93      0.94    0.92      0.83 15.1   0.0036 0.0024  0.85
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.CCB_1_48 1006  0.90  0.91  0.87   0.84   87 22
## CC.CCB_1_49 1006  0.95  0.95  0.94   0.91   84 26
## CC.CCB_1_50 1007  0.94  0.93  0.91   0.88   80 28
## CC.CCB_1_51 1007  0.90  0.89  0.84   0.82   76 26
#Correlation CCB 
cor(CC$CCB_Scale, use= "complete.obs")
##             CC.CCB_1_48 CC.CCB_1_49 CC.CCB_1_50 CC.CCB_1_51
## CC.CCB_1_48   1.0000000   0.8696179   0.7786829   0.7037607
## CC.CCB_1_49   0.8696179   1.0000000   0.8542424   0.7818553
## CC.CCB_1_50   0.7786829   0.8542424   1.0000000   0.8154086
## CC.CCB_1_51   0.7037607   0.7818553   0.8154086   1.0000000

d. Connectedness to Nature

i. Descriptives

#Connectedness to Nature Item Definitions
CC$CNS_1 <- as.numeric(as.character(CC$CNS_1_47))
CC$CNS_2 <- as.numeric(as.character(CC$CNS_1_48))
CC$CNS_3 <- as.numeric(as.character(CC$CNS_1_49))
CC$CNS_4 <- as.numeric(as.character(CC$CNS_1_50))
CC$CNS_5 <- as.numeric(as.character(CC$CNS_1_51))

#Descriptives
describe(CC$CNS_1)
## CC$CNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       97    0.998    66.82    27.67       16       33 
##      .25      .50      .75      .90      .95 
##       51       70       85      100      100 
## 
## lowest :   0   3   4   5   6, highest:  96  97  98  99 100
range(CC$CNS_1, na.rm=TRUE)
## [1]   0 100
describe(CC$CNS_2)
## CC$CNS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       94    0.995    73.34    24.81     25.0     43.6 
##      .25      .50      .75      .90      .95 
##     62.0     78.0     90.5    100.0    100.0 
## 
## lowest :   0   5   7   8  10, highest:  96  97  98  99 100
range(CC$CNS_2, na.rm=TRUE)
## [1]   0 100
describe(CC$CNS_3)
## CC$CNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       98    0.996    65.79    32.06        0       17 
##      .25      .50      .75      .90      .95 
##       51       70       87      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(CC$CNS_3, na.rm=TRUE)
## [1]   0 100
describe(CC$CNS_4)
## CC$CNS_4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1      100    0.996    39.73    36.96     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    14.00    33.00    67.75    89.50   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(CC$CNS_4, na.rm=TRUE)
## [1]   0 100
describe(CC$CNS_5)
## CC$CNS_5 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       98    0.999    49.45    34.86      0.0      4.6 
##      .25      .50      .75      .90      .95 
##     23.0     51.0     72.5     90.0    100.0 
## 
## lowest :   0   1   3   4   5, highest:  95  97  98  99 100
range(CC$CNS_5, na.rm=TRUE)
## [1]   0 100
#Histograms
hist(CC$CNS_1, main = 'I often feel a sense of oneness with the natural world around me.')

hist(CC$CNS_2, main = 'I think of the natural world as a community to which I belong.')

hist(CC$CNS_3, main = 'I feel that all inhabitants of Earth, human, and nonhuman, share a common ‘life force’.')

hist(CC$CNS_4, main = 'My personal welfare is independent of the welfare of the natural world.')

hist(CC$CNS_5, main = 'When I think of my place on Earth, I consider myself to be a top member of a hierarchy that exists in nature.')

#Recode items 4 and 5
CC$CNS_4R <- (100 - CC$CNS_4) 
CC$CNS_5R <- (100 - CC$CNS_5)

ii. Score(s) & Scale(s)

#Score & Scale
CC$CNS_Score <- rowMeans(CC [, c("CNS_1", "CNS_2", "CNS_3", "CNS_4R", "CNS_5R")], na.rm=TRUE)
describe(CC$CNS_Score)
## CC$CNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0      322        1    63.36    18.72    35.00    43.12 
##      .25      .50      .75      .90      .95 
##    52.90    63.00    74.60    84.88    91.80 
## 
## lowest : 0    8.6  10   12.8 16  , highest: 97.8 98.2 98.6 99.6 100
CC$CNS_Scale2 <- data.frame(CC$CNS_1, CC$CNS_2, CC$CNS_3, CC$CNS_4R, CC$CNS_5R)
psych::alpha(CC$CNS_Scale2)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$CNS_Scale2)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.54      0.59    0.63      0.22 1.4 0.024   63 17    0.081
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt      0.5  0.54  0.59
## Duhachek   0.5  0.54  0.59
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.CNS_1       0.38      0.41    0.44      0.15 0.70    0.032 0.045 0.081
## CC.CNS_2       0.39      0.41    0.45      0.15 0.70    0.032 0.053 0.071
## CC.CNS_3       0.42      0.46    0.51      0.17 0.85    0.031 0.066 0.068
## CC.CNS_4R      0.63      0.66    0.67      0.33 1.93    0.020 0.092 0.314
## CC.CNS_5R      0.58      0.64    0.66      0.30 1.75    0.023 0.108 0.311
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean sd
## CC.CNS_1  1007  0.70  0.75  0.75  0.494   67 25
## CC.CNS_2  1007  0.70  0.75  0.74  0.511   73 23
## CC.CNS_3  1006  0.68  0.70  0.63  0.411   66 29
## CC.CNS_4R 1006  0.47  0.41  0.13  0.096   60 33
## CC.CNS_5R 1007  0.50  0.45  0.18  0.157   51 30
describe(CC$CNS_Scale2)
## CC$CNS_Scale2 
## 
##  5  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.CNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       97    0.998    66.82    27.67       16       33 
##      .25      .50      .75      .90      .95 
##       51       70       85      100      100 
## 
## lowest :   0   3   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       94    0.995    73.34    24.81     25.0     43.6 
##      .25      .50      .75      .90      .95 
##     62.0     78.0     90.5    100.0    100.0 
## 
## lowest :   0   5   7   8  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       98    0.996    65.79    32.06        0       17 
##      .25      .50      .75      .90      .95 
##       51       70       87      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_4R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1      100    0.996    60.27    36.96     0.00    10.50 
##      .25      .50      .75      .90      .95 
##    32.25    67.00    86.00   100.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_5R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       98    0.999    50.55    34.86      0.0     10.0 
##      .25      .50      .75      .90      .95 
##     27.5     49.0     77.0     95.4    100.0 
## 
## lowest :   0   1   2   3   5, highest:  95  96  97  99 100
## --------------------------------------------------------------------------------
## Drop reverse coded items 
CC$CNS_Scale <- data.frame(CC$CNS_1, CC$CNS_2, CC$CNS_3)
psych::alpha(CC$CNS_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$CNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.81      0.82    0.76       0.6 4.5 0.01   69 22     0.58
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.79  0.81  0.83
## Duhachek  0.79  0.81  0.83
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.CNS_1      0.69      0.70    0.54      0.54 2.4    0.019    NA  0.54
## CC.CNS_2      0.73      0.73    0.58      0.58 2.7    0.017    NA  0.58
## CC.CNS_3      0.80      0.80    0.67      0.67 4.1    0.012    NA  0.67
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## CC.CNS_1 1007  0.87  0.88  0.79   0.70   67 25
## CC.CNS_2 1007  0.84  0.86  0.77   0.68   73 23
## CC.CNS_3 1006  0.85  0.83  0.67   0.61   66 29
describe(CC$CNS_Scale)
## CC$CNS_Scale 
## 
##  3  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.CNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       97    0.998    66.82    27.67       16       33 
##      .25      .50      .75      .90      .95 
##       51       70       85      100      100 
## 
## lowest :   0   3   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       94    0.995    73.34    24.81     25.0     43.6 
##      .25      .50      .75      .90      .95 
##     62.0     78.0     90.5    100.0    100.0 
## 
## lowest :   0   5   7   8  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       98    0.996    65.79    32.06        0       17 
##      .25      .50      .75      .90      .95 
##       51       70       87      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
#Correlation CCB 
cor(CC$CNS_Scale, use= "complete.obs")
##           CC.CNS_1  CC.CNS_2  CC.CNS_3
## CC.CNS_1 1.0000000 0.6736904 0.5782495
## CC.CNS_2 0.6736904 1.0000000 0.5437057
## CC.CNS_3 0.5782495 0.5437057 1.0000000

e. Control

# Control was rated on a one item scale (0 = Strongly disagree to 100 = Strongly agree) and represented perception of control over the technology rated.

## 1. We have control over the processes in this method.

i. Descriptives

# Define Variables
CC$Control_AFSCS <- CC$Risk_AFSCS_34
CC$Control_BIO <- CC$Risk_BIO_34
CC$Control_BECCS <- CC$Risk_BECCS_34
CC$Control_DACCS <- CC$Risk_DACCS_34
CC$Control_EW <- CC$Risk_EW_34
CC$Control_OF <- CC$Risk_OF_34
CC$Control_BF <- CC$Risk_BF_34
CC$Control_NE <- CC$Risk_NE_34
CC$Control_SE <- CC$Risk_SE_34
CC$Control_WE <- CC$Risk_WE_34

# Descriptives
describe(CC$Control_AFSCS)
## CC$Control_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       71    0.997    74.48     22.1     36.0     50.2 
##      .25      .50      .75      .90      .95 
##     65.0     77.0     88.0    100.0    100.0 
## 
## lowest :   0   5   7   8  20, highest:  96  97  98  99 100
sd(CC$Control_AFSCS, na.rm = TRUE)
## [1] 20.53265
hist(CC$Control_AFSCS)

describe(CC$Control_BIO)
## CC$Control_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       77    0.999    68.99    24.04    29.55    41.10 
##      .25      .50      .75      .90      .95 
##    54.00    71.50    85.00    96.00   100.00 
## 
## lowest :   0   5   9  14  16, highest:  95  96  98  99 100
sd(CC$Control_BIO, na.rm = TRUE)
## [1] 21.35812
hist(CC$Control_BIO)

describe(CC$Control_BECCS)
## CC$Control_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       79    0.999    62.23    26.17       20       30 
##      .25      .50      .75      .90      .95 
##       47       65       78       90      100 
## 
## lowest :   0  10  12  13  15, highest:  95  96  98  99 100
sd(CC$Control_BECCS, na.rm = TRUE)
## [1] 23.21631
hist(CC$Control_BECCS)

describe(CC$Control_DACCS)
## CC$Control_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       87    0.999     56.9     28.7     14.0     21.6 
##      .25      .50      .75      .90      .95 
##     40.0     57.0     75.0     90.4    100.0 
## 
## lowest :   0   1   8   9  10, highest:  94  95  97  99 100
sd(CC$Control_DACCS, na.rm = TRUE)
## [1] 25.17765
hist(CC$Control_DACCS)

describe(CC$Control_EW) 
## CC$Control_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       82    0.999    54.69     26.2     14.0     25.0 
##      .25      .50      .75      .90      .95 
##     39.0     55.0     71.0     85.6     92.0 
## 
## lowest :   0   9  10  12  13, highest:  92  94  95  99 100
sd(CC$Control_EW, na.rm = TRUE)
## [1] 23.03235
hist(CC$Control_EW) 

describe(CC$Control_OF)
## CC$Control_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       88        1    47.47    30.01      5.0     12.0 
##      .25      .50      .75      .90      .95 
##     27.5     47.0     67.5     82.0     91.0 
## 
## lowest :   0   1   2   3   4, highest:  94  95  98  99 100
sd(CC$Control_OF, na.rm = TRUE)
## [1] 26.10864
hist(CC$Control_OF)

describe(CC$Control_BF)
## CC$Control_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       65    0.996    77.06    21.54    36.70    50.70 
##      .25      .50      .75      .90      .95 
##    68.75    80.00    94.00   100.00   100.00 
## 
## lowest :   0   5  15  25  29, highest:  96  97  98  99 100
sd(CC$Control_BF, na.rm = TRUE)
## [1] 19.74781
hist(CC$Control_BF)

describe(CC$Control_NE)
## CC$Control_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       73    0.999    66.94    27.69       20       33 
##      .25      .50      .75      .90      .95 
##       51       71       86       98      100 
## 
## lowest :   0   5   7   9  10, highest:  95  96  98  99 100
sd(CC$Control_NE, na.rm = TRUE)
## [1] 24.68996
hist(CC$Control_NE)

describe(CC$Control_SE)
## CC$Control_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       67    0.992    76.01    25.42     28.4     39.4 
##      .25      .50      .75      .90      .95 
##     63.0     82.0     95.0    100.0    100.0 
## 
## lowest :   0   7   9  10  13, highest:  96  97  98  99 100
sd(CC$Control_SE, na.rm = TRUE)
## [1] 23.73107
hist(CC$Control_SE)

describe(CC$Control_WE)
## CC$Control_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       68    0.997    71.25    27.61     20.8     34.6 
##      .25      .50      .75      .90      .95 
##     58.0     79.0     90.0    100.0    100.0 
## 
## lowest :   0   4  10  12  15, highest:  96  97  98  99 100
sd(CC$Control_WE, na.rm = TRUE)
## [1] 25.13561
hist(CC$Control_WE)

ii. Score(s) & Scale(s)

# Note: Control scores & scales not present because measure is one item.)

f. Familiarity

# Familiarity was rated on a one item scale (0 = Strongly disagree to 100 = Strongly agree) and represented participant familiarity with the technology rated.

## 1. This is familiar.

i. Descriptives

#Define Variables
CC$Familiar_AFSCS <- CC$Risk_AFSCS_31
CC$Familiar_BIO <- CC$Risk_BIO_31
CC$Familiar_BECCS <- CC$Risk_BECCS_31
CC$Familiar_DACCS <- CC$Risk_DACCS_31
CC$Familiar_EW <- CC$Risk_EW_31
CC$Familiar_OF <- CC$Risk_OF_31
CC$Familiar_BF <- CC$Risk_BF_31
CC$Familiar_NE <- CC$Risk_NE_31
CC$Familiar_SE <- CC$Risk_SE_31
CC$Familiar_WE <- CC$Risk_WE_31

# Descriptives
describe(CC$Familiar_AFSCS)
## CC$Familiar_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       91    0.997     62.7    34.53        3       12 
##      .25      .50      .75      .90      .95 
##       42       67       89      100      100 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
sd(CC$Familiar_AFSCS, na.rm = TRUE)
## [1] 30.60777
hist(CC$Familiar_AFSCS)

describe(CC$Familiar_BIO)
## CC$Familiar_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       81    0.993    27.79    29.57     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     4.75    20.00    44.00    68.90    82.00 
## 
## lowest :   0   1   2   3   4, highest:  92  93  94  95 100
sd(CC$Familiar_BIO, na.rm = TRUE)
## [1] 27.00687
hist(CC$Familiar_BIO)

describe(CC$Familiar_BECCS)
## CC$Familiar_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       87    0.994    29.64    30.74     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     5.00    21.00    50.00    73.00    83.55 
## 
## lowest :   0   1   2   3   4, highest:  91  92  94  98 100
sd(CC$Familiar_BECCS, na.rm = TRUE)
## [1] 27.82
hist(CC$Familiar_BECCS)

describe(CC$Familiar_DACCS)
## CC$Familiar_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       82    0.992    26.05    27.55      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      4.5     20.0     42.0     65.0     75.0 
## 
## lowest :   0   1   2   3   4, highest:  89  90  93  99 100
sd(CC$Familiar_DACCS, na.rm = TRUE)
## [1] 25.08586
hist(CC$Familiar_DACCS)

describe(CC$Familiar_EW)
## CC$Familiar_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       76     0.98     22.5    25.19      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     17.0     35.5     60.0     70.0 
## 
## lowest :  0  1  2  3  4, highest: 79 80 87 90 91
sd(CC$Familiar_EW, na.rm = TRUE)
## [1] 23.20217
hist(CC$Familiar_EW)

describe(CC$Familiar_OF)
## CC$Familiar_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       76    0.992    25.62    27.66      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      4.0     18.0     40.5     62.8     76.0 
## 
## lowest :   0   1   2   3   4, highest:  85  86  87  89 100
sd(CC$Familiar_OF, na.rm = TRUE)
## [1] 25.34433
hist(CC$Familiar_OF)

describe(CC$Familiar_BF)
## CC$Familiar_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       87    0.999    57.92    32.61      0.0     18.0 
##      .25      .50      .75      .90      .95 
##     36.0     61.0     81.0     93.3    100.0 
## 
## lowest :   0   1   5   6   8, highest:  95  96  98  99 100
sd(CC$Familiar_BF, na.rm = TRUE)
## [1] 28.59492
hist(CC$Familiar_BF)

describe(CC$Familiar_NE)
## CC$Familiar_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       82    0.998    69.17     29.4     14.8     30.6 
##      .25      .50      .75      .90      .95 
##     53.0     75.0     90.0    100.0    100.0 
## 
## lowest :   0   2   3   4   6, highest:  95  97  98  99 100
sd(CC$Familiar_NE, na.rm = TRUE)
## [1] 26.59004
hist(CC$Familiar_NE)

describe(CC$Familiar_SE)
## CC$Familiar_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       49    0.941    87.95    15.68     52.2     65.2 
##      .25      .50      .75      .90      .95 
##     82.0     94.0    100.0    100.0    100.0 
## 
## lowest :   0  18  35  41  45, highest:  96  97  98  99 100
sd(CC$Familiar_SE, na.rm = TRUE)
## [1] 16.02333
hist(CC$Familiar_SE)

describe(CC$Familiar_WE)
## CC$Familiar_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       61    0.982    81.79     20.9     41.6     55.0 
##      .25      .50      .75      .90      .95 
##     75.0     87.0    100.0    100.0    100.0 
## 
## lowest :   0   1   3  13  19, highest:  96  97  98  99 100
sd(CC$Familiar_WE, na.rm = TRUE)
## [1] 20.79082
hist(CC$Familiar_WE)

ii. Score(s) & Scale(s)

# Note: Familiarity scores & scales not present because measure is one item.)

g. Ideology

i. Descriptives

ii. Score(s) & Scale(s)

#Political Orientation
##Which of the following best describes your political orientation? ( 1 = Strongly Conservative to 7 = Strongly Liberal)

library(dplyr)
describe(CC$PI_Orientation)
## CC$PI_Orientation 
##        n  missing distinct     Info     Mean      Gmd 
##     1007        0        7    0.966    4.807    2.078 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency     62   102    72   183   125   239   224
## Proportion 0.062 0.101 0.071 0.182 0.124 0.237 0.222
## 
## For the frequency table, variable is rounded to the nearest 0
CC$Orientation <- ifelse(CC$PI_Orientation == 1, 3,
                         ifelse(CC$PI_Orientation == 2, 2,
                                ifelse(CC$PI_Orientation == 3, 1,
                                       ifelse(CC$PI_Orientation == 4, 0,
                                              ifelse(CC$PI_Orientation == 5, -1,
                                                     ifelse(CC$PI_Orientation == 6, -2,
                                                            ifelse(CC$PI_Orientation == 7, -3, NA)))))))
describe(CC$Orientation)
## CC$Orientation 
##        n  missing distinct     Info     Mean      Gmd 
##     1007        0        7    0.966  -0.8073    2.078 
##                                                     
## Value         -3    -2    -1     0     1     2     3
## Frequency    224   239   125   183    72   102    62
## Proportion 0.222 0.237 0.124 0.182 0.071 0.101 0.062
## 
## For the frequency table, variable is rounded to the nearest 0
hist(CC$Orientation , main = 'Political Orientation (Liberal to Conservative)')

#Political Party Identification
##Generally speaking, do you usually think of yourself as a Republican, a Democrat, an Independent, or what? (1 = Republican, 2 = Democrat, 3 = Independent, 4 = Other (write-in), 5 = No Preference)

describe(CC$PP_Party)
## CC$PP_Party 
##        n  missing distinct     Info     Mean      Gmd 
##     1006        1        5    0.854    2.252   0.9154 
##                                         
## Value          1     2     3     4     5
## Frequency    176   497   272    25    36
## Proportion 0.175 0.494 0.270 0.025 0.036
## 
## For the frequency table, variable is rounded to the nearest 0
CC$Party <- as.numeric(as.character(CC$PP_Party))
CC$DemStrength <- as.numeric(as.character(CC$PP_DemStrength))
CC$RepStrength <- as.numeric(as.character(CC$PP_RepStrength))
CC$PartyClose <- as.numeric(as.character(CC$PP_CloserTo))

# Recode Party

CC$PartyFull <- NA
CC$PartyFull[CC$DemStrength == 1] <- -3
CC$PartyFull[CC$DemStrength == 2] <- -2
CC$PartyFull[CC$PartyClose == 1] <- -1
CC$PartyFull[CC$PartyClose == 3] <- 0
CC$PartyFull[CC$PartyClose == 2] <- 1
CC$PartyFull[CC$RepStrength == 2] <- 2
CC$PartyFull[CC$RepStrength == 1] <- 3

describe(CC$PartyFull)
## CC$PartyFull 
##        n  missing distinct     Info     Mean      Gmd 
##     1006        1        7    0.956  -0.9284    2.211 
##                                                     
## Value         -3    -2    -1     0     1     2     3
## Frequency    317   180   122   148    63    92    84
## Proportion 0.315 0.179 0.121 0.147 0.063 0.091 0.083
## 
## For the frequency table, variable is rounded to the nearest 0
hist(CC$PartyFull , main = 'Party Identification')

# Correlation between party and orientation 
 cor.test(CC$PartyFull, CC$Orientation)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$PartyFull and CC$Orientation
## t = 48.246, df = 1004, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8162098 0.8535616
## sample estimates:
##       cor 
## 0.8358505
#New Variable: Ideology
CC$Ideology <-  rowMeans(CC[, c('PartyFull', 'Orientation')], na.rm=T)
describe(CC$Ideology)
## CC$Ideology 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       13    0.987  -0.8684    2.067     -3.0     -3.0 
##      .25      .50      .75      .90      .95 
##     -2.5     -1.5      0.0      2.0      2.5 
##                                                                             
## Value       -3.0  -2.5  -2.0  -1.5  -1.0  -0.5   0.0   0.5   1.0   1.5   2.0
## Frequency    168   140   120   103    70    41   116    20    42    51    53
## Proportion 0.167 0.139 0.119 0.102 0.070 0.041 0.115 0.020 0.042 0.051 0.053
##                       
## Value        2.5   3.0
## Frequency     38    45
## Proportion 0.038 0.045
## 
## For the frequency table, variable is rounded to the nearest 0
hist(CC$Ideology)

h. Individualism/Collectivism

#Individualism and Collectivism Scale (Code adapted from J.Cole Collectivism Study)

#Individualism and collectivism were each measured with 4 items (for a total of 8 items) on a 1-7 scale of agreement (0 = 'Strongly disagree' to 100 = 'Strongly agree').

##Collectivism Items
###Individualism/Collectivism Item #3 (C): It is important to me to think of myself as a member of my religious, national, or ethnic group. 
###Individualism/Collectivism Item #4 (C): Learning about the traditions, values, and beliefs of my family is important to me.
###Individualism/Collectivism Item #7 (C): In the end, a person feels closest to members of their own religious, national, or ethnic group. 
###Individualism/Collectivism Item #8 (C): It is important to me to respect decisions made by my family.

##Individualism Items 
###Individualism/Collectivism Item #1 (I): It is important to me to develop my own personal style. 
###Individualism/Collectivism Item #2 (I): It is better for me to follow my own ideas than to follow those of anyone else.  
###Individualism/Collectivism Item #5 (I): I enjoy being unique and different from others in many respects. 
###Individualism/Collectivism Item #6 (I): My personal achievements and accomplishments are very important to who I am.

#Individualism (Items 1,2,5,6)
CC$Ind_1 <- as.numeric(as.character(CC$Individualism_54))
CC$Ind_2 <- as.numeric(as.character(CC$Individualism_55))
CC$Ind_5 <- as.numeric(as.character(CC$Individualism_58))
CC$Ind_6 <- as.numeric(as.character(CC$Individualism_59))
CC$Individualism_Score <- rowMeans(CC[, c('Ind_1', 'Ind_2', 'Ind_5','Ind_6')], na.rm=T)

#Collectivism (Items 3,4,7,8)
CC$Ind_3 <- as.numeric(as.character(CC$Individualism_56))
CC$Ind_4 <- as.numeric(as.character(CC$Individualism_57))
CC$Ind_7 <- as.numeric(as.character(CC$Individualism_60))
CC$Ind_8 <- as.numeric(as.character(CC$Individualism_69))
CC$Collectivism_Score <- rowMeans(CC[, c('Ind_3', 'Ind_4', 'Ind_7','Ind_8')], na.rm=T)

#Individualism Alpha and Histogram (4 items)
psych::alpha(data.frame(CC$Ind_1, CC$Ind_2, CC$Ind_5,CC$Ind_6))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Ind_1, CC$Ind_2, CC$Ind_5, CC$Ind_6))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.72      0.72    0.69       0.4 2.6 0.015   71 17     0.38
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.69  0.72  0.75
## Duhachek  0.69  0.72  0.75
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Ind_1      0.56      0.56    0.47      0.30 1.3    0.024 0.010  0.31
## CC.Ind_2      0.75      0.75    0.69      0.50 3.0    0.014 0.015  0.48
## CC.Ind_5      0.61      0.61    0.54      0.34 1.6    0.022 0.021  0.36
## CC.Ind_6      0.69      0.70    0.64      0.44 2.3    0.017 0.031  0.36
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## CC.Ind_1 1007  0.83  0.84  0.80   0.67   74 22
## CC.Ind_2 1007  0.64  0.63  0.41   0.35   67 23
## CC.Ind_5 1007  0.78  0.79  0.72   0.59   72 22
## CC.Ind_6 1007  0.70  0.70  0.53   0.45   70 23
hist(CC$Individualism_Score , main = 'Individualism Score')

#Collectivism Alpha and Histogram (4 items)
psych::alpha(data.frame(CC$Ind_3, CC$Ind_4, CC$Ind_7, CC$Ind_8))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Ind_3, CC$Ind_4, CC$Ind_7, CC$Ind_8))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.83      0.83     0.8      0.54 4.8 0.0089   54 24     0.56
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.81  0.83  0.84
## Duhachek  0.81  0.83  0.84
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CC.Ind_3      0.75      0.75    0.69      0.51 3.1    0.014 0.0156  0.44
## CC.Ind_4      0.76      0.76    0.69      0.52 3.2    0.013 0.0070  0.53
## CC.Ind_7      0.82      0.82    0.76      0.60 4.5    0.010 0.0037  0.62
## CC.Ind_8      0.79      0.79    0.73      0.55 3.7    0.011 0.0095  0.59
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## CC.Ind_3 1007  0.86  0.85  0.78   0.71   44 32
## CC.Ind_4 1007  0.83  0.84  0.77   0.69   62 29
## CC.Ind_7 1006  0.76  0.76  0.63   0.57   53 28
## CC.Ind_8 1007  0.80  0.80  0.71   0.64   58 28
hist(CC$Collectivism_Score , main = 'Collectivism Score')

#Cronbachs Alpha for Individualism and Collectivism scales
CC$IndScale <- data.frame(CC$Ind_1, CC$Ind_2, CC$Ind_5, CC$Ind_6)
psych::alpha(CC$IndScale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$IndScale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.72      0.72    0.69       0.4 2.6 0.015   71 17     0.38
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.69  0.72  0.75
## Duhachek  0.69  0.72  0.75
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Ind_1      0.56      0.56    0.47      0.30 1.3    0.024 0.010  0.31
## CC.Ind_2      0.75      0.75    0.69      0.50 3.0    0.014 0.015  0.48
## CC.Ind_5      0.61      0.61    0.54      0.34 1.6    0.022 0.021  0.36
## CC.Ind_6      0.69      0.70    0.64      0.44 2.3    0.017 0.031  0.36
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## CC.Ind_1 1007  0.83  0.84  0.80   0.67   74 22
## CC.Ind_2 1007  0.64  0.63  0.41   0.35   67 23
## CC.Ind_5 1007  0.78  0.79  0.72   0.59   72 22
## CC.Ind_6 1007  0.70  0.70  0.53   0.45   70 23
CC$CollScale <- data.frame(CC$Ind_3, CC$Ind_4, CC$Ind_7, CC$Ind_8)
psych::alpha(CC$CollScale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$CollScale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.83      0.83     0.8      0.54 4.8 0.0089   54 24     0.56
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.81  0.83  0.84
## Duhachek  0.81  0.83  0.84
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CC.Ind_3      0.75      0.75    0.69      0.51 3.1    0.014 0.0156  0.44
## CC.Ind_4      0.76      0.76    0.69      0.52 3.2    0.013 0.0070  0.53
## CC.Ind_7      0.82      0.82    0.76      0.60 4.5    0.010 0.0037  0.62
## CC.Ind_8      0.79      0.79    0.73      0.55 3.7    0.011 0.0095  0.59
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## CC.Ind_3 1007  0.86  0.85  0.78   0.71   44 32
## CC.Ind_4 1007  0.83  0.84  0.77   0.69   62 29
## CC.Ind_7 1006  0.76  0.76  0.63   0.57   53 28
## CC.Ind_8 1007  0.80  0.80  0.71   0.64   58 28

i. Naturalness

# Naturalness was rated on a four item scale (0 = Strongly disagree to 100 = Strongly agree)  and a mean score was calculated to represent naturalness perception of the technology rated.

## 1. This is natural
## 2. This involves humans altering naturally occurring processes (Reverse code)
## 3. This relies on science-based technology (Reverse code)
## 4. This is artificial (Reverse code)

i. Descriptives

#Define Variables
CC$Nat_1_AFSCS <- CC$Naturalness_AFSCS_30
CC$Nat_2R_AFSCS <- (100-CC$Naturalness_AFSCS_31)
CC$Nat_3R_AFSCS <- (100-CC$Naturalness_AFSCS_35)
CC$Nat_4R_AFSCS <- (100-CC$Naturalness_AFSCS_36)

CC$Nat_1_BIO <- CC$Naturalness_BIO_30
CC$Nat_2R_BIO <- (100-CC$Naturalness_BIO_31)
CC$Nat_3R_BIO <- (100-CC$Naturalness_BIO_35)
CC$Nat_4R_BIO <- (100-CC$Naturalness_BIO_36)

CC$Nat_1_BECCS <- CC$Naturalness_BECCS_30
CC$Nat_2R_BECCS <- (100-CC$Naturalness_BECCS_31)
CC$Nat_3R_BECCS <- (100-CC$Naturalness_BECCS_35)
CC$Nat_4R_BECCS <- (100-CC$Naturalness_BECCS_36)

CC$Nat_1_DACCS <- CC$Naturalness_DACCS_30
CC$Nat_2R_DACCS <- (100-CC$Naturalness_DACCS_31)
CC$Nat_3R_DACCS <- (100-CC$Naturalness_DACCS_35)
CC$Nat_4R_DACCS <- (100-CC$Naturalness_DACCS_36)

CC$Nat_1_EW <- CC$Naturalness_EW_30
CC$Nat_2R_EW <- (100-CC$Naturalness_EW_31)
CC$Nat_3R_EW <- (100-CC$Naturalness_EW_35)
CC$Nat_4R_EW <- (100-CC$Naturalness_EW_36)

CC$Nat_1_OF <- CC$Naturalness_OF_30
CC$Nat_2R_OF <- (100-CC$Naturalness_OF_31)
CC$Nat_3R_OF <- (100-CC$Naturalness_OF_35)
CC$Nat_4R_OF <- (100-CC$Naturalness_OF_36)

CC$Nat_1_BF <- CC$Naturalness_BF_30
CC$Nat_2R_BF <- (100-CC$Naturalness_BF_31)
CC$Nat_3R_BF <- (100-CC$Naturalness_BF_35)
CC$Nat_4R_BF <- (100-CC$Naturalness_BF_36)

CC$Nat_1_NE <- CC$Naturalness_NE_30
CC$Nat_2R_NE <- (100-CC$Naturalness_NE_31)
CC$Nat_3R_NE <- (100-CC$Naturalness_NE_35)
CC$Nat_4R_NE <- (100-CC$Naturalness_NE_36)

CC$Nat_1_SE <- CC$Naturalness_SE_30
CC$Nat_2R_SE <- (100-CC$Naturalness_SE_31)
CC$Nat_3R_SE <- (100-CC$Naturalness_SE_35)
CC$Nat_4R_SE <- (100-CC$Naturalness_SE_36)

CC$Nat_1_WE <- CC$Naturalness_WE_30
CC$Nat_2R_WE <- (100-CC$Naturalness_WE_31)
CC$Nat_3R_WE <- (100-CC$Naturalness_WE_35)
CC$Nat_4R_WE <- (100-CC$Naturalness_WE_36)

# Descriptives
describe(CC$Nat_1_AFSCS)
## CC$Nat_1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       77    0.991    74.92    27.28     19.1     37.0 
##      .25      .50      .75      .90      .95 
##     60.5     83.0     95.0    100.0    100.0 
## 
## lowest :   0   3   6   7  10, highest:  96  97  98  99 100
describe(CC$Nat_2R_AFSCS)
## CC$Nat_2R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       95    0.999    53.22    35.19      0.0     14.0 
##      .25      .50      .75      .90      .95 
##     30.0     50.0     82.5     97.8    100.0 
## 
## lowest :   0   2   4   5   6, highest:  96  97  98  99 100
describe(CC$Nat_3R_AFSCS)
## CC$Nat_3R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       89    0.999    39.48    33.58      0.0      2.2 
##      .25      .50      .75      .90      .95 
##     15.5     35.0     60.5     86.0     95.8 
## 
## lowest :   0   1   2   3   4, highest:  93  94  96  97 100
describe(CC$Nat_4R_AFSCS)
## CC$Nat_4R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       77     0.99    79.59     25.6     23.1     41.2 
##      .25      .50      .75      .90      .95 
##     67.0     91.0     99.0    100.0    100.0 
## 
## lowest :   0   4   6   7  12, highest:  96  97  98  99 100
describe(CC$Nat_1_BIO)
## CC$Nat_1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       91    0.999    45.61    31.02      0.0      6.1 
##      .25      .50      .75      .90      .95 
##     25.0     46.0     64.0     83.9     96.0 
## 
## lowest :   0   2   3   4   5, highest:  90  95  96  97 100
describe(CC$Nat_2R_BIO) 
## CC$Nat_2R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       77    0.999    37.07    27.62      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     20.0     35.0     49.0     72.7     85.0 
## 
## lowest :   0   2   3   5   6, highest:  93  95  96  98 100
describe(CC$Nat_3R_BIO)
## CC$Nat_3R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       69    0.993    23.95    23.47      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      6.0     20.5     35.0     49.9     70.0 
## 
## lowest :   0   1   2   3   5, highest:  87  88  95  97 100
describe(CC$Nat_4R_BIO) 
## CC$Nat_4R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       96    0.999    49.87    35.67      0.0      8.0 
##      .25      .50      .75      .90      .95 
##     25.0     49.0     78.0     95.9    100.0 
## 
## lowest :   0   1   4   5   6, highest:  95  96  97  99 100
describe(CC$Nat_1_BECCS) 
## CC$Nat_1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       89    0.999    43.48    29.31     0.00     6.90 
##      .25      .50      .75      .90      .95 
##    25.00    44.00    61.00    76.20    88.55 
## 
## lowest :   0   1   2   3   4, highest:  90  93  96  99 100
describe(CC$Nat_2R_BECCS) 
## CC$Nat_2R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       72    0.997    30.43    24.88     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    14.00    30.00    44.00    60.00    73.65 
## 
## lowest :   0   1   2   3   4, highest:  85  89  90  93 100
describe(CC$Nat_3R_BECCS) 
## CC$Nat_3R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       69    0.991    22.77    22.39     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     4.25    20.00    35.00    48.00    61.65 
## 
## lowest :   0   1   2   3   4, highest:  80  90  92  98 100
describe(CC$Nat_4R_BECCS)
## CC$Nat_4R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       89    0.999    41.83    31.45      0.0      6.0 
##      .25      .50      .75      .90      .95 
##     20.0     39.0     60.0     82.1     93.0 
## 
## lowest :   0   2   3   4   5, highest:  93  94  95  98 100
describe(CC$Nat_1_DACCS)
## CC$Nat_1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       82    0.996    29.22    27.38      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     25.0     41.0     63.4     81.7 
## 
## lowest :   0   1   3   4   5, highest:  94  95  97  98 100
describe(CC$Nat_2R_DACCS) 
## CC$Nat_2R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       78    0.995    27.79    26.85      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      9.0     23.0     39.0     66.8     78.7 
## 
## lowest :   0   1   2   3   4, highest:  87  90  91  99 100
describe(CC$Nat_3R_DACCS)
## CC$Nat_3R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       60    0.976    16.62    18.66      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     12.0     26.0     40.4     48.7 
## 
## lowest :   0   1   3   4   5, highest:  81  83  85  93 100
describe(CC$Nat_4R_DACCS)
## CC$Nat_4R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       79    0.995    28.49    27.02      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     23.0     41.5     63.0     82.0 
## 
## lowest :   0   1   3   4   5, highest:  88  89  95  98 100
describe(CC$Nat_1_EW)
## CC$Nat_1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       91    0.999    46.07    31.02      0.0      7.0 
##      .25      .50      .75      .90      .95 
##     25.5     50.0     67.0     81.0     89.0 
## 
## lowest :   0   2   3   4   5, highest:  91  92  95  98 100
describe(CC$Nat_2R_EW)
## CC$Nat_2R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       75    0.995    27.06    24.88      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      9.5     23.0     40.0     58.2     75.0 
## 
## lowest :   0   1   2   3   4, highest:  85  90  92  93 100
describe(CC$Nat_3R_EW)
## CC$Nat_3R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       70    0.994    25.62    23.99        0        0 
##      .25      .50      .75      .90      .95 
##        7       24       39       50       70 
## 
## lowest :   0   1   2   3   4, highest:  86  88  90  95 100
describe(CC$Nat_4R_EW)
## CC$Nat_4R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       84    0.999    44.61    31.96        0        7 
##      .25      .50      .75      .90      .95 
##       22       44       67       80       93 
## 
## lowest :   0   4   5   6   7, highest:  91  93  94  98 100
describe(CC$Nat_1_OF)
## CC$Nat_1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       82    0.999    40.43    31.15      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     18.0     39.0     59.5     78.4     86.7 
## 
## lowest :   0   2   4   5   6, highest:  88  90  92  93 100
describe(CC$Nat_2R_OF)
## CC$Nat_2R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       65    0.996    22.48    21.68      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      7.0     19.0     32.0     46.0     60.7 
## 
## lowest :   0   1   3   4   5, highest:  80  81  82  89 100
describe(CC$Nat_3R_OF)
## CC$Nat_3R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       66    0.996    25.66    23.54      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     23.0     36.0     56.0     66.7 
## 
## lowest :   0   1   2   3   4, highest:  79  80  90  91 100
describe(CC$Nat_4R_OF)
## CC$Nat_4R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       87    0.999    38.51    30.22      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     16.5     38.0     55.0     77.4     91.7 
## 
## lowest :   0   2   3   4   5, highest:  92  93  95  99 100
describe(CC$Nat_1_BF)
## CC$Nat_1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       88    0.999    52.38    31.87     2.00    12.40 
##      .25      .50      .75      .90      .95 
##    34.00    51.00    75.00    90.60    99.65 
## 
## lowest :   0   1   2   3   4, highest:  95  97  98  99 100
describe(CC$Nat_2R_BF)
## CC$Nat_2R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       79    0.998    38.07    30.26     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    20.00    35.00    54.00    79.30    90.65 
## 
## lowest :   0   2   3   4   5, highest:  90  91  95  99 100
describe(CC$Nat_3R_BF)
## CC$Nat_3R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       59    0.988    17.91    18.34     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     2.00    15.00    28.00    39.00    46.65 
## 
## lowest :  0  1  2  3  4, highest: 68 75 77 81 85
describe(CC$Nat_4R_BF)
## CC$Nat_4R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       84    0.999    48.67    33.41     1.35    10.00 
##      .25      .50      .75      .90      .95 
##    26.00    49.00    73.25    90.30    98.65 
## 
## lowest :   0   1   2   4   5, highest:  95  96  98  99 100
describe(CC$Nat_1_NE)
## CC$Nat_1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       80    0.995       31    28.97      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      9.0     27.0     49.0     68.2     80.4 
## 
## lowest :   0   1   2   3   4, highest:  89  90  93  95 100
describe(CC$Nat_2R_NE)
## CC$Nat_2R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       72    0.994    29.96    30.59      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      7.0     23.0     43.0     77.6     95.0 
## 
## lowest :   0   2   3   4   5, highest:  94  95  98  99 100
describe(CC$Nat_3R_NE)
## CC$Nat_3R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       48    0.931    11.18    14.75        0        0 
##      .25      .50      .75      .90      .95 
##        0        6       17       33       43 
## 
## lowest :   0   1   2   3   4, highest:  49  50  64  92 100
describe(CC$Nat_4R_NE)
## CC$Nat_4R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       78    0.996    32.51    30.64      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     27.0     48.0     77.4     90.0 
## 
## lowest :   0   4   5   6   7, highest:  92  95  96  99 100
describe(CC$Nat_1_SE)
## CC$Nat_1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       75    0.991    72.97    29.25     10.2     30.4 
##      .25      .50      .75      .90      .95 
##     60.0     80.0     95.0    100.0    100.0 
## 
## lowest :   0   1   4   6  10, highest:  95  97  98  99 100
describe(CC$Nat_2R_SE)
## CC$Nat_2R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       77    0.989    66.22    35.98      6.2     18.4 
##      .25      .50      .75      .90      .95 
##     38.0     78.0     96.0    100.0    100.0 
## 
## lowest :   0   1   5   6   7, highest:  96  97  98  99 100
describe(CC$Nat_3R_SE)
## CC$Nat_3R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       52    0.964     14.8    18.23        0        0 
##      .25      .50      .75      .90      .95 
##        0       10       22       39       50 
## 
## lowest :  0  1  2  3  4, highest: 70 71 76 80 93
describe(CC$Nat_4R_SE)
## CC$Nat_4R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       76    0.997     66.2    33.02     11.0     22.2 
##      .25      .50      .75      .90      .95 
##     47.0     74.0     92.0    100.0    100.0 
## 
## lowest :   0   5   7   8  11, highest:  96  97  98  99 100
describe(CC$Nat_1_WE)
## CC$Nat_1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       78    0.993       70    30.85      9.8     21.6 
##      .25      .50      .75      .90      .95 
##     57.0     78.0     92.0    100.0    100.0 
## 
## lowest :   0   1   4   5   6, highest:  96  97  98  99 100
describe(CC$Nat_2R_WE)
## CC$Nat_2R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       83    0.991    63.74    35.55       10       20 
##      .25      .50      .75      .90      .95 
##       38       72       93      100      100 
## 
## lowest :   0   1   5   8  10, highest:  96  97  98  99 100
describe(CC$Nat_3R_WE)
## CC$Nat_3R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       63    0.987    20.75    22.27      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      2.0     17.0     30.0     47.0     65.8 
## 
## lowest :   0   1   2   3   4, highest:  85  88  90  94 100
describe(CC$Nat_4R_WE)
## CC$Nat_4R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       78    0.997    62.96    35.06      4.8     14.2 
##      .25      .50      .75      .90      .95 
##     42.0     68.0     90.0    100.0    100.0 
## 
## lowest :   0   3   4   5   6, highest:  96  97  98  99 100
sd(CC$Nat_1_AFSCS, na.rm = TRUE)
## [1] 25.49721
sd(CC$Nat_2R_AFSCS, na.rm = TRUE)
## [1] 30.55137
sd(CC$Nat_3R_AFSCS, na.rm = TRUE)
## [1] 29.60784
sd(CC$Nat_4R_AFSCS, na.rm = TRUE)
## [1] 25.03207
sd(CC$Nat_1_BIO, na.rm = TRUE)
## [1] 27.09083
sd(CC$Nat_2R_BIO, na.rm = TRUE)
## [1] 24.56568
sd(CC$Nat_3R_BIO, na.rm = TRUE)
## [1] 21.92187
sd(CC$Nat_4R_BIO, na.rm = TRUE) 
## [1] 30.9548
sd(CC$Nat_1_BECCS, na.rm = TRUE) 
## [1] 25.65509
sd(CC$Nat_2R_BECCS, na.rm = TRUE) 
## [1] 22.39619
sd(CC$Nat_3R_BECCS, na.rm = TRUE) 
## [1] 20.56689
sd(CC$Nat_4R_BECCS, na.rm = TRUE)
## [1] 27.55096
sd(CC$Nat_1_DACCS, na.rm = TRUE)
## [1] 24.84149
sd(CC$Nat_2R_DACCS, na.rm = TRUE) 
## [1] 24.88956
sd(CC$Nat_3R_DACCS, na.rm = TRUE)
## [1] 17.79345
sd(CC$Nat_4R_DACCS)
## [1] NA
sd(CC$Nat_1_EW, na.rm = TRUE)
## [1] 26.98155
sd(CC$Nat_2R_EW, na.rm = TRUE)
## [1] 22.69374
sd(CC$Nat_3R_EW, na.rm = TRUE)
## [1] 21.89062
sd(CC$Nat_4R_EW, na.rm = TRUE)
## [1] 27.74477
sd(CC$Nat_1_OF, na.rm = TRUE)
## [1] 27.14107
sd(CC$Nat_2R_OF, na.rm = TRUE)
## [1] 20.49896
sd(CC$Nat_3R_OF, na.rm = TRUE)
## [1] 21.76612
sd(CC$Nat_4R_OF, na.rm = TRUE)
## [1] 26.69147
sd(CC$Nat_1_BF, na.rm = TRUE)
## [1] 27.74057
sd(CC$Nat_2R_BF, na.rm = TRUE)
## [1] 26.80887
sd(CC$Nat_3R_BF, na.rm = TRUE)
## [1] 17.00108
sd(CC$Nat_4R_BF, na.rm = TRUE)
## [1] 28.97902
sd(CC$Nat_1_NE, na.rm = TRUE)
## [1] 25.86564
sd(CC$Nat_2R_NE, na.rm = TRUE)
## [1] 28.30164
sd(CC$Nat_3R_NE, na.rm = TRUE)
## [1] 15.3576
sd(CC$Nat_4R_NE, na.rm = TRUE)
## [1] 27.60394
sd(CC$Nat_1_SE, na.rm = TRUE)
## [1] 27.34702
sd(CC$Nat_2R_SE, na.rm = TRUE)
## [1] 32.18289
sd(CC$Nat_3R_SE, na.rm = TRUE)
## [1] 18.00439
sd(CC$Nat_4R_SE, na.rm = TRUE)
## [1] 29.35406
sd(CC$Nat_1_WE, na.rm = TRUE)
## [1] 28.31885
sd(CC$Nat_2R_WE, na.rm = TRUE)
## [1] 31.29357
sd(CC$Nat_3R_WE, na.rm = TRUE)
## [1] 21.1787
sd(CC$Nat_4R_WE, na.rm = TRUE)
## [1] 30.8923
hist(CC$Nat_1_AFSCS)

hist(CC$Nat_2R_AFSCS)

hist(CC$Nat_3R_AFSCS)

hist(CC$Nat_4R_AFSCS)

hist(CC$Nat_1_BIO)

hist(CC$Nat_2R_BIO) 

hist(CC$Nat_3R_BIO)

hist(CC$Nat_4R_BIO) 

hist(CC$Nat_1_BECCS) 

hist(CC$Nat_2R_BECCS) 

hist(CC$Nat_3R_BECCS) 

hist(CC$Nat_4R_BECCS)

hist(CC$Nat_1_DACCS)

hist(CC$Nat_2R_DACCS) 

hist(CC$Nat_3R_DACCS)

hist(CC$Nat_4R_DACCS)

hist(CC$Nat_1_EW)

hist(CC$Nat_2R_EW)

hist(CC$Nat_3R_EW)

hist(CC$Nat_4R_EW)

hist(CC$Nat_1_OF)

hist(CC$Nat_2R_OF)

hist(CC$Nat_3R_OF)

hist(CC$Nat_4R_OF)

hist(CC$Nat_1_BF)

hist(CC$Nat_2R_BF)

hist(CC$Nat_3R_BF)

hist(CC$Nat_4R_BF)

hist(CC$Nat_1_NE)

hist(CC$Nat_2R_NE)

hist(CC$Nat_3R_NE)

hist(CC$Nat_4R_NE)

hist(CC$Nat_1_SE)

hist(CC$Nat_2R_SE)

hist(CC$Nat_3R_SE)

hist(CC$Nat_4R_SE)

hist(CC$Nat_1_WE)

hist(CC$Nat_2R_WE)

hist(CC$Nat_3R_WE)

hist(CC$Nat_4R_WE)

ii. Score(s) & Scale(s)

# Scores & Scales
CC$Nat_Score_AFSCS <- rowMeans(CC [, c("Nat_1_AFSCS", "Nat_2R_AFSCS", "Nat_3R_AFSCS", "Nat_4R_AFSCS")], na.rm=TRUE)
CC$Nat_Scale_AFSCS <- data.frame(CC$Nat_1_AFSCS, CC$Nat_2R_AFSCS, CC$Nat_3R_AFSCS, CC$Nat_4R_AFSCS)

CC$Nat_Score_BIO <- rowMeans(CC [, c("Nat_1_BIO", "Nat_2R_BIO", "Nat_3R_BIO", "Nat_4R_BIO")], na.rm=TRUE)
CC$Nat_Scale_BIO <- data.frame(CC$Nat_1_BIO, CC$Nat_2R_BIO, CC$Nat_3R_BIO, CC$Nat_4R_BIO)

CC$Nat_Score_BECCS <- rowMeans(CC [, c("Nat_1_BECCS", "Nat_2R_BECCS", "Nat_3R_BECCS", "Nat_4R_BECCS")], na.rm=TRUE)
CC$Nat_Scale_BECCS <- data.frame(CC$Nat_1_BECCS, CC$Nat_2R_BECCS, CC$Nat_3R_BECCS, CC$Nat_4R_BECCS)

CC$Nat_Score_DACCS <- rowMeans(CC [, c("Nat_1_DACCS", "Nat_2R_DACCS", "Nat_3R_DACCS", "Nat_4R_DACCS")], na.rm=TRUE)
CC$Nat_Scale_DACCS <- data.frame(CC$Nat_1_DACCS, CC$Nat_2R_DACCS, CC$Nat_3R_DACCS, CC$Nat_4R_DACCS)

CC$Nat_Score_EW <- rowMeans(CC [, c("Nat_1_EW", "Nat_2R_EW", "Nat_3R_EW", "Nat_4R_EW")], na.rm=TRUE)
CC$Nat_Scale_EW <- data.frame(CC$Nat_1_EW, CC$Nat_2R_EW, CC$Nat_3R_EW, CC$Nat_4R_EW)

CC$Nat_Score_OF <- rowMeans(CC [, c("Nat_1_OF", "Nat_2R_OF", "Nat_3R_OF", "Nat_4R_OF")], na.rm=TRUE)
CC$Nat_Scale_OF <- data.frame(CC$Nat_1_OF, CC$Nat_2R_OF, CC$Nat_3R_OF, CC$Nat_4R_OF)

CC$Nat_Score_BF <- rowMeans(CC [, c("Nat_1_BF", "Nat_2R_BF", "Nat_3R_BF", "Nat_4R_BF")], na.rm=TRUE)
CC$Nat_Scale_BF <- data.frame(CC$Nat_1_BF, CC$Nat_2R_BF, CC$Nat_3R_BF, CC$Nat_4R_BF)

CC$Nat_Score_NE <- rowMeans(CC [, c("Nat_1_NE", "Nat_2R_NE", "Nat_3R_NE", "Nat_4R_NE")], na.rm=TRUE)
CC$Nat_Scale_NE <- data.frame(CC$Nat_1_NE, CC$Nat_2R_NE, CC$Nat_3R_NE, CC$Nat_4R_NE)

CC$Nat_Score_SE <- rowMeans(CC [, c("Nat_1_SE", "Nat_2R_SE", "Nat_3R_SE", "Nat_4R_SE")], na.rm=TRUE)
CC$Nat_Scale_SE <- data.frame(CC$Nat_1_SE, CC$Nat_2R_SE, CC$Nat_3R_SE, CC$Nat_4R_SE)

CC$Nat_Score_WE <- rowMeans(CC [, c("Nat_1_WE", "Nat_2R_WE", "Nat_3R_WE", "Nat_4R_WE")], na.rm=TRUE)
CC$Nat_Scale_WE <- data.frame(CC$Nat_1_WE, CC$Nat_2R_WE, CC$Nat_3R_WE, CC$Nat_4R_WE)

# Describe Scores/Scales 
describe(CC$Nat_Score_AFSCS)
## CC$Nat_Score_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664      195        1     61.8    22.29    26.65    36.55 
##      .25      .50      .75      .90      .95 
##    48.88    63.25    74.88    87.20    94.90 
## 
## lowest : 0     7     8     11    11.75, highest: 98    98.75 99.5  99.75 100
describe(CC$Nat_Scale_AFSCS)
## CC$Nat_Scale_AFSCS 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       77    0.991    74.92    27.28     19.1     37.0 
##      .25      .50      .75      .90      .95 
##     60.5     83.0     95.0    100.0    100.0 
## 
## lowest :   0   3   6   7  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       95    0.999    53.22    35.19      0.0     14.0 
##      .25      .50      .75      .90      .95 
##     30.0     50.0     82.5     97.8    100.0 
## 
## lowest :   0   2   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       89    0.999    39.48    33.58      0.0      2.2 
##      .25      .50      .75      .90      .95 
##     15.5     35.0     60.5     86.0     95.8 
## 
## lowest :   0   1   2   3   4, highest:  93  94  96  97 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       77     0.99    79.59     25.6     23.1     41.2 
##      .25      .50      .75      .90      .95 
##     67.0     91.0     99.0    100.0    100.0 
## 
## lowest :   0   4   6   7  12, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_AFSCS, na.rm = TRUE)
## [1] 19.74064
describe(CC$Nat_Score_BIO)
## CC$Nat_Score_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675      182        1    39.12    20.95     5.75    13.50 
##      .25      .50      .75      .90      .95 
##    26.88    39.25    51.06    63.25    68.75 
## 
## lowest : 0     0.75  1.75  2.5   2.75 , highest: 76.75 78    87.25 96.5  97.5
describe(CC$Nat_Scale_BIO)
## CC$Nat_Scale_BIO 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       91    0.999    45.61    31.02      0.0      6.1 
##      .25      .50      .75      .90      .95 
##     25.0     46.0     64.0     83.9     96.0 
## 
## lowest :   0   2   3   4   5, highest:  90  95  96  97 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       77    0.999    37.07    27.62      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     20.0     35.0     49.0     72.7     85.0 
## 
## lowest :   0   2   3   5   6, highest:  93  95  96  98 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       69    0.993    23.95    23.47      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      6.0     20.5     35.0     49.9     70.0 
## 
## lowest :   0   1   2   3   5, highest:  87  88  95  97 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       96    0.999    49.87    35.67      0.0      8.0 
##      .25      .50      .75      .90      .95 
##     25.0     49.0     78.0     95.9    100.0 
## 
## lowest :   0   1   4   5   6, highest:  95  96  97  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_BIO, na.rm = TRUE)
## [1] 18.56122
describe(CC$Nat_Score_BECCS)
## CC$Nat_Score_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677      178        1    34.63    18.88     6.25    12.22 
##      .25      .50      .75      .90      .95 
##    24.50    33.75    45.94    54.33    61.39 
## 
## lowest : 0     2.25  2.5   3     4.5  , highest: 75    76.25 77.5  78.75 79
describe(CC$Nat_Scale_BECCS)
## CC$Nat_Scale_BECCS 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       89    0.999    43.48    29.31     0.00     6.90 
##      .25      .50      .75      .90      .95 
##    25.00    44.00    61.00    76.20    88.55 
## 
## lowest :   0   1   2   3   4, highest:  90  93  96  99 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       72    0.997    30.43    24.88     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    14.00    30.00    44.00    60.00    73.65 
## 
## lowest :   0   1   2   3   4, highest:  85  89  90  93 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       69    0.991    22.77    22.39     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     4.25    20.00    35.00    48.00    61.65 
## 
## lowest :   0   1   2   3   4, highest:  80  90  92  98 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       89    0.999    41.83    31.45      0.0      6.0 
##      .25      .50      .75      .90      .95 
##     20.0     39.0     60.0     82.1     93.0 
## 
## lowest :   0   2   3   4   5, highest:  93  94  95  98 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_BECCS, na.rm = TRUE)
## [1] 16.65608
describe(CC$Nat_Score_DACCS)
## CC$Nat_Score_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660      156    0.999    25.53    18.95     0.00     2.50 
##      .25      .50      .75      .90      .95 
##    13.12    24.75    35.75    45.85    56.60 
## 
## lowest : 0     0.25  0.5   2.5   3.5  , highest: 70.5  70.75 75    75.25 79.25
describe(CC$Nat_Scale_DACCS)
## CC$Nat_Scale_DACCS 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       82    0.996    29.22    27.38      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     25.0     41.0     63.4     81.7 
## 
## lowest :   0   1   3   4   5, highest:  94  95  97  98 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       78    0.995    27.79    26.85      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      9.0     23.0     39.0     66.8     78.7 
## 
## lowest :   0   1   2   3   4, highest:  87  90  91  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       60    0.976    16.62    18.66      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     12.0     26.0     40.4     48.7 
## 
## lowest :   0   1   3   4   5, highest:  81  83  85  93 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       79    0.995    28.49    27.02      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     23.0     41.5     63.0     82.0 
## 
## lowest :   0   1   3   4   5, highest:  88  89  95  98 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_DACCS, na.rm = TRUE)
## [1] 16.89449
describe(CC$Nat_Score_EW)
## CC$Nat_Score_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672      187        1    35.84    20.57    5.425   13.000 
##      .25      .50      .75      .90      .95 
##   22.500   36.000   49.125   57.750   65.550 
## 
## lowest : 0     0.5   0.75  2.25  2.5  , highest: 75    76.75 78.5  78.75 87.5
describe(CC$Nat_Scale_EW)
## CC$Nat_Scale_EW 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       91    0.999    46.07    31.02      0.0      7.0 
##      .25      .50      .75      .90      .95 
##     25.5     50.0     67.0     81.0     89.0 
## 
## lowest :   0   2   3   4   5, highest:  91  92  95  98 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       75    0.995    27.06    24.88      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      9.5     23.0     40.0     58.2     75.0 
## 
## lowest :   0   1   2   3   4, highest:  85  90  92  93 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       70    0.994    25.62    23.99        0        0 
##      .25      .50      .75      .90      .95 
##        7       24       39       50       70 
## 
## lowest :   0   1   2   3   4, highest:  86  88  90  95 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       84    0.999    44.61    31.96        0        7 
##      .25      .50      .75      .90      .95 
##       22       44       67       80       93 
## 
## lowest :   0   4   5   6   7, highest:  91  93  94  98 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_EW, na.rm = TRUE)
## [1] 18.08834
describe(CC$Nat_Score_OF)
## CC$Nat_Score_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680      166        1    31.77    19.83     4.05     8.50 
##      .25      .50      .75      .90      .95 
##    20.00    31.25    42.50    54.35    61.00 
## 
## lowest : 0     0.25  1.25  2.5   3    , highest: 73.5  75    80.25 80.5  84.5
describe(CC$Nat_Scale_OF)
## CC$Nat_Scale_OF 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       82    0.999    40.43    31.15      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     18.0     39.0     59.5     78.4     86.7 
## 
## lowest :   0   2   4   5   6, highest:  88  90  92  93 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       65    0.996    22.48    21.68      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      7.0     19.0     32.0     46.0     60.7 
## 
## lowest :   0   1   3   4   5, highest:  80  81  82  89 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       66    0.996    25.66    23.54      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     23.0     36.0     56.0     66.7 
## 
## lowest :   0   1   2   3   4, highest:  79  80  90  91 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       87    0.999    38.51    30.22      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     16.5     38.0     55.0     77.4     91.7 
## 
## lowest :   0   2   3   4   5, highest:  92  93  95  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_OF, na.rm = TRUE)
## [1] 17.48905
describe(CC$Nat_Score_BF)
## CC$Nat_Score_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759      147        1    39.26    20.21    8.088   14.450 
##      .25      .50      .75      .90      .95 
##   26.688   39.250   50.062   60.725   70.075 
## 
## lowest : 0     0.25  1     1.5   2    , highest: 72.5  73    74.25 75    86.75
describe(CC$Nat_Scale_BF)
## CC$Nat_Scale_BF 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       88    0.999    52.38    31.87     2.00    12.40 
##      .25      .50      .75      .90      .95 
##    34.00    51.00    75.00    90.60    99.65 
## 
## lowest :   0   1   2   3   4, highest:  95  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       79    0.998    38.07    30.26     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    20.00    35.00    54.00    79.30    90.65 
## 
## lowest :   0   2   3   4   5, highest:  90  91  95  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       59    0.988    17.91    18.34     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     2.00    15.00    28.00    39.00    46.65 
## 
## lowest :  0  1  2  3  4, highest: 68 75 77 81 85
## --------------------------------------------------------------------------------
## CC.Nat_4R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       84    0.999    48.67    33.41     1.35    10.00 
##      .25      .50      .75      .90      .95 
##    26.00    49.00    73.25    90.30    98.65 
## 
## lowest :   0   1   2   4   5, highest:  95  96  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_BF, na.rm = TRUE)
## [1] 17.80321
describe(CC$Nat_Score_NE)
## CC$Nat_Score_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      139    0.999    26.16    19.39     0.00     2.30 
##      .25      .50      .75      .90      .95 
##    13.50    25.00    38.25    48.25    55.60 
## 
## lowest : 0     1.25  1.5   2     2.5  , highest: 60.5  63.75 65    69.75 75
describe(CC$Nat_Scale_NE)
## CC$Nat_Scale_NE 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       80    0.995       31    28.97      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      9.0     27.0     49.0     68.2     80.4 
## 
## lowest :   0   1   2   3   4, highest:  89  90  93  95 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       72    0.994    29.96    30.59      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      7.0     23.0     43.0     77.6     95.0 
## 
## lowest :   0   2   3   4   5, highest:  94  95  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       48    0.931    11.18    14.75        0        0 
##      .25      .50      .75      .90      .95 
##        0        6       17       33       43 
## 
## lowest :   0   1   2   3   4, highest:  49  50  64  92 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       78    0.996    32.51    30.64      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     27.0     48.0     77.4     90.0 
## 
## lowest :   0   4   5   6   7, highest:  92  95  96  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_NE, na.rm = TRUE)
## [1] 17.14904
describe(CC$Nat_Score_SE)
## CC$Nat_Score_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762      143        1    55.05    20.62    24.40    31.25 
##      .25      .50      .75      .90      .95 
##    41.75    54.75    69.75    75.00    83.20 
## 
## lowest : 0     2     5.5   14.5  16   , highest: 87.25 87.5  90    92    94
describe(CC$Nat_Scale_SE)
## CC$Nat_Scale_SE 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       75    0.991    72.97    29.25     10.2     30.4 
##      .25      .50      .75      .90      .95 
##     60.0     80.0     95.0    100.0    100.0 
## 
## lowest :   0   1   4   6  10, highest:  95  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       77    0.989    66.22    35.98      6.2     18.4 
##      .25      .50      .75      .90      .95 
##     38.0     78.0     96.0    100.0    100.0 
## 
## lowest :   0   1   5   6   7, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       52    0.964     14.8    18.23        0        0 
##      .25      .50      .75      .90      .95 
##        0       10       22       39       50 
## 
## lowest :  0  1  2  3  4, highest: 70 71 76 80 93
## --------------------------------------------------------------------------------
## CC.Nat_4R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       76    0.997     66.2    33.02     11.0     22.2 
##      .25      .50      .75      .90      .95 
##     47.0     74.0     92.0    100.0    100.0 
## 
## lowest :   0   5   7   8  11, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_SE, na.rm = TRUE)
## [1] 18.17609
describe(CC$Nat_Score_WE)
## CC$Nat_Score_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      146        1    54.36    21.33    21.80    25.75 
##      .25      .50      .75      .90      .95 
##    42.50    55.00    69.50    75.00    80.30 
## 
## lowest : 0     6     7.75  15    15.5 , highest: 86.75 90.5  91.5  92    100
describe(CC$Nat_Scale_WE)
## CC$Nat_Scale_WE 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       78    0.993       70    30.85      9.8     21.6 
##      .25      .50      .75      .90      .95 
##     57.0     78.0     92.0    100.0    100.0 
## 
## lowest :   0   1   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       83    0.991    63.74    35.55       10       20 
##      .25      .50      .75      .90      .95 
##       38       72       93      100      100 
## 
## lowest :   0   1   5   8  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       63    0.987    20.75    22.27      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      2.0     17.0     30.0     47.0     65.8 
## 
## lowest :   0   1   2   3   4, highest:  85  88  90  94 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       78    0.997    62.96    35.06      4.8     14.2 
##      .25      .50      .75      .90      .95 
##     42.0     68.0     90.0    100.0    100.0 
## 
## lowest :   0   3   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_WE, na.rm = TRUE)
## [1] 18.78237
#Cronbach's alpha for risk scale
psych::alpha(data.frame(CC$Nat_1_AFSCS, CC$Nat_2R_AFSCS, CC$Nat_3R_AFSCS, CC$Nat_4R_AFSCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_AFSCS, CC$Nat_2R_AFSCS, 
##     CC$Nat_3R_AFSCS, CC$Nat_4R_AFSCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.67      0.69    0.66      0.35 2.2 0.017   62 20     0.34
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.64  0.67  0.71
## Duhachek  0.64  0.67  0.71
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CC.Nat_1_AFSCS       0.58      0.59    0.53      0.33 1.5    0.023 0.0318  0.22
## CC.Nat_2R_AFSCS      0.54      0.57    0.54      0.30 1.3    0.026 0.0697  0.22
## CC.Nat_3R_AFSCS      0.76      0.77    0.70      0.53 3.3    0.013 0.0053  0.53
## CC.Nat_4R_AFSCS      0.50      0.51    0.45      0.25 1.0    0.027 0.0337  0.22
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_AFSCS  343  0.72  0.75  0.65   0.50   75 25
## CC.Nat_2R_AFSCS 343  0.79  0.77  0.66   0.54   53 31
## CC.Nat_3R_AFSCS 343  0.56  0.53  0.26   0.22   39 30
## CC.Nat_4R_AFSCS 343  0.80  0.82  0.77   0.63   80 25
hist(CC$Nat_Score_AFSCS, main = 'AFSCS Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_BIO, CC$Nat_2R_BIO, CC$Nat_3R_BIO, CC$Nat_4R_BIO))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_BIO, CC$Nat_2R_BIO, CC$Nat_3R_BIO, 
##     CC$Nat_4R_BIO))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.66      0.64    0.64      0.31 1.8 0.016   39 19     0.31
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.63  0.66  0.69
## Duhachek  0.63  0.66  0.69
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_BIO       0.51      0.51    0.43      0.25 1.03    0.025 0.017  0.24
## CC.Nat_2R_BIO      0.61      0.58    0.58      0.31 1.37    0.020 0.090  0.24
## CC.Nat_3R_BIO      0.73      0.73    0.67      0.48 2.72    0.014 0.021  0.39
## CC.Nat_4R_BIO      0.43      0.42    0.36      0.20 0.73    0.030 0.030  0.14
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_BIO  332  0.78  0.75  0.70   0.55   46 27
## CC.Nat_2R_BIO 332  0.68  0.69  0.50   0.43   37 25
## CC.Nat_3R_BIO 332  0.46  0.52  0.23   0.18   24 22
## CC.Nat_4R_BIO 332  0.85  0.82  0.79   0.64   50 31
hist(CC$Nat_Score_BIO, main = 'BIO Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_BECCS, CC$Nat_2R_BECCS, CC$Nat_3R_BECCS, CC$Nat_4R_BECCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_BECCS, CC$Nat_2R_BECCS, 
##     CC$Nat_3R_BECCS, CC$Nat_4R_BECCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.63      0.61    0.62      0.28 1.6 0.018   35 17     0.25
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.59  0.63  0.67
## Duhachek  0.59  0.63  0.67
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_BECCS       0.44      0.44    0.38      0.21 0.79    0.030 0.027 0.195
## CC.Nat_2R_BECCS      0.56      0.52    0.56      0.26 1.07    0.023 0.138 0.052
## CC.Nat_3R_BECCS      0.73      0.72    0.68      0.46 2.58    0.014 0.041 0.380
## CC.Nat_4R_BECCS      0.41      0.41    0.34      0.19 0.68    0.032 0.018 0.195
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_BECCS  330  0.79  0.76  0.72   0.55   43 26
## CC.Nat_2R_BECCS 330  0.67  0.70  0.50   0.42   30 22
## CC.Nat_3R_BECCS 330  0.41  0.48  0.16   0.11   23 21
## CC.Nat_4R_BECCS 330  0.82  0.78  0.76   0.59   42 28
hist(CC$Nat_Score_BECCS, main = 'BECCS Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_DACCS, CC$Nat_2R_DACCS, CC$Nat_3R_DACCS, CC$Nat_4R_DACCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_DACCS, CC$Nat_2R_DACCS, 
##     CC$Nat_3R_DACCS, CC$Nat_4R_DACCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.7      0.69    0.67      0.35 2.2 0.015   26 17     0.33
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.67   0.7  0.73
## Duhachek  0.67   0.7  0.73
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Nat_1_DACCS       0.54      0.53    0.45      0.27 1.1    0.024 0.014  0.25
## CC.Nat_2R_DACCS      0.67      0.65    0.63      0.38 1.8    0.017 0.076  0.25
## CC.Nat_3R_DACCS      0.75      0.75    0.70      0.50 3.0    0.014 0.028  0.41
## CC.Nat_4R_DACCS      0.52      0.51    0.43      0.25 1.0    0.025 0.019  0.19
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_DACCS  347  0.82  0.80  0.77   0.63   29 25
## CC.Nat_2R_DACCS 347  0.71  0.69  0.50   0.44   28 25
## CC.Nat_3R_DACCS 347  0.49  0.56  0.29   0.25   17 18
## CC.Nat_4R_DACCS 347  0.84  0.82  0.79   0.65   28 25
hist(CC$Nat_Score_DACCS, main = 'DACCS Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_EW, CC$Nat_2R_EW, CC$Nat_3R_EW, CC$Nat_4R_EW))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_EW, CC$Nat_2R_EW, CC$Nat_3R_EW, 
##     CC$Nat_4R_EW))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.7      0.68     0.7      0.35 2.2 0.015   36 18     0.31
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.67   0.7  0.73
## Duhachek  0.67   0.7  0.73
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_EW       0.57      0.57    0.50      0.30 1.31    0.023 0.033  0.21
## CC.Nat_2R_EW      0.62      0.59    0.64      0.32 1.43    0.020 0.140  0.19
## CC.Nat_3R_EW      0.79      0.79    0.75      0.56 3.75    0.011 0.030  0.51
## CC.Nat_4R_EW      0.46      0.46    0.40      0.22 0.84    0.029 0.034  0.21
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_EW  335  0.80  0.76  0.73   0.58   46 27
## CC.Nat_2R_EW 335  0.73  0.74  0.59   0.51   27 23
## CC.Nat_3R_EW 335  0.45  0.50  0.21   0.17   26 22
## CC.Nat_4R_EW 335  0.88  0.85  0.86   0.72   45 28
hist(CC$Nat_Score_EW, main = 'EW Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_OF, CC$Nat_2R_OF, CC$Nat_3R_OF, CC$Nat_4R_OF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_OF, CC$Nat_2R_OF, CC$Nat_3R_OF, 
##     CC$Nat_4R_OF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.69      0.69    0.69      0.35 2.2 0.015   32 17     0.32
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.66  0.69  0.72
## Duhachek  0.67  0.69  0.72
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_OF       0.56      0.57    0.49      0.30 1.31    0.023 0.019  0.24
## CC.Nat_2R_OF      0.63      0.60    0.63      0.34 1.53    0.020 0.115  0.21
## CC.Nat_3R_OF      0.77      0.77    0.73      0.53 3.35    0.012 0.030  0.46
## CC.Nat_4R_OF      0.48      0.49    0.42      0.24 0.95    0.028 0.024  0.24
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_OF  327  0.81  0.77  0.73   0.58   40 27
## CC.Nat_2R_OF 327  0.70  0.73  0.57   0.49   22 20
## CC.Nat_3R_OF 327  0.49  0.53  0.26   0.21   26 22
## CC.Nat_4R_OF 327  0.86  0.83  0.83   0.69   39 27
hist(CC$Nat_Score_OF, main = 'OF Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_BF, CC$Nat_2R_BF, CC$Nat_3R_BF, CC$Nat_4R_BF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_BF, CC$Nat_2R_BF, CC$Nat_3R_BF, 
##     CC$Nat_4R_BF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.65       0.6    0.63      0.27 1.5 0.016   39 18     0.25
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.61  0.65  0.68
## Duhachek  0.61  0.65  0.68
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_BF       0.47      0.44    0.39      0.20 0.77    0.026 0.043 0.139
## CC.Nat_2R_BF      0.55      0.46    0.55      0.22 0.86    0.020 0.176 0.039
## CC.Nat_3R_BF      0.75      0.75    0.71      0.50 3.03    0.013 0.031 0.436
## CC.Nat_4R_BF      0.38      0.34    0.32      0.15 0.51    0.030 0.049 0.139
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_BF  248  0.80  0.74  0.71  0.560   52 28
## CC.Nat_2R_BF 248  0.73  0.72  0.55  0.461   38 27
## CC.Nat_3R_BF 248  0.28  0.41  0.07  0.042   18 17
## CC.Nat_4R_BF 248  0.85  0.81  0.80  0.652   49 29
hist(CC$Nat_Score_BF, main = 'BF Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_NE, CC$Nat_2R_NE, CC$Nat_3R_NE, CC$Nat_4R_NE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_NE, CC$Nat_2R_NE, CC$Nat_3R_NE, 
##     CC$Nat_4R_NE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.63       0.6    0.62      0.28 1.5 0.017   26 17     0.21
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt      0.6  0.63  0.67
## Duhachek   0.6  0.63  0.67
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_NE       0.42      0.40    0.33      0.18 0.66    0.028 0.022  0.15
## CC.Nat_2R_NE      0.65      0.60    0.62      0.33 1.48    0.016 0.123  0.15
## CC.Nat_3R_NE      0.70      0.71    0.69      0.45 2.44    0.017 0.062  0.34
## CC.Nat_4R_NE      0.36      0.34    0.27      0.15 0.51    0.032 0.013  0.11
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_NE  257  0.81  0.78  0.78   0.59   31 26
## CC.Nat_2R_NE 257  0.66  0.62  0.37   0.32   30 28
## CC.Nat_3R_NE 257  0.35  0.48  0.16   0.13   11 15
## CC.Nat_4R_NE 257  0.85  0.82  0.84   0.65   33 28
hist(CC$Nat_Score_NE, main = 'NE Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_SE, CC$Nat_2R_SE, CC$Nat_3R_SE, CC$Nat_4R_SE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_SE, CC$Nat_2R_SE, CC$Nat_3R_SE, 
##     CC$Nat_4R_SE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.58      0.58    0.57      0.26 1.4 0.02   55 18     0.22
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.54  0.58  0.62
## Duhachek  0.54  0.58  0.62
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se  var.r med.r
## CC.Nat_1_SE       0.43      0.46    0.36      0.22 0.84    0.029 0.0034  0.24
## CC.Nat_2R_SE      0.61      0.58    0.56      0.32 1.39    0.019 0.0689  0.27
## CC.Nat_3R_SE      0.60      0.62    0.57      0.35 1.60    0.022 0.0484  0.24
## CC.Nat_4R_SE      0.34      0.34    0.26      0.15 0.52    0.033 0.0038  0.15
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_SE  245  0.73  0.71  0.63   0.46   73 27
## CC.Nat_2R_SE 245  0.65  0.60  0.33   0.27   66 32
## CC.Nat_3R_SE 245  0.45  0.56  0.30   0.23   15 18
## CC.Nat_4R_SE 245  0.80  0.79  0.75   0.55   66 29
hist(CC$Nat_Score_SE, main = 'SE Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_WE, CC$Nat_2R_WE, CC$Nat_3R_WE, CC$Nat_4R_WE))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Nat_1_WE, CC$Nat_2R_WE, CC$Nat_3R_WE, : Some items were negatively correlated with the first principal component and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Nat_3R_WE ) were negatively correlated with the first principal component and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_WE, CC$Nat_2R_WE, CC$Nat_3R_WE, 
##     CC$Nat_4R_WE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.58      0.53    0.58      0.22 1.1 0.02   54 19     0.18
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.54  0.58  0.62
## Duhachek  0.54  0.58  0.62
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r  med.r
## CC.Nat_1_WE       0.33      0.28    0.27     0.114 0.39    0.033 0.053  0.017
## CC.Nat_2R_WE      0.53      0.47    0.55     0.225 0.87    0.023 0.182  0.017
## CC.Nat_3R_WE      0.73      0.73    0.69     0.476 2.72    0.015 0.044  0.377
## CC.Nat_4R_WE      0.26      0.20    0.20     0.076 0.25    0.038 0.050 -0.051
## 
##  Item statistics 
##                n raw.r std.r  r.cor r.drop mean sd
## CC.Nat_1_WE  257  0.79  0.77  0.767  0.566   70 28
## CC.Nat_2R_WE 257  0.68  0.64  0.412  0.343   64 31
## CC.Nat_3R_WE 257  0.25  0.35 -0.039 -0.037   21 21
## CC.Nat_4R_WE 257  0.84  0.82  0.834  0.626   63 31
hist(CC$Nat_Score_WE, main = 'WE Naturalness Scale Score')

j. Support

# Support was rated on a two item scale (0 = Strongly disagree to 100 = Strongly agree) and a mean score was calculated to represent intent to support of the technology rated, used in this study as a proxy for support.

## 1. I would personally support non-government entities deploying these on a large scale. 
## 2. I would personally support spending government tax dollars to deploy these on a large scale. 

i. Descriptives

# Define Variables
CC$Support1_AFSCS <- as.numeric(as.character(CC$BI_AFSCS_18))
CC$Support2_AFSCS <- as.numeric(as.character(CC$BI_AFSCS_19))

CC$Support1_BIO <- CC$BI_BIO_18
CC$Support2_BIO <- CC$BI_BIO_19

CC$Support1_BECCS <- CC$BI_BECCS_18
CC$Support2_BECCS <- CC$BI_BECCS_19

CC$Support1_DACCS <- CC$BI_DACCS_18
CC$Support2_DACCS <- CC$BI_DACCS_19

CC$Support1_EW <- CC$BI_EW_18
CC$Support2_EW <- CC$BI_EW_19

CC$Support1_OF <- CC$BI_OF_18
CC$Support2_OF <- CC$BI_OF_19

CC$Support1_BF <- CC$BI_BF_18
CC$Support2_BF <- CC$BI_BF_19

CC$Support1_NE <- CC$BI_NE_18
CC$Support2_NE <- CC$BI_NE_19

CC$Support1_SE <- CC$BI_SE_18
CC$Support2_SE <- CC$BI_SE_19

CC$Support1_WE <- CC$BI_WE_18
CC$Support2_WE <- CC$BI_WE_19

# Descriptives
describe(CC$Support1_AFSCS)
## CC$Support1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       67     0.98    78.22    25.24       25       42 
##      .25      .50      .75      .90      .95 
##       68       85      100      100      100 
## 
## lowest :   0   1   4   9  10, highest:  96  97  98  99 100
describe(CC$Support2_AFSCS)
## CC$Support2_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       69    0.987    74.06    29.37      4.0     25.6 
##      .25      .50      .75      .90      .95 
##     63.5     82.0     96.0    100.0    100.0 
## 
## lowest :   0   2   4   5   7, highest:  95  96  98  99 100
describe(CC$Support1_BIO)
## CC$Support1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       86    0.999    55.82    31.12     0.00    12.00 
##      .25      .50      .75      .90      .95 
##    39.75    59.00    76.00    90.90   100.00 
## 
## lowest :   0   4   5   6   7, highest:  95  96  97  98 100
describe(CC$Support2_BIO)
## CC$Support2_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       90    0.999    51.39    33.78      0.0      3.2 
##      .25      .50      .75      .90      .95 
##     30.0     54.0     75.0     90.0    100.0 
## 
## lowest :   0   1   2   3   5, highest:  95  96  97  98 100
describe(CC$Support1_BECCS)
## CC$Support1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       86    0.999    55.58    32.42     0.00    10.90 
##      .25      .50      .75      .90      .95 
##    36.25    60.00    75.00    93.00   100.00 
## 
## lowest :   0   1   2   4   5, highest:  94  95  96  98 100
describe(CC$Support2_BECCS)
## CC$Support2_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       87    0.998    51.04    34.04     0.00     0.90 
##      .25      .50      .75      .90      .95 
##    28.25    54.00    73.00    89.00   100.00 
## 
## lowest :   0   1   3   4   5, highest:  93  94  96  98 100
describe(CC$Support1_DACCS)
## CC$Support1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       86    0.998    54.59    33.75      0.0      5.6 
##      .25      .50      .75      .90      .95 
##     35.0     60.0     75.0     97.4    100.0 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
describe(CC$Support2_DACCS)
## CC$Support2_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       91    0.999    51.18    33.83      0.0      1.6 
##      .25      .50      .75      .90      .95 
##     29.5     55.0     73.5     89.4    100.0 
## 
## lowest :   0   1   2   4   5, highest:  95  97  98  99 100
describe(CC$Support1_EW)
## CC$Support1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       93    0.998    50.29    33.57      0.0      4.4 
##      .25      .50      .75      .90      .95 
##     27.5     51.0     72.0     90.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  98 100
describe(CC$Support2_EW)
## CC$Support2_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       87    0.998     48.3    34.89      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     25.0     50.0     72.5     90.0    100.0 
## 
## lowest :   0   1   2   3   5, highest:  94  95  96  98 100
describe(CC$Support1_OF)
## CC$Support1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       90    0.999    53.27    34.92      0.0      6.0 
##      .25      .50      .75      .90      .95 
##     29.5     59.0     75.0     94.4    100.0 
## 
## lowest :   0   1   2   4   5, highest:  95  96  97  99 100
describe(CC$Support2_OF)
## CC$Support2_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       88    0.998    49.17     35.2      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     20.0     53.0     74.5     89.0     97.1 
## 
## lowest :   0   1   3   4   5, highest:  93  94  95  98 100
describe(CC$Support1_BF)
## CC$Support1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       78    0.999    63.28    29.39     9.35    20.70 
##      .25      .50      .75      .90      .95 
##    50.00    68.50    82.00    95.00   100.00 
## 
## lowest :   0   4   5   7   8, highest:  94  95  96  98 100
describe(CC$Support2_BF)
## CC$Support2_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       82    0.999    58.35    31.34     0.00    13.00 
##      .25      .50      .75      .90      .95 
##    45.00    61.00    77.25    93.00   100.00 
## 
## lowest :   0   3   4   5   6, highest:  94  95  96  98 100
describe(CC$Support1_NE)
## CC$Support1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       86    0.997    49.19    39.16        0        0 
##      .25      .50      .75      .90      .95 
##       15       52       79       95      100 
## 
## lowest :   0   1   2   3   5, highest:  94  95  96  98 100
describe(CC$Support2_NE)
## CC$Support2_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       86    0.997    51.91    37.72        0        0 
##      .25      .50      .75      .90      .95 
##       25       55       80       95      100 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  97 100
describe(CC$Support1_SE)
## CC$Support1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       56    0.956    82.66    22.78     35.0     51.4 
##      .25      .50      .75      .90      .95 
##     75.0     91.0    100.0    100.0    100.0 
## 
## lowest :   0   1   5  10  14, highest:  96  97  98  99 100
describe(CC$Support2_SE)
## CC$Support2_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       66    0.965    76.36    29.66      2.4     29.4 
##      .25      .50      .75      .90      .95 
##     65.0     87.0    100.0    100.0    100.0 
## 
## lowest :   0   1   2   4  10, highest:  96  97  98  99 100
describe(CC$Support1_WE)
## CC$Support1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       63    0.988    76.82    25.62     22.6     43.0 
##      .25      .50      .75      .90      .95 
##     69.0     81.0     98.0    100.0    100.0 
## 
## lowest :   0   4  10  17  20, highest:  95  96  98  99 100
describe(CC$Support2_WE)
## CC$Support2_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       65    0.989    73.32    29.82      1.6     24.6 
##      .25      .50      .75      .90      .95 
##     62.0     80.0     97.0    100.0    100.0 
## 
## lowest :   0   2   7  10  11, highest:  96  97  98  99 100
sd(CC$Support1_AFSCS, na.rm = TRUE)
## [1] 24.36924
sd(CC$Support2_AFSCS, na.rm = TRUE)
## [1] 28.19222
sd(CC$Support1_BIO, na.rm = TRUE)
## [1] 27.4581
sd(CC$Support2_BIO, na.rm = TRUE)
## [1] 29.52825
sd(CC$Support1_BECCS, na.rm = TRUE)
## [1] 28.53122
sd(CC$Support2_BECCS, na.rm = TRUE)
## [1] 29.75296
sd(CC$Support1_DACCS, na.rm = TRUE)
## [1] 29.6834
sd(CC$Support2_DACCS, na.rm = TRUE)
## [1] 29.5563
sd(CC$Support1_EW, na.rm = TRUE)
## [1] 29.25292
sd(CC$Support2_EW, na.rm = TRUE)
## [1] 30.30295
sd(CC$Support1_OF, na.rm = TRUE)
## [1] 30.54466
sd(CC$Support2_OF, na.rm = TRUE)
## [1] 30.72261
sd(CC$Support1_BF, na.rm = TRUE)
## [1] 26.33298
sd(CC$Support2_BF, na.rm = TRUE)
## [1] 27.8222
sd(CC$Support1_NE, na.rm = TRUE)
## [1] 34.00086
sd(CC$Support2_NE, na.rm = TRUE)
## [1] 32.86786
sd(CC$Support1_SE, na.rm = TRUE)
## [1] 23.17443
sd(CC$Support2_SE, na.rm = TRUE)
## [1] 28.89797
sd(CC$Support1_WE, na.rm = TRUE)
## [1] 24.49376
sd(CC$Support2_WE, na.rm = TRUE)
## [1] 28.52271
hist(CC$Support1_AFSCS)

hist(CC$Support2_AFSCS)

hist(CC$Support1_BIO)

hist(CC$Support2_BIO)

hist(CC$Support1_BECCS)

hist(CC$Support2_BECCS)

hist(CC$Support1_DACCS)

hist(CC$Support2_DACCS)

hist(CC$Support1_EW)

hist(CC$Support2_EW)

hist(CC$Support1_OF)

hist(CC$Support2_OF)

hist(CC$Support1_BF)

hist(CC$Support2_BF)

hist(CC$Support1_NE)

hist(CC$Support2_NE)

hist(CC$Support1_SE)

hist(CC$Support2_SE)

hist(CC$Support1_WE)

hist(CC$Support2_WE)

ii. Score(s) & Scale(s)

# Scores & Scales
CC$Support_Score_AFSCS <- rowMeans(CC [, c("Support1_AFSCS", "Support2_AFSCS")], na.rm=TRUE)
CC$Support_Scale_AFSCS <- data.frame(CC$Support1_AFSCS, CC$Support2_AFSCS)

CC$Support_Score_BIO <- rowMeans(CC [, c("Support1_BIO", "Support2_BIO")], na.rm=TRUE)
CC$Support_Scale_BIO <- data.frame(CC$Support1_BIO, CC$Support2_BIO)

CC$Support_Score_BECCS <- rowMeans(CC [, c("Support1_BECCS", "Support2_BECCS")], na.rm=TRUE)
CC$Support_Scale_BECCS <- data.frame(CC$Support1_BECCS, CC$Support2_BECCS)

CC$Support_Score_DACCS <- rowMeans(CC [, c("Support1_DACCS", "Support2_DACCS")], na.rm=TRUE)
CC$Support_Scale_DACCS <- data.frame(CC$Support1_DACCS, CC$Support2_DACCS)

CC$Support_Score_EW <- rowMeans(CC [, c("Support1_EW", "Support2_EW")], na.rm=TRUE)
CC$Support_Scale_EW <- data.frame(CC$Support1_EW, CC$Support2_EW)

CC$Support_Score_OF <- rowMeans(CC [, c("Support1_OF", "Support2_OF")], na.rm=TRUE)
CC$Support_Scale_OF <- data.frame(CC$Support1_OF, CC$Support2_OF)

CC$Support_Score_BF <- rowMeans(CC [, c("Support1_BF", "Support2_BF")], na.rm=TRUE)
CC$Support_Scale_BF <- data.frame(CC$Support1_BF, CC$Support2_BF)

CC$Support_Score_NE <- rowMeans(CC [, c("Support1_NE", "Support2_NE")], na.rm=TRUE)
CC$Support_Scale_NE <- data.frame(CC$Support1_NE, CC$Support2_NE)

CC$Support_Score_SE <- rowMeans(CC [, c("Support1_SE", "Support2_SE")], na.rm=TRUE)
CC$Support_Scale_SE <- data.frame(CC$Support1_SE, CC$Support2_SE)

CC$Support_Score_WE <- rowMeans(CC [, c("Support1_WE", "Support2_WE")], na.rm=TRUE)
CC$Support_Scale_WE <- data.frame(CC$Support1_WE, CC$Support2_WE)

# Describe Scores/Scales 
describe(CC$Support_Score_AFSCS)
## CC$Support_Score_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664      114    0.991    76.14    25.37    30.25    46.40 
##      .25      .50      .75      .90      .95 
##    62.50    82.00    95.25   100.00   100.00 
## 
## lowest : 0    4    5    10   12.5, highest: 97   97.5 98   99.5 100
describe(CC$Support_Scale_AFSCS)
## CC$Support_Scale_AFSCS 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       67     0.98    78.22    25.24       25       42 
##      .25      .50      .75      .90      .95 
##       68       85      100      100      100 
## 
## lowest :   0   1   4   9  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Support2_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       69    0.987    74.06    29.37      4.0     25.6 
##      .25      .50      .75      .90      .95 
##     63.5     82.0     96.0    100.0    100.0 
## 
## lowest :   0   2   4   5   7, highest:  95  96  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_AFSCS, na.rm = TRUE)
## [1] 23.61434
describe(CC$Support_Score_BIO)
## CC$Support_Score_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675      142    0.999     53.6    29.85     0.55    13.55 
##      .25      .50      .75      .90      .95 
##    36.50    54.25    74.00    87.00    95.22 
## 
## lowest : 0    1    2.5  3.5  5   , highest: 94   95   95.5 97.5 100
describe(CC$Support_Scale_BIO)
## CC$Support_Scale_BIO 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       86    0.999    55.82    31.12     0.00    12.00 
##      .25      .50      .75      .90      .95 
##    39.75    59.00    76.00    90.90   100.00 
## 
## lowest :   0   4   5   6   7, highest:  95  96  97  98 100
## --------------------------------------------------------------------------------
## CC.Support2_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       90    0.999    51.39    33.78      0.0      3.2 
##      .25      .50      .75      .90      .95 
##     30.0     54.0     75.0     90.0    100.0 
## 
## lowest :   0   1   2   3   5, highest:  95  96  97  98 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_BIO, na.rm = TRUE)
## [1] 26.28137
describe(CC$Support_Score_BECCS)
## CC$Support_Score_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677      136    0.999    53.31       31     0.00     9.90 
##      .25      .50      .75      .90      .95 
##    35.25    55.00    74.25    85.00    98.20 
## 
## lowest : 0    1    1.5  2    5   , highest: 93   93.5 95   96   100
describe(CC$Support_Scale_BECCS)
## CC$Support_Scale_BECCS 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       86    0.999    55.58    32.42     0.00    10.90 
##      .25      .50      .75      .90      .95 
##    36.25    60.00    75.00    93.00   100.00 
## 
## lowest :   0   1   2   4   5, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
## CC.Support2_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       87    0.998    51.04    34.04     0.00     0.90 
##      .25      .50      .75      .90      .95 
##    28.25    54.00    73.00    89.00   100.00 
## 
## lowest :   0   1   3   4   5, highest:  93  94  96  98 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_BECCS, na.rm = TRUE)
## [1] 27.28703
describe(CC$Support_Score_DACCS)
## CC$Support_Score_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660      148    0.999    52.88    32.02     0.00     5.80 
##      .25      .50      .75      .90      .95 
##    35.50    55.50    73.25    89.40    99.85 
## 
## lowest : 0    0.5  1    2    2.5 , highest: 96.5 97   98.5 99.5 100
describe(CC$Support_Scale_DACCS)
## CC$Support_Scale_DACCS 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       86    0.998    54.59    33.75      0.0      5.6 
##      .25      .50      .75      .90      .95 
##     35.0     60.0     75.0     97.4    100.0 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Support2_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       91    0.999    51.18    33.83      0.0      1.6 
##      .25      .50      .75      .90      .95 
##     29.5     55.0     73.5     89.4    100.0 
## 
## lowest :   0   1   2   4   5, highest:  95  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_DACCS, na.rm = TRUE)
## [1] 28.11655
describe(CC$Support_Score_EW)
## CC$Support_Score_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672      137    0.999    49.29    31.61      0.0      8.0 
##      .25      .50      .75      .90      .95 
##     29.5     50.5     68.5     85.8     98.6 
## 
## lowest : 0    0.5  1    2    2.5 , highest: 94.5 95   95.5 98   100
describe(CC$Support_Scale_EW)
## CC$Support_Scale_EW 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       93    0.998    50.29    33.57      0.0      4.4 
##      .25      .50      .75      .90      .95 
##     27.5     51.0     72.0     90.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
## CC.Support2_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       87    0.998     48.3    34.89      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     25.0     50.0     72.5     90.0    100.0 
## 
## lowest :   0   1   2   3   5, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_EW, na.rm = TRUE)
## [1] 27.63767
describe(CC$Support_Score_OF)
## CC$Support_Score_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680      145    0.999    51.22       33     0.00     5.80 
##      .25      .50      .75      .90      .95 
##    27.50    54.50    73.75    89.00    95.00 
## 
## lowest : 0    0.5  2    3    3.5 , highest: 95   95.5 97   97.5 100
describe(CC$Support_Scale_OF)
## CC$Support_Scale_OF 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       90    0.999    53.27    34.92      0.0      6.0 
##      .25      .50      .75      .90      .95 
##     29.5     59.0     75.0     94.4    100.0 
## 
## lowest :   0   1   2   4   5, highest:  95  96  97  99 100
## --------------------------------------------------------------------------------
## CC.Support2_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       88    0.998    49.17     35.2      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     20.0     53.0     74.5     89.0     97.1 
## 
## lowest :   0   1   3   4   5, highest:  93  94  95  98 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_OF, na.rm = TRUE)
## [1] 28.83405
describe(CC$Support_Score_BF)
## CC$Support_Score_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759      120        1    60.82    27.72    10.00    22.05 
##      .25      .50      .75      .90      .95 
##    50.00    64.00    78.12    92.00    99.00 
## 
## lowest : 0    2.5  4    5    7   , highest: 95   96.5 98   99   100
describe(CC$Support_Scale_BF)
## CC$Support_Scale_BF 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       78    0.999    63.28    29.39     9.35    20.70 
##      .25      .50      .75      .90      .95 
##    50.00    68.50    82.00    95.00   100.00 
## 
## lowest :   0   4   5   7   8, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
## CC.Support2_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       82    0.999    58.35    31.34     0.00    13.00 
##      .25      .50      .75      .90      .95 
##    45.00    61.00    77.25    93.00   100.00 
## 
## lowest :   0   3   4   5   6, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_BF, na.rm = TRUE)
## [1] 24.89028
describe(CC$Support_Score_NE)
## CC$Support_Score_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      122    0.999    50.55    35.85      0.0      0.6 
##      .25      .50      .75      .90      .95 
##     27.5     52.0     76.5     91.1     99.2 
## 
## lowest : 0    1    2    3    3.5 , highest: 95   95.5 96   99   100
describe(CC$Support_Scale_NE)
## CC$Support_Scale_NE 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       86    0.997    49.19    39.16        0        0 
##      .25      .50      .75      .90      .95 
##       15       52       79       95      100 
## 
## lowest :   0   1   2   3   5, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
## CC.Support2_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       86    0.997    51.91    37.72        0        0 
##      .25      .50      .75      .90      .95 
##       25       55       80       95      100 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  97 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_NE, na.rm = TRUE)
## [1] 31.10287
describe(CC$Support_Score_SE)
## CC$Support_Score_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       93    0.979    79.51    24.49     30.4     49.2 
##      .25      .50      .75      .90      .95 
##     68.0     87.5    100.0    100.0    100.0 
## 
## lowest : 0    0.5  2.5  10   12  , highest: 97.5 98.5 99   99.5 100
describe(CC$Support_Scale_SE)
## CC$Support_Scale_SE 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       56    0.956    82.66    22.78     35.0     51.4 
##      .25      .50      .75      .90      .95 
##     75.0     91.0    100.0    100.0    100.0 
## 
## lowest :   0   1   5  10  14, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Support2_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       66    0.965    76.36    29.66      2.4     29.4 
##      .25      .50      .75      .90      .95 
##     65.0     87.0    100.0    100.0    100.0 
## 
## lowest :   0   1   2   4  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_SE, na.rm = TRUE)
## [1] 23.53217
describe(CC$Support_Score_WE)
## CC$Support_Score_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       99    0.993    75.07    26.24     19.9     42.5 
##      .25      .50      .75      .90      .95 
##     64.0     80.0     95.5    100.0    100.0 
## 
## lowest : 0    3    10.5 11   15  , highest: 98   98.5 99   99.5 100
describe(CC$Support_Scale_WE)
## CC$Support_Scale_WE 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       63    0.988    76.82    25.62     22.6     43.0 
##      .25      .50      .75      .90      .95 
##     69.0     81.0     98.0    100.0    100.0 
## 
## lowest :   0   4  10  17  20, highest:  95  96  98  99 100
## --------------------------------------------------------------------------------
## CC.Support2_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       65    0.989    73.32    29.82      1.6     24.6 
##      .25      .50      .75      .90      .95 
##     62.0     80.0     97.0    100.0    100.0 
## 
## lowest :   0   2   7  10  11, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_WE, na.rm = TRUE)
## [1] 24.65437
#Cronbach's alpha for risk scale
psych::alpha(data.frame(CC$Support1_AFSCS, CC$Support2_AFSCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_AFSCS, CC$Support2_AFSCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.75      0.76    0.61      0.61 3.2 0.015   76 24     0.61
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.72  0.75  0.78
## Duhachek  0.73  0.75  0.78
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Support1_AFSCS      0.53      0.61    0.38      0.61 1.6       NA     0
## CC.Support2_AFSCS      0.71      0.61    0.38      0.61 1.6       NA     0
##                   med.r
## CC.Support1_AFSCS  0.61
## CC.Support2_AFSCS  0.61
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Support1_AFSCS 343  0.88   0.9   0.7   0.61   78 24
## CC.Support2_AFSCS 343  0.91   0.9   0.7   0.61   74 28
hist(CC$Support_Score_AFSCS, main = 'AFSCS Support Scale Score')

psych::alpha(data.frame(CC$Support1_BIO, CC$Support2_BIO))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_BIO, CC$Support2_BIO))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.82      0.82     0.7       0.7 4.7 0.011   54 26      0.7
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt      0.8  0.82  0.84
## Duhachek   0.8  0.82  0.84
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_BIO      0.65       0.7    0.49       0.7 2.3       NA     0   0.7
## CC.Support2_BIO      0.75       0.7    0.49       0.7 2.3       NA     0   0.7
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Support1_BIO 332  0.92  0.92  0.77    0.7   56 27
## CC.Support2_BIO 332  0.93  0.92  0.77    0.7   51 30
hist(CC$Support_Score_BIO, main = 'BIO Support Scale Score')

psych::alpha(data.frame(CC$Support1_BECCS, CC$Support2_BECCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_BECCS, CC$Support2_BECCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.86      0.86    0.75      0.75 6.1 0.0089   53 27     0.75
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.84  0.86  0.88
## Duhachek  0.84  0.86  0.88
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Support1_BECCS      0.72      0.75    0.57      0.75 3.1       NA     0
## CC.Support2_BECCS      0.79      0.75    0.57      0.75 3.1       NA     0
##                   med.r
## CC.Support1_BECCS  0.75
## CC.Support2_BECCS  0.75
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Support1_BECCS 330  0.93  0.94  0.81   0.75   56 29
## CC.Support2_BECCS 330  0.94  0.94  0.81   0.75   51 30
hist(CC$Support_Score_BECCS, main = 'BECCS Support Scale Score')

psych::alpha(data.frame(CC$Support1_DACCS, CC$Support2_DACCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_DACCS, CC$Support2_DACCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.89      0.89     0.8       0.8 8.1 0.0069   53 28      0.8
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.88  0.89   0.9
## Duhachek  0.88  0.89   0.9
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Support1_DACCS      0.81       0.8    0.64       0.8 4.1       NA     0
## CC.Support2_DACCS      0.80       0.8    0.64       0.8 4.1       NA     0
##                   med.r
## CC.Support1_DACCS   0.8
## CC.Support2_DACCS   0.8
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Support1_DACCS 347  0.95  0.95  0.85    0.8   55 30
## CC.Support2_DACCS 347  0.95  0.95  0.85    0.8   51 30
hist(CC$Support_Score_DACCS, main = 'DACCS Support Scale Score')

psych::alpha(data.frame(CC$Support1_EW, CC$Support2_EW))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_EW, CC$Support2_EW))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.84      0.84    0.72      0.72 5.2 0.01   49 28     0.72
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.82  0.84  0.86
## Duhachek  0.82  0.84  0.86
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_EW      0.70      0.72    0.52      0.72 2.6       NA     0  0.72
## CC.Support2_EW      0.75      0.72    0.52      0.72 2.6       NA     0  0.72
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_EW 335  0.93  0.93  0.79   0.72   50 29
## CC.Support2_EW 335  0.93  0.93  0.79   0.72   48 30
hist(CC$Support_Score_EW, main = 'EW Support Scale Score')

psych::alpha(data.frame(CC$Support1_OF, CC$Support2_OF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_OF, CC$Support2_OF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.87      0.87    0.77      0.77 6.8 0.0081   51 29     0.77
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.85  0.87  0.89
## Duhachek  0.86  0.87  0.89
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_OF      0.77      0.77     0.6      0.77 3.4       NA     0  0.77
## CC.Support2_OF      0.78      0.77     0.6      0.77 3.4       NA     0  0.77
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_OF 327  0.94  0.94  0.83   0.77   53 31
## CC.Support2_OF 327  0.94  0.94  0.83   0.77   49 31
hist(CC$Support_Score_OF, main = 'OF Support Scale Score')

psych::alpha(data.frame(CC$Support1_BF, CC$Support2_BF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_BF, CC$Support2_BF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.82      0.82    0.69      0.69 4.4 0.012   61 25     0.69
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.79  0.82  0.84
## Duhachek  0.79  0.82  0.84
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_BF      0.65      0.69    0.48      0.69 2.2       NA     0  0.69
## CC.Support2_BF      0.73      0.69    0.48      0.69 2.2       NA     0  0.69
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_BF 248  0.91  0.92  0.76   0.69   63 26
## CC.Support2_BF 248  0.92  0.92  0.76   0.69   58 28
hist(CC$Support_Score_BF, main = 'BF Support Scale Score')

psych::alpha(data.frame(CC$Support1_NE, CC$Support2_NE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_NE, CC$Support2_NE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.84      0.84    0.73      0.73 5.4 0.0098   51 31     0.73
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.82  0.84  0.86
## Duhachek  0.82  0.84  0.86
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_NE      0.76      0.73    0.53      0.73 2.7       NA     0  0.73
## CC.Support2_NE      0.71      0.73    0.53      0.73 2.7       NA     0  0.73
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_NE 257  0.93  0.93   0.8   0.73   49 34
## CC.Support2_NE 257  0.93  0.93   0.8   0.73   52 33
hist(CC$Support_Score_NE, main = 'NE Support Scale Score')

psych::alpha(data.frame(CC$Support1_SE, CC$Support2_SE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_SE, CC$Support2_SE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.76      0.77    0.63      0.63 3.4 0.014   80 24     0.63
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.73  0.76  0.79
## Duhachek  0.73  0.76  0.79
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_SE      0.50      0.63     0.4      0.63 1.7       NA     0  0.63
## CC.Support2_SE      0.78      0.63     0.4      0.63 1.7       NA     0  0.63
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_SE 245  0.88   0.9  0.72   0.63   83 23
## CC.Support2_SE 245  0.92   0.9  0.72   0.63   76 29
hist(CC$Support_Score_SE, main = 'SE Support Scale Score')

psych::alpha(data.frame(CC$Support1_WE, CC$Support2_WE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_WE, CC$Support2_WE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.84      0.84    0.73      0.73 5.4 0.01   75 25     0.73
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.82  0.84  0.86
## Duhachek  0.82  0.84  0.86
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_WE      0.63      0.73    0.53      0.73 2.7       NA     0  0.73
## CC.Support2_WE      0.85      0.73    0.53      0.73 2.7       NA     0  0.73
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_WE 257  0.92  0.93  0.79   0.73   77 24
## CC.Support2_WE 257  0.94  0.93  0.79   0.73   73 29
hist(CC$Support_Score_WE, main = 'WE Support Scale Score')

# Correlation between Support Items Across all 10 Technologies 
CC$S1 <- rowMeans(CC [, c("Support1_AFSCS", "Support1_BIO", "Support1_BECCS", "Support1_DACCS", "Support1_EW", "Support1_OF", "Support1_BF", "Support1_NE", "Support1_SE", "Support1_WE")], na.rm=TRUE)
CC$S2 <- rowMeans(CC [, c("Support2_AFSCS", "Support2_BIO", "Support2_BECCS", "Support2_DACCS", "Support2_EW", "Support2_OF", "Support2_BF", "Support2_NE", "Support2_SE", "Support2_WE")], na.rm=TRUE)

cor.test(CC$S1,CC$S2)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$S1 and CC$S2
## t = 31.906, df = 1005, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6772775 0.7387760
## sample estimates:
##       cor 
## 0.7093743

k. Risk

# Risk was rated on a two item scale (0 = Strongly disagree to 100 = Strongly agree) and a mean score was calculated to represent risk perception of the technology rated.

## 1. This is risky to deploy.
## 2. This is frightening.

i. Descriptives

# Define Variables
CC$Risk_1_AFSCS <- CC$Risk_AFSCS_32
CC$Risk_2_AFSCS <- CC$Risk_AFSCS_33

CC$Risk_1_BIO <- CC$Risk_BIO_32
CC$Risk_2_BIO <- CC$Risk_BIO_33

CC$Risk_1_BECCS <- CC$Risk_BECCS_32
CC$Risk_2_BECCS <- CC$Risk_BECCS_33

CC$Risk_1_DACCS <- CC$Risk_DACCS_32
CC$Risk_2_DACCS <- CC$Risk_DACCS_33

CC$Risk_1_EW <- CC$Risk_EW_32
CC$Risk_2_EW <- CC$Risk_EW_33

CC$Risk_1_OF <- CC$Risk_OF_32
CC$Risk_2_OF <- CC$Risk_OF_33

CC$Risk_1_BF <- CC$Risk_BF_32
CC$Risk_2_BF <- CC$Risk_BF_33

CC$Risk_1_NE <- CC$Risk_NE_32
CC$Risk_2_NE <- CC$Risk_NE_33

CC$Risk_1_SE <- CC$Risk_SE_32
CC$Risk_2_SE <- CC$Risk_SE_33

CC$Risk_1_WE <- CC$Risk_WE_32
CC$Risk_2_WE <- CC$Risk_WE_33

# Descriptives
describe(CC$Risk_1_AFSCS)
## CC$Risk_1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       65    0.983    19.29    23.37        0        0 
##      .25      .50      .75      .90      .95 
##        0       11       30       51       70 
## 
## lowest :   0   1   2   3   4, highest:  79  80  81  85 100
describe(CC$Risk_2_AFSCS)
## CC$Risk_2_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       56    0.933    13.06    18.81      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      3.0     16.0     44.0     59.8 
## 
## lowest :   0   1   2   3   4, highest:  74  75  80  85 100
describe(CC$Risk_1_BIO)
## CC$Risk_1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       83    0.999    39.39    28.83      0.0      4.0 
##      .25      .50      .75      .90      .95 
##     19.0     40.0     56.0     74.9     80.0 
## 
## lowest :   0   1   2   3   4, highest:  86  90  95  96 100
describe(CC$Risk_2_BIO)
## CC$Risk_2_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       82    0.992    27.98     28.3     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     4.00    25.00    47.25    63.00    75.00 
## 
## lowest :   0   1   2   3   4, highest:  90  92  95  96 100
describe(CC$Risk_1_BECCS)
## CC$Risk_1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       86    0.999    45.35    30.93     0.00     6.90 
##      .25      .50      .75      .90      .95 
##    24.25    49.50    64.00    80.00    92.55 
## 
## lowest :   0   1   4   5   6, highest:  93  94  95  96 100
describe(CC$Risk_2_BECCS)
## CC$Risk_2_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       80    0.992    31.86    31.91      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      5.0     25.5     51.0     72.3     90.0 
## 
## lowest :   0   1   2   3   4, highest:  90  91  92  96 100
describe(CC$Risk_1_DACCS)
## CC$Risk_1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       90    0.999    50.12    31.12      0.0      9.0 
##      .25      .50      .75      .90      .95 
##     30.0     52.0     70.0     84.4     95.0 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
describe(CC$Risk_2_DACCS)
## CC$Risk_2_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       92    0.994    35.84    33.73      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      7.0     33.0     59.0     79.4     89.0 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  99 100
describe(CC$Risk_1_EW)
## CC$Risk_1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       85    0.999    45.98    30.54      3.7     10.0 
##      .25      .50      .75      .90      .95 
##     25.0     50.0     64.0     82.6     93.3 
## 
## lowest :   0   2   3   4   5, highest:  93  94  95  99 100
describe(CC$Risk_2_EW)
## CC$Risk_2_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       83    0.994    30.92    31.26      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      5.5     24.0     51.0     74.6     85.0 
## 
## lowest :   0   1   2   3   4, highest:  92  95  98  99 100
describe(CC$Risk_1_OF)
## CC$Risk_1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       94    0.999    54.49    31.47      1.3     14.6 
##      .25      .50      .75      .90      .95 
##     33.0     57.0     75.0     89.4     97.7 
## 
## lowest :   0   1   2   4   7, highest:  95  96  97  98 100
describe(CC$Risk_2_OF)
## CC$Risk_2_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       88    0.996    38.24    33.86      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.5     37.0     62.5     80.0     90.0 
## 
## lowest :   0   1   2   3   4, highest:  95  96  97  98 100
describe(CC$Risk_1_BF)
## CC$Risk_1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       74    0.998    32.13    27.09     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    12.75    30.00    50.00    69.00    74.00 
## 
## lowest :   0   1   2   4   5, highest:  83  84  87  93 100
describe(CC$Risk_2_BF)
## CC$Risk_2_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       65    0.984    19.96    22.59     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     0.75    14.00    32.00    51.00    63.65 
## 
## lowest :   0   1   2   3   4, highest:  80  81  87  88 100
describe(CC$Risk_1_NE)
## CC$Risk_1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       76    0.998    56.87    34.87      3.8     10.0 
##      .25      .50      .75      .90      .95 
##     31.0     62.0     80.0    100.0    100.0 
## 
## lowest :   0   1   3   4   5, highest:  93  94  95  99 100
describe(CC$Risk_2_NE)
## CC$Risk_2_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       84    0.999    48.97    37.15      0.0      2.6 
##      .25      .50      .75      .90      .95 
##     20.0     54.0     76.0     93.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  93  95  97  99 100
describe(CC$Risk_1_SE)
## CC$Risk_1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       54    0.945    13.63    18.58      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      5.0     21.0     40.6     52.0 
## 
## lowest :  0  1  2  3  4, highest: 67 79 80 82 88
describe(CC$Risk_2_SE)
## CC$Risk_2_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       42    0.821    6.735    10.85      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      0.0      7.0     22.6     33.8 
## 
## lowest :  0  1  2  3  4, highest: 51 64 75 79 88
describe(CC$Risk_1_WE)
## CC$Risk_1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       71    0.984    23.56    28.04      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      1.0     13.0     38.0     68.0     80.2 
## 
## lowest :   0   1   2   3   4, highest:  90  91  92  97 100
describe(CC$Risk_2_WE)
## CC$Risk_2_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       55    0.915    14.02    20.08        0        0 
##      .25      .50      .75      .90      .95 
##        0        4       19       43       68 
## 
## lowest :   0   1   2   3   4, highest:  84  89  90  99 100
sd(CC$Risk_1_AFSCS, na.rm = TRUE)
## [1] 22.70809
sd(CC$Risk_2_AFSCS, na.rm = TRUE)
## [1] 20.35588
sd(CC$Risk_1_BIO, na.rm = TRUE)
## [1] 25.12406
sd(CC$Risk_2_BIO, na.rm = TRUE)
## [1] 25.33067
sd(CC$Risk_1_BECCS, na.rm = TRUE)
## [1] 26.96612
sd(CC$Risk_2_BECCS, na.rm = TRUE)
## [1] 28.51304
sd(CC$Risk_1_DACCS, na.rm = TRUE)
## [1] 27.21191
sd(CC$Risk_2_DACCS, na.rm = TRUE)
## [1] 29.61833
sd(CC$Risk_1_EW, na.rm = TRUE)
## [1] 26.62165
sd(CC$Risk_2_EW, na.rm = TRUE)
## [1] 27.95912
sd(CC$Risk_1_OF, na.rm = TRUE)
## [1] 27.45413
sd(CC$Risk_2_OF, na.rm = TRUE)
## [1] 29.57223
sd(CC$Risk_1_BF, na.rm = TRUE)
## [1] 23.86879
sd(CC$Risk_2_BF, na.rm = TRUE)
## [1] 21.27785
sd(CC$Risk_1_NE, na.rm = TRUE)
## [1] 30.46242
sd(CC$Risk_2_NE, na.rm = TRUE)
## [1] 32.24126
sd(CC$Risk_1_SE, na.rm = TRUE)
## [1] 19.15884
sd(CC$Risk_2_SE, na.rm = TRUE)
## [1] 13.82528
sd(CC$Risk_1_WE, na.rm = TRUE)
## [1] 26.48551
sd(CC$Risk_2_WE, na.rm = TRUE)
## [1] 21.76884
hist(CC$Risk_1_AFSCS)

hist(CC$Risk_2_AFSCS)

hist(CC$Risk_1_BIO)

hist(CC$Risk_2_BIO)

hist(CC$Risk_1_BECCS)

hist(CC$Risk_2_BECCS)

hist(CC$Risk_1_DACCS)

hist(CC$Risk_2_DACCS)

hist(CC$Risk_1_EW)

hist(CC$Risk_2_EW)

hist(CC$Risk_1_OF)

hist(CC$Risk_2_OF)

hist(CC$Risk_1_BF)

hist(CC$Risk_2_BF)

hist(CC$Risk_1_NE)

hist(CC$Risk_2_NE)

hist(CC$Risk_1_SE)

hist(CC$Risk_2_SE)

hist(CC$Risk_1_WE)

hist(CC$Risk_2_WE)

ii. Score(s) & Scale(s)

# Scores & Scales
CC$Risk_Score_AFSCS <- rowMeans(CC [, c("Risk_1_AFSCS", "Risk_2_AFSCS")], na.rm=TRUE)
CC$Risk_Scale_AFSCS <- data.frame(CC$Risk_1_AFSCS, CC$Risk_2_AFSCS)

CC$Risk_Score_BIO <- rowMeans(CC [, c("Risk_1_BIO", "Risk_2_BIO")], na.rm=TRUE)
CC$Risk_Scale_BIO <- data.frame(CC$Risk_1_BIO, CC$Risk_2_BIO)

CC$Risk_Score_BECCS <- rowMeans(CC [, c("Risk_1_BECCS", "Risk_2_BECCS")], na.rm=TRUE)
CC$Risk_Scale_BECCS <- data.frame(CC$Risk_1_BECCS, CC$Risk_2_BECCS)

CC$Risk_Score_DACCS <- rowMeans(CC [, c("Risk_1_DACCS", "Risk_2_DACCS")], na.rm=TRUE)
CC$Risk_Scale_DACCS <- data.frame(CC$Risk_1_DACCS, CC$Risk_2_DACCS)

CC$Risk_Score_EW <- rowMeans(CC [, c("Risk_1_EW", "Risk_2_EW")], na.rm=TRUE)
CC$Risk_Scale_EW <- data.frame(CC$Risk_1_EW, CC$Risk_2_EW)

CC$Risk_Score_OF <- rowMeans(CC [, c("Risk_1_OF", "Risk_2_OF")], na.rm=TRUE)
CC$Risk_Scale_OF <- data.frame(CC$Risk_1_OF, CC$Risk_2_OF)

CC$Risk_Score_BF <- rowMeans(CC [, c("Risk_1_BF", "Risk_2_BF")], na.rm=TRUE)
CC$Risk_Scale_BF <- data.frame(CC$Risk_1_BF, CC$Risk_2_BF)

CC$Risk_Score_NE <- rowMeans(CC [, c("Risk_1_NE", "Risk_2_NE")], na.rm=TRUE)
CC$Risk_Scale_NE <- data.frame(CC$Risk_1_NE, CC$Risk_2_NE)

CC$Risk_Score_SE <- rowMeans(CC [, c("Risk_1_SE", "Risk_2_SE")], na.rm=TRUE)
CC$Risk_Scale_SE <- data.frame(CC$Risk_1_SE, CC$Risk_2_SE)

CC$Risk_Score_WE <- rowMeans(CC [, c("Risk_1_WE", "Risk_2_WE")], na.rm=TRUE)
CC$Risk_Scale_WE <- data.frame(CC$Risk_1_WE, CC$Risk_2_WE)

# Describe Scores/Scales 
describe(CC$Risk_Score_AFSCS)
## CC$Risk_Score_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664      103    0.987    16.18    20.19      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.5      8.0     24.5     47.3     62.5 
## 
## lowest : 0   0.5 1   1.5 2  , highest: 78  79  80  85  100
describe(CC$Risk_Scale_AFSCS)
## CC$Risk_Scale_AFSCS 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       65    0.983    19.29    23.37        0        0 
##      .25      .50      .75      .90      .95 
##        0       11       30       51       70 
## 
## lowest :   0   1   2   3   4, highest:  79  80  81  85 100
## --------------------------------------------------------------------------------
## CC.Risk_2_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       56    0.933    13.06    18.81      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      3.0     16.0     44.0     59.8 
## 
## lowest :   0   1   2   3   4, highest:  74  75  80  85 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_AFSCS, na.rm = TRUE)
## [1] 20.1135
describe(CC$Risk_Score_BIO)
## CC$Risk_Score_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675      133        1    33.69    26.45     0.00     3.00 
##      .25      .50      .75      .90      .95 
##    12.50    32.50    50.00    63.00    75.67 
## 
## lowest : 0   0.5 1   1.5 2  , highest: 84  88  90  93  95
describe(CC$Risk_Scale_BIO)
## CC$Risk_Scale_BIO 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       83    0.999    39.39    28.83      0.0      4.0 
##      .25      .50      .75      .90      .95 
##     19.0     40.0     56.0     74.9     80.0 
## 
## lowest :   0   1   2   3   4, highest:  86  90  95  96 100
## --------------------------------------------------------------------------------
## CC.Risk_2_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       82    0.992    27.98     28.3     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     4.00    25.00    47.25    63.00    75.00 
## 
## lowest :   0   1   2   3   4, highest:  90  92  95  96 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_BIO, na.rm = TRUE)
## [1] 23.16999
describe(CC$Risk_Score_BECCS)
## CC$Risk_Score_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677      140    0.999    38.61    28.99     0.00     3.95 
##      .25      .50      .75      .90      .95 
##    19.50    37.75    55.00    72.05    85.55 
## 
## lowest : 0    0.5  1    2.5  3   , highest: 92.5 93   94   98   100
describe(CC$Risk_Scale_BECCS)
## CC$Risk_Scale_BECCS 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       86    0.999    45.35    30.93     0.00     6.90 
##      .25      .50      .75      .90      .95 
##    24.25    49.50    64.00    80.00    92.55 
## 
## lowest :   0   1   4   5   6, highest:  93  94  95  96 100
## --------------------------------------------------------------------------------
## CC.Risk_2_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       80    0.992    31.86    31.91      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      5.0     25.5     51.0     72.3     90.0 
## 
## lowest :   0   1   2   3   4, highest:  90  91  92  96 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_BECCS, na.rm = TRUE)
## [1] 25.48881
describe(CC$Risk_Score_DACCS)
## CC$Risk_Score_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660      151        1    42.98    30.22     0.00     5.50 
##      .25      .50      .75      .90      .95 
##    22.25    45.00    62.50    78.10    89.35 
## 
## lowest : 0    0.5  1    2.5  3   , highest: 95.5 98   98.5 99.5 100
describe(CC$Risk_Scale_DACCS)
## CC$Risk_Scale_DACCS 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       90    0.999    50.12    31.12      0.0      9.0 
##      .25      .50      .75      .90      .95 
##     30.0     52.0     70.0     84.4     95.0 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Risk_2_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       92    0.994    35.84    33.73      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      7.0     33.0     59.0     79.4     89.0 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  99 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_DACCS, na.rm = TRUE)
## [1] 26.347
describe(CC$Risk_Score_EW)
## CC$Risk_Score_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672      146        1    38.45     28.7     2.35     7.50 
##      .25      .50      .75      .90      .95 
##    17.75    37.00    55.00    75.00    85.00 
## 
## lowest : 0    1    2    2.5  3   , highest: 94   96   97.5 99.5 100
describe(CC$Risk_Scale_EW)
## CC$Risk_Scale_EW 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       85    0.999    45.98    30.54      3.7     10.0 
##      .25      .50      .75      .90      .95 
##     25.0     50.0     64.0     82.6     93.3 
## 
## lowest :   0   2   3   4   5, highest:  93  94  95  99 100
## --------------------------------------------------------------------------------
## CC.Risk_2_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       83    0.994    30.92    31.26      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      5.5     24.0     51.0     74.6     85.0 
## 
## lowest :   0   1   2   3   4, highest:  92  95  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_EW, na.rm = TRUE)
## [1] 25.2467
describe(CC$Risk_Score_OF)
## CC$Risk_Score_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680      153        1    46.37    30.58     0.80    10.00 
##      .25      .50      .75      .90      .95 
##    25.25    45.50    66.25    81.50    89.85 
## 
## lowest : 0    0.5  1.5  2    5   , highest: 96   97   98.5 99   100
describe(CC$Risk_Scale_OF)
## CC$Risk_Scale_OF 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       94    0.999    54.49    31.47      1.3     14.6 
##      .25      .50      .75      .90      .95 
##     33.0     57.0     75.0     89.4     97.7 
## 
## lowest :   0   1   2   4   7, highest:  95  96  97  98 100
## --------------------------------------------------------------------------------
## CC.Risk_2_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       88    0.996    38.24    33.86      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.5     37.0     62.5     80.0     90.0 
## 
## lowest :   0   1   2   3   4, highest:  95  96  97  98 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_OF, na.rm = TRUE)
## [1] 26.54645
describe(CC$Risk_Score_BF)
## CC$Risk_Score_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759      105    0.999    26.04    22.96    0.000    0.500 
##      .25      .50      .75      .90      .95 
##    8.375   22.250   40.250   52.300   60.650 
## 
## lowest : 0    0.5  1    1.5  2.5 , highest: 81.5 83.5 85.5 86   100
describe(CC$Risk_Scale_BF)
## CC$Risk_Scale_BF 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       74    0.998    32.13    27.09     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    12.75    30.00    50.00    69.00    74.00 
## 
## lowest :   0   1   2   4   5, highest:  83  84  87  93 100
## --------------------------------------------------------------------------------
## CC.Risk_2_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       65    0.984    19.96    22.59     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     0.75    14.00    32.00    51.00    63.65 
## 
## lowest :   0   1   2   3   4, highest:  80  81  87  88 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_BF, na.rm = TRUE)
## [1] 20.52519
describe(CC$Risk_Score_NE)
## CC$Risk_Score_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      126        1    52.92     34.7      2.4      6.9 
##      .25      .50      .75      .90      .95 
##     25.0     58.0     75.5     91.5    100.0 
## 
## lowest : 0    0.5  1.5  2    2.5 , highest: 95.5 96.5 98.5 99   100
describe(CC$Risk_Scale_NE)
## CC$Risk_Scale_NE 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       76    0.998    56.87    34.87      3.8     10.0 
##      .25      .50      .75      .90      .95 
##     31.0     62.0     80.0    100.0    100.0 
## 
## lowest :   0   1   3   4   5, highest:  93  94  95  99 100
## --------------------------------------------------------------------------------
## CC.Risk_2_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       84    0.999    48.97    37.15      0.0      2.6 
##      .25      .50      .75      .90      .95 
##     20.0     54.0     76.0     93.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  93  95  97  99 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_NE, na.rm = TRUE)
## [1] 30.17134
describe(CC$Risk_Score_SE)
## CC$Risk_Score_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       69    0.955    10.18    13.87      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      3.0     15.0     34.0     42.9 
## 
## lowest : 0    0.5  1    1.5  2   , highest: 45   48.5 51   63   78.5
describe(CC$Risk_Scale_SE)
## CC$Risk_Scale_SE 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       54    0.945    13.63    18.58      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      5.0     21.0     40.6     52.0 
## 
## lowest :  0  1  2  3  4, highest: 67 79 80 82 88
## --------------------------------------------------------------------------------
## CC.Risk_2_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       42    0.821    6.735    10.85      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      0.0      7.0     22.6     33.8 
## 
## lowest :  0  1  2  3  4, highest: 51 64 75 79 88
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_SE, na.rm = TRUE)
## [1] 14.22085
describe(CC$Risk_Score_WE)
## CC$Risk_Score_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       94    0.988    18.79    23.08      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      1.0     11.0     25.5     52.2     67.3 
## 
## lowest : 0    0.5  1    1.5  2   , highest: 89   89.5 92   98   98.5
describe(CC$Risk_Scale_WE)
## CC$Risk_Scale_WE 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       71    0.984    23.56    28.04      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      1.0     13.0     38.0     68.0     80.2 
## 
## lowest :   0   1   2   3   4, highest:  90  91  92  97 100
## --------------------------------------------------------------------------------
## CC.Risk_2_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       55    0.915    14.02    20.08        0        0 
##      .25      .50      .75      .90      .95 
##        0        4       19       43       68 
## 
## lowest :   0   1   2   3   4, highest:  84  89  90  99 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_WE, na.rm = TRUE)
## [1] 22.76701
#Cronbach's alpha for risk scale
psych::alpha(data.frame(CC$Risk_1_AFSCS, CC$Risk_2_AFSCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_AFSCS, CC$Risk_2_AFSCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.85      0.85    0.74      0.74 5.8 0.0093   16 20     0.74
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.83  0.85  0.87
## Duhachek  0.83  0.85  0.87
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_AFSCS      0.83      0.74    0.55      0.74 2.9       NA     0  0.74
## CC.Risk_2_AFSCS      0.67      0.74    0.55      0.74 2.9       NA     0  0.74
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_AFSCS 343  0.94  0.93  0.81   0.74   19 23
## CC.Risk_2_AFSCS 343  0.93  0.93  0.81   0.74   13 20
hist(CC$Risk_Score_AFSCS, main = 'AFSCS Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_BIO, CC$Risk_2_BIO))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_BIO, CC$Risk_2_BIO))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.81      0.81    0.69      0.69 4.4 0.012   34 23     0.69
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.79  0.81  0.84
## Duhachek  0.79  0.81  0.84
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_BIO      0.68      0.69    0.47      0.69 2.2       NA     0  0.69
## CC.Risk_2_BIO      0.69      0.69    0.47      0.69 2.2       NA     0  0.69
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_BIO 332  0.92  0.92  0.76   0.69   39 25
## CC.Risk_2_BIO 332  0.92  0.92  0.76   0.69   28 25
hist(CC$Risk_Score_BIO, main = 'BIO Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_BECCS, CC$Risk_2_BECCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_BECCS, CC$Risk_2_BECCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.81      0.82    0.69      0.69 4.4 0.012   39 25     0.69
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.79  0.81  0.84
## Duhachek  0.79  0.81  0.84
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_BECCS      0.65      0.69    0.47      0.69 2.2       NA     0  0.69
## CC.Risk_2_BECCS      0.73      0.69    0.47      0.69 2.2       NA     0  0.69
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_BECCS 330  0.91  0.92  0.76   0.69   45 27
## CC.Risk_2_BECCS 330  0.92  0.92  0.76   0.69   32 29
hist(CC$Risk_Score_BECCS, main = 'BECCS Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_DACCS, CC$Risk_2_DACCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_DACCS, CC$Risk_2_DACCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.83      0.84    0.72      0.72 5.1 0.01   43 26     0.72
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.81  0.83  0.85
## Duhachek  0.81  0.83  0.86
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_DACCS      0.66      0.72    0.52      0.72 2.6       NA     0  0.72
## CC.Risk_2_DACCS      0.78      0.72    0.52      0.72 2.6       NA     0  0.72
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_DACCS 347  0.92  0.93  0.79   0.72   50 27
## CC.Risk_2_DACCS 347  0.93  0.93  0.79   0.72   36 30
hist(CC$Risk_Score_DACCS, main = 'DACCS Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_EW, CC$Risk_2_EW))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_EW, CC$Risk_2_EW))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.83      0.83    0.71      0.71 4.9 0.011   38 25     0.71
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.81  0.83  0.85
## Duhachek  0.81  0.83  0.85
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_EW      0.68      0.71    0.51      0.71 2.5       NA     0  0.71
## CC.Risk_2_EW      0.75      0.71    0.51      0.71 2.5       NA     0  0.71
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_EW 335  0.92  0.93  0.78   0.71   46 27
## CC.Risk_2_EW 335  0.93  0.93  0.78   0.71   31 28
hist(CC$Risk_Score_EW, main = 'EW Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_OF, CC$Risk_2_OF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_OF, CC$Risk_2_OF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.84      0.85    0.73      0.73 5.5 0.0097   46 27     0.73
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.82  0.84  0.86
## Duhachek  0.83  0.84  0.86
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_OF      0.68      0.73    0.54      0.73 2.7       NA     0  0.73
## CC.Risk_2_OF      0.79      0.73    0.54      0.73 2.7       NA     0  0.73
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_OF 327  0.93  0.93   0.8   0.73   54 27
## CC.Risk_2_OF 327  0.94  0.93   0.8   0.73   38 30
hist(CC$Risk_Score_OF, main = 'OF Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_BF, CC$Risk_2_BF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_BF, CC$Risk_2_BF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.79      0.79    0.65      0.65 3.8 0.013   26 21     0.65
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.76  0.79  0.81
## Duhachek  0.76  0.79  0.81
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_BF      0.73      0.65    0.43      0.65 1.9       NA     0  0.65
## CC.Risk_2_BF      0.58      0.65    0.43      0.65 1.9       NA     0  0.65
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_BF 248  0.92  0.91  0.73   0.65   32 24
## CC.Risk_2_BF 248  0.90  0.91  0.73   0.65   20 21
hist(CC$Risk_Score_BF, main = 'BF Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_NE, CC$Risk_2_NE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_NE, CC$Risk_2_NE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.92      0.92    0.85      0.85  12 0.0051   53 30     0.85
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.91  0.92  0.93
## Duhachek  0.91  0.92  0.93
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_NE      0.81      0.85    0.73      0.85 5.8       NA     0  0.85
## CC.Risk_2_NE      0.90      0.85    0.73      0.85 5.8       NA     0  0.85
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_NE 257  0.96  0.96  0.89   0.85   57 30
## CC.Risk_2_NE 257  0.96  0.96  0.89   0.85   49 32
hist(CC$Risk_Score_NE, main = 'NE Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_SE, CC$Risk_2_SE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_SE, CC$Risk_2_SE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.62      0.64    0.47      0.47 1.8 0.022   10 14     0.47
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.57  0.62  0.66
## Duhachek  0.58  0.62  0.66
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_SE      0.66      0.47    0.22      0.47 0.9       NA     0  0.47
## CC.Risk_2_SE      0.34      0.47    0.22      0.47 0.9       NA     0  0.47
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_SE 245   0.9  0.86  0.59   0.47 13.6 19
## CC.Risk_2_SE 245   0.8  0.86  0.59   0.47  6.7 14
hist(CC$Risk_Score_SE, main = 'SE Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_WE, CC$Risk_2_WE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_WE, CC$Risk_2_WE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.87      0.88    0.78      0.78   7 0.008   19 23     0.78
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.85  0.87  0.88
## Duhachek  0.85  0.87  0.88
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_WE      0.95      0.78    0.61      0.78 3.5       NA     0  0.78
## CC.Risk_2_WE      0.64      0.78    0.61      0.78 3.5       NA     0  0.78
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_WE 257  0.95  0.94  0.83   0.78   24 26
## CC.Risk_2_WE 257  0.93  0.94  0.83   0.78   14 22
hist(CC$Risk_Score_WE, main = 'WE Risk Scale Score')

# Correlation between Support Items Across all 10 Technologies 
CC$R1 <- rowMeans(CC [, c("Risk_1_AFSCS", "Risk_1_BIO", "Risk_1_BECCS", "Risk_1_DACCS", "Risk_1_EW", "Risk_1_OF", "Risk_1_BF", "Risk_1_NE", "Risk_1_SE", "Risk_1_WE")], na.rm=TRUE)
CC$R2 <- rowMeans(CC [, c("Risk_2_AFSCS", "Risk_2_BIO", "Risk_2_BECCS", "Risk_2_DACCS", "Risk_2_EW", "Risk_2_OF", "Risk_2_BF", "Risk_2_NE", "Risk_2_SE", "Risk_2_WE")], na.rm=TRUE)

cor.test(CC$R1,CC$R2)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$R1 and CC$R2
## t = 40.056, df = 1005, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.7591263 0.8068239
## sample estimates:
##       cor 
## 0.7841303

l. Understanding

# Understanding was rated on a one item scale (0 = Strongly disagree to 100 = Strongly agree) and represented participant understanding of the technology rated.

## 1. I understand how this works.

i. Descriptives

# Define Variables
CC$Und_AFSCS <- CC$Risk_AFSCS_30
CC$Und_BIO <- CC$Risk_BIO_30
CC$Und_BECCS <- CC$Risk_BECCS_30
CC$Und_DACCS <- CC$Risk_DACCS_30
CC$Und_EW <- CC$Risk_EW_30
CC$Und_OF <- CC$Risk_OF_30
CC$Und_BF <- CC$Risk_BF_30
CC$Und_NE <- CC$Risk_NE_30
CC$Und_SE <- CC$Risk_SE_30
CC$Und_WE <- CC$Risk_WE_30

# Descriptives
describe(CC$Und_AFSCS)
## CC$Und_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       85    0.995    70.96    28.64     17.3     32.0 
##      .25      .50      .75      .90      .95 
##     57.0     77.0     92.0    100.0    100.0 
## 
## lowest :   0   1   3   5   7, highest:  96  97  98  99 100
describe(CC$Und_BIO)
## CC$Und_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       91        1    48.06    32.06        1       10 
##      .25      .50      .75      .90      .95 
##       25       50       70       86       95 
## 
## lowest :   0   1   2   5   6, highest:  94  95  97  98 100
describe(CC$Und_BECCS)
## CC$Und_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       93    0.999    45.42    32.95      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     22.0     44.5     67.0     85.0     92.0 
## 
## lowest :   0   1   2   4   5, highest:  95  96  97  99 100
describe(CC$Und_DACCS)
## CC$Und_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       93        1    45.61    34.44      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     19.0     46.0     70.0     85.0     92.7 
## 
## lowest :   0   1   2   3   4, highest:  93  95  98  99 100
describe(CC$Und_EW)
## CC$Und_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       90    0.999    43.44    31.42      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     21.5     41.0     63.0     80.6     88.0 
## 
## lowest :   0   1   2   3   4, highest:  88  91  93  94 100
describe(CC$Und_OF)
## CC$Und_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       88        1    51.18    32.34      5.0      9.0 
##      .25      .50      .75      .90      .95 
##     28.0     53.0     73.5     87.0     94.0 
## 
## lowest :   0   2   4   5   6, highest:  94  95  97  98 100
describe(CC$Und_BF)
## CC$Und_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       80    0.999    61.88    30.79     6.75    23.40 
##      .25      .50      .75      .90      .95 
##    42.75    66.00    81.25    99.00   100.00 
## 
## lowest :   0   1   5  10  12, highest:  96  97  98  99 100
describe(CC$Und_NE)
## CC$Und_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       83    0.999    65.29    30.66     10.8     23.6 
##      .25      .50      .75      .90      .95 
##     50.0     71.0     88.0     99.4    100.0 
## 
## lowest :   0   2   3   4   6, highest:  96  97  98  99 100
describe(CC$Und_SE)
## CC$Und_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       56    0.978    83.81    19.14     50.0     56.4 
##      .25      .50      .75      .90      .95 
##     75.0     90.0    100.0    100.0    100.0 
## 
## lowest :   2   5  21  22  30, highest:  96  97  98  99 100
describe(CC$Und_WE)
## CC$Und_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       53    0.982    82.82    19.09     51.0     61.2 
##      .25      .50      .75      .90      .95 
##     74.0     87.0    100.0    100.0    100.0 
## 
## lowest :   0  15  16  19  26, highest:  96  97  98  99 100
sd(CC$Und_AFSCS, na.rm = TRUE)
## [1] 26.01993
sd(CC$Und_BIO, na.rm = TRUE)
## [1] 27.80563
sd(CC$Und_BECCS, na.rm = TRUE)
## [1] 28.56679
sd(CC$Und_DACCS, na.rm = TRUE)
## [1] 29.85122
sd(CC$Und_EW, na.rm = TRUE)
## [1] 27.30677
sd(CC$Und_OF, na.rm = TRUE)
## [1] 28.08305
sd(CC$Und_BF, na.rm = TRUE)
## [1] 27.24634
sd(CC$Und_NE, na.rm = TRUE)
## [1] 27.26283
sd(CC$Und_SE, na.rm = TRUE)
## [1] 18.50476
sd(CC$Und_WE, na.rm = TRUE)
## [1] 18.43885
hist(CC$Und_AFSCS)

hist(CC$Und_BIO)

hist(CC$Und_BECCS)

hist(CC$Und_DACCS)

hist(CC$Und_EW)

hist(CC$Und_OF)

hist(CC$Und_BF)

hist(CC$Und_NE)

hist(CC$Und_SE)

hist(CC$Und_WE)

ii. Score(s) & Scale(s)

# Note: Understanding scores & scales not present because measure is one item.)

m. Familiarity/Understanding

i. Descriptives

CC$Fam <- data.frame(CC$Familiar_AFSCS,
CC$Familiar_BIO,
CC$Familiar_BECCS,
CC$Familiar_DACCS,
CC$Familiar_EW,
CC$Familiar_OF,
CC$Familiar_BF,
CC$Familiar_NE,
CC$Familiar_SE,
CC$Familiar_WE)

describe(CC$Fam)
## CC$Fam 
## 
##  10  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Familiar_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       91    0.997     62.7    34.53        3       12 
##      .25      .50      .75      .90      .95 
##       42       67       89      100      100 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Familiar_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       81    0.993    27.79    29.57     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     4.75    20.00    44.00    68.90    82.00 
## 
## lowest :   0   1   2   3   4, highest:  92  93  94  95 100
## --------------------------------------------------------------------------------
## CC.Familiar_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       87    0.994    29.64    30.74     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     5.00    21.00    50.00    73.00    83.55 
## 
## lowest :   0   1   2   3   4, highest:  91  92  94  98 100
## --------------------------------------------------------------------------------
## CC.Familiar_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       82    0.992    26.05    27.55      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      4.5     20.0     42.0     65.0     75.0 
## 
## lowest :   0   1   2   3   4, highest:  89  90  93  99 100
## --------------------------------------------------------------------------------
## CC.Familiar_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       76     0.98     22.5    25.19      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     17.0     35.5     60.0     70.0 
## 
## lowest :  0  1  2  3  4, highest: 79 80 87 90 91
## --------------------------------------------------------------------------------
## CC.Familiar_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       76    0.992    25.62    27.66      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      4.0     18.0     40.5     62.8     76.0 
## 
## lowest :   0   1   2   3   4, highest:  85  86  87  89 100
## --------------------------------------------------------------------------------
## CC.Familiar_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       87    0.999    57.92    32.61      0.0     18.0 
##      .25      .50      .75      .90      .95 
##     36.0     61.0     81.0     93.3    100.0 
## 
## lowest :   0   1   5   6   8, highest:  95  96  98  99 100
## --------------------------------------------------------------------------------
## CC.Familiar_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       82    0.998    69.17     29.4     14.8     30.6 
##      .25      .50      .75      .90      .95 
##     53.0     75.0     90.0    100.0    100.0 
## 
## lowest :   0   2   3   4   6, highest:  95  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Familiar_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       49    0.941    87.95    15.68     52.2     65.2 
##      .25      .50      .75      .90      .95 
##     82.0     94.0    100.0    100.0    100.0 
## 
## lowest :   0  18  35  41  45, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Familiar_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       61    0.982    81.79     20.9     41.6     55.0 
##      .25      .50      .75      .90      .95 
##     75.0     87.0    100.0    100.0    100.0 
## 
## lowest :   0   1   3  13  19, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
CC$Understanding <- data.frame(CC$Und_WE,
CC$Und_SE,
CC$Und_NE,
CC$Und_BF,
CC$Und_OF,
CC$Und_EW,
CC$Und_DACCS,
CC$Und_BECCS,
CC$Und_BIO,
CC$Und_AFSC)
describe(CC$Understanding)
## CC$Understanding 
## 
##  10  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Und_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       53    0.982    82.82    19.09     51.0     61.2 
##      .25      .50      .75      .90      .95 
##     74.0     87.0    100.0    100.0    100.0 
## 
## lowest :   0  15  16  19  26, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Und_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       56    0.978    83.81    19.14     50.0     56.4 
##      .25      .50      .75      .90      .95 
##     75.0     90.0    100.0    100.0    100.0 
## 
## lowest :   2   5  21  22  30, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Und_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       83    0.999    65.29    30.66     10.8     23.6 
##      .25      .50      .75      .90      .95 
##     50.0     71.0     88.0     99.4    100.0 
## 
## lowest :   0   2   3   4   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Und_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       80    0.999    61.88    30.79     6.75    23.40 
##      .25      .50      .75      .90      .95 
##    42.75    66.00    81.25    99.00   100.00 
## 
## lowest :   0   1   5  10  12, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Und_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       88        1    51.18    32.34      5.0      9.0 
##      .25      .50      .75      .90      .95 
##     28.0     53.0     73.5     87.0     94.0 
## 
## lowest :   0   2   4   5   6, highest:  94  95  97  98 100
## --------------------------------------------------------------------------------
## CC.Und_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       90    0.999    43.44    31.42      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     21.5     41.0     63.0     80.6     88.0 
## 
## lowest :   0   1   2   3   4, highest:  88  91  93  94 100
## --------------------------------------------------------------------------------
## CC.Und_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       93        1    45.61    34.44      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     19.0     46.0     70.0     85.0     92.7 
## 
## lowest :   0   1   2   3   4, highest:  93  95  98  99 100
## --------------------------------------------------------------------------------
## CC.Und_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       93    0.999    45.42    32.95      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     22.0     44.5     67.0     85.0     92.0 
## 
## lowest :   0   1   2   4   5, highest:  95  96  97  99 100
## --------------------------------------------------------------------------------
## CC.Und_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       91        1    48.06    32.06        1       10 
##      .25      .50      .75      .90      .95 
##       25       50       70       86       95 
## 
## lowest :   0   1   2   5   6, highest:  94  95  97  98 100
## --------------------------------------------------------------------------------
## CC.Und_AFSC 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       85    0.995    70.96    28.64     17.3     32.0 
##      .25      .50      .75      .90      .95 
##     57.0     77.0     92.0    100.0    100.0 
## 
## lowest :   0   1   3   5   7, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
#Mean understanding/familiarity scores  by technology
CC$FR.AFSCS <- rowMeans(CC [, c("Familiar_AFSCS", "Und_AFSCS")], na.rm=TRUE)
CC$FR.BIO <- rowMeans(CC [, c("Familiar_BIO", "Und_BIO")], na.rm=TRUE)
CC$FR.BECCS <- rowMeans(CC [, c("Familiar_BECCS", "Und_BECCS")], na.rm=TRUE)
CC$FR.DACCS <- rowMeans(CC [, c("Familiar_DACCS", "Und_DACCS")], na.rm=TRUE)
CC$FR.EW <- rowMeans(CC [, c("Familiar_EW", "Und_EW")], na.rm=TRUE)
CC$FR.OF <- rowMeans(CC [, c("Familiar_OF", "Und_OF")], na.rm=TRUE)
CC$FR.BF <- rowMeans(CC [, c("Familiar_BF", "Und_BF")], na.rm=TRUE)
CC$FR.NE <- rowMeans(CC [, c("Familiar_NE", "Und_NE")], na.rm=TRUE)
CC$FR.SE <- rowMeans(CC [, c("Familiar_SE", "Und_SE")], na.rm=TRUE)
CC$FR.WE <- rowMeans(CC [, c("Familiar_WE", "Und_WE")], na.rm=TRUE)

#Descriptives
describe(CC$FR.AFSCS)
## CC$FR.AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664      149    0.999    66.83    29.53     16.6     26.6 
##      .25      .50      .75      .90      .95 
##     50.0     71.0     88.5    100.0    100.0 
## 
## lowest : 0    0.5  2.5  3.5  5   , highest: 98   98.5 99   99.5 100
describe(CC$FR.BIO)
## CC$FR.BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675      138        1    37.92    27.57     1.00     9.10 
##      .25      .50      .75      .90      .95 
##    18.88    34.75    54.50    73.95    80.00 
## 
## lowest : 0    0.5  1    3    3.5 , highest: 92.5 93   93.5 98.5 100
describe(CC$FR.BECCS)
## CC$FR.BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677      142        1    37.53    28.26    0.225    4.500 
##      .25      .50      .75      .90      .95 
##   18.000   35.000   52.500   71.550   82.325 
## 
## lowest : 0    0.5  1    1.5  2   , highest: 92.5 93.5 95   99.5 100
describe(CC$FR.DACCS)
## CC$FR.DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660      149        1    35.83     27.9     0.50     5.00 
##      .25      .50      .75      .90      .95 
##    15.00    34.00    52.00    69.70    78.55 
## 
## lowest : 0    0.5  1    2    2.5 , highest: 93   93.5 95   99.5 100
describe(CC$FR.EW)
## CC$FR.EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672      128        1    32.97    25.23      0.0      3.0 
##      .25      .50      .75      .90      .95 
##     16.0     30.5     47.5     64.6     75.5 
## 
## lowest : 0    1    1.5  2    2.5 , highest: 86   88.5 89.5 95   95.5
describe(CC$FR.OF)
## CC$FR.OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680      145        1     38.4    25.63     4.50     7.50 
##      .25      .50      .75      .90      .95 
##    20.00    38.50    52.50    67.50    80.35 
## 
## lowest : 0    0.5  1    2    3.5 , highest: 86.5 87   92.5 93   100
describe(CC$FR.BF)
## CC$FR.BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759      117        1     59.9    28.49    12.70    26.70 
##      .25      .50      .75      .90      .95 
##    44.38    61.00    77.50    93.00    99.32 
## 
## lowest : 0    0.5  2.5  10   11.5, highest: 97.5 98.5 99   99.5 100
describe(CC$FR.NE)
## CC$FR.NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      120        1    67.23    26.85     19.2     33.6 
##      .25      .50      .75      .90      .95 
##     51.0     72.5     87.0     95.0     99.2 
## 
## lowest : 0    2.5  3    6    7.5 , highest: 96.5 97   97.5 99   100
describe(CC$FR.SE)
## CC$FR.SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       78    0.987    85.88    16.23     52.2     63.7 
##      .25      .50      .75      .90      .95 
##     80.0     90.0     98.5    100.0    100.0 
## 
## lowest : 23   25   33   40.5 42.5, highest: 98   98.5 99   99.5 100
describe(CC$FR.WE)
## CC$FR.WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       88    0.994    82.31    17.72     50.4     63.0 
##      .25      .50      .75      .90      .95 
##     73.5     86.0     95.0    100.0    100.0 
## 
## lowest : 1.5  8    16   23.5 34  , highest: 97   97.5 98   99.5 100
#SD
sd(CC$FR.AFSCS, na.rm = TRUE)
## [1] 26.26246
sd(CC$FR.BIO, na.rm = TRUE)
## [1] 24.31053
sd(CC$FR.BECCS, na.rm = TRUE)
## [1] 24.87139
sd(CC$FR.DACCS, na.rm = TRUE)
## [1] 24.4548
sd(CC$FR.EW, na.rm = TRUE)
## [1] 22.23358
sd(CC$FR.OF, na.rm = TRUE)
## [1] 22.49241
sd(CC$FR.BF, na.rm = TRUE)
## [1] 25.10918
sd(CC$FR.NE, na.rm = TRUE)
## [1] 24.0517
sd(CC$FR.SE, na.rm = TRUE)
## [1] 15.59678
sd(CC$FR.WE, na.rm = TRUE)
## [1] 16.95988
#Histograms
hist(CC$FR.AFSCS)

hist(CC$FR.BIO)

hist(CC$FR.BECCS)

hist(CC$FR.DACCS)

hist(CC$FR.EW)

hist(CC$FR.OF)

hist(CC$FR.BF)

hist(CC$FR.NE)

hist(CC$FR.SE)

hist(CC$FR.WE)

ii. Score(s) & Scale(s)

#Scales
CC$FR2.AFSCS <- data.frame(CC$Familiar_AFSCS, CC$Und_AFSCS)
CC$FR2.BIO <- data.frame(CC$Familiar_BIO, CC$Und_BIO)
CC$FR2.BECCS <- data.frame(CC$Familiar_BECCS, CC$Und_BECCS)
CC$FR2.DACCS <- data.frame(CC$Familiar_DACCS, CC$Und_DACCS)
CC$FR2.EW <- data.frame(CC$Familiar_EW, CC$Und_EW)
CC$FR2.OF <- data.frame(CC$Familiar_OF, CC$Und_OF)
CC$FR2.BF <- data.frame(CC$Familiar_BF, CC$Und_BF)
CC$FR2.NE <- data.frame(CC$Familiar_NE, CC$Und_NE)
CC$FR2.SE <- data.frame(CC$Familiar_SE, CC$Und_SE)
CC$FR2.WE <- data.frame(CC$Familiar_WE, CC$Und_WE)

#Alphas
psych::alpha(CC$FR2.AFSCS)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.AFSCS)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.83      0.84    0.72      0.72 5.1 0.01   67 26     0.72
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.81  0.83  0.85
## Duhachek  0.81  0.83  0.85
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Familiar_AFSCS      0.85      0.72    0.52      0.72 2.6       NA     0
## CC.Und_AFSCS           0.61      0.72    0.52      0.72 2.6       NA     0
##                   med.r
## CC.Familiar_AFSCS  0.72
## CC.Und_AFSCS       0.72
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_AFSCS 343  0.94  0.93  0.79   0.72   63 31
## CC.Und_AFSCS      343  0.91  0.93  0.79   0.72   71 26
psych::alpha(CC$FR2.BIO)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.BIO)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.73      0.73    0.57      0.57 2.7 0.017   38 24     0.57
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.69  0.73  0.76
## Duhachek  0.70  0.73  0.76
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Familiar_BIO      0.56      0.57    0.33      0.57 1.3       NA     0  0.57
## CC.Und_BIO           0.59      0.57    0.33      0.57 1.3       NA     0  0.57
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_BIO 332  0.88  0.89  0.67   0.57   28 27
## CC.Und_BIO      332  0.89  0.89  0.67   0.57   48 28
psych::alpha(CC$FR2.BECCS)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.BECCS)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.71      0.71    0.56      0.56 2.5 0.018   38 25     0.56
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.68  0.71  0.75
## Duhachek  0.68  0.71  0.75
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Familiar_BECCS      0.54      0.56    0.31      0.56 1.3       NA     0
## CC.Und_BECCS           0.57      0.56    0.31      0.56 1.3       NA     0
##                   med.r
## CC.Familiar_BECCS  0.56
## CC.Und_BECCS       0.56
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_BECCS 330  0.88  0.88  0.66   0.56   30 28
## CC.Und_BECCS      330  0.89  0.88  0.66   0.56   45 29
psych::alpha(CC$FR2.DACCS)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.DACCS)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.73      0.74    0.58      0.58 2.8 0.017   36 24     0.58
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.69  0.73  0.76
## Duhachek  0.70  0.73  0.76
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Familiar_DACCS      0.49      0.58    0.34      0.58 1.4       NA     0
## CC.Und_DACCS           0.69      0.58    0.34      0.58 1.4       NA     0
##                   med.r
## CC.Familiar_DACCS  0.58
## CC.Und_DACCS       0.58
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_DACCS 347  0.87  0.89  0.68   0.58   26 25
## CC.Und_DACCS      347  0.91  0.89  0.68   0.58   46 30
psych::alpha(CC$FR2.EW)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.EW)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.7      0.71    0.55      0.55 2.4 0.018   33 22     0.55
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.66   0.7  0.74
## Duhachek  0.67   0.7  0.74
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Familiar_EW      0.46      0.55     0.3      0.55 1.2       NA     0  0.55
## CC.Und_EW           0.64      0.55     0.3      0.55 1.2       NA     0  0.55
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_EW 335  0.86  0.88  0.65   0.55   22 23
## CC.Und_EW      335  0.90  0.88  0.65   0.55   43 27
psych::alpha(CC$FR2.OF)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.OF)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.59      0.59    0.42      0.42 1.4 0.026   38 22     0.42
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.53  0.59  0.63
## Duhachek  0.53  0.59  0.64
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Familiar_OF      0.38      0.42    0.17      0.42 0.71       NA     0  0.42
## CC.Und_OF           0.46      0.42    0.17      0.42 0.71       NA     0  0.42
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_OF 327  0.82  0.84  0.54   0.42   26 25
## CC.Und_OF      327  0.86  0.84  0.54   0.42   51 28
psych::alpha(CC$FR2.BF)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.BF)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.76      0.76    0.62      0.62 3.2 0.015   60 25     0.62
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.73  0.76  0.79
## Duhachek  0.73  0.76  0.79
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Familiar_BF      0.65      0.62    0.38      0.62 1.6       NA     0  0.62
## CC.Und_BF           0.59      0.62    0.38      0.62 1.6       NA     0  0.62
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_BF 248  0.90   0.9  0.71   0.62   58 29
## CC.Und_BF      248  0.89   0.9  0.71   0.62   62 27
psych::alpha(CC$FR2.NE)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.NE)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.75      0.75     0.6       0.6 2.9 0.016   67 24      0.6
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.71  0.75  0.78
## Duhachek  0.72  0.75  0.78
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Familiar_NE      0.58       0.6    0.35       0.6 1.5       NA     0   0.6
## CC.Und_NE           0.61       0.6    0.35       0.6 1.5       NA     0   0.6
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_NE 257  0.89  0.89  0.69    0.6   69 27
## CC.Und_NE      257  0.90  0.89  0.69    0.6   65 27
psych::alpha(CC$FR2.SE)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.SE)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.77      0.77    0.63      0.63 3.4 0.014   86 16     0.63
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.74  0.77   0.8
## Duhachek  0.74  0.77   0.8
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Familiar_SE      0.55      0.63     0.4      0.63 1.7       NA     0  0.63
## CC.Und_SE           0.73      0.63     0.4      0.63 1.7       NA     0  0.63
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_SE 245  0.89   0.9  0.72   0.63   88 16
## CC.Und_SE      245  0.92   0.9  0.72   0.63   84 19
psych::alpha(CC$FR2.WE)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.WE)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.66      0.66    0.49      0.49 1.9 0.021   82 17     0.49
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.61  0.66   0.7
## Duhachek  0.62  0.66   0.7
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Familiar_WE      0.56      0.49    0.24      0.49 0.97       NA     0  0.49
## CC.Und_WE           0.44      0.49    0.24      0.49 0.97       NA     0  0.49
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_WE 257  0.88  0.86  0.61   0.49   82 21
## CC.Und_WE      257  0.85  0.86  0.61   0.49   83 18
# Correlation between Familiarity and Understanding Across all 10 Technologies 

CC$FamCor <- rowMeans(CC [, c("Familiar_AFSCS", "Familiar_BIO", "Familiar_BECCS",  "Familiar_DACCS", "Familiar_EW",  "Familiar_OF",  "Familiar_BF", "Familiar_NE",  "Familiar_SE", "Familiar_WE")], na.rm=TRUE)
CC$UndCor <- rowMeans(CC [, c("Und_AFSCS", "Und_BIO",  "Und_BECCS", "Und_DACCS",  "Und_EW",  "Und_OF",  "Und_BF", "Und_NE",  "Und_SE",  "Und_WE")], na.rm=TRUE)

cor.test(CC$FamCor,CC$UndCor)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$FamCor and CC$UndCor
## t = 26.407, df = 1005, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6020578 0.6751138
## sample estimates:
##       cor 
## 0.6400301

IV. Long Form

a. Rename Variables

#Renaming variables to fit pivot_longer command

## Benefit
CC$Ben.AFSCS <- CC$Ben_AFSCS
length(CC$Ben.AFSCS)
## [1] 1007
CC$Ben.BIO <- CC$Ben_BIO
length(CC$Ben.BIO)
## [1] 1007
CC$Ben.BECCS <- CC$Ben_BECCS
length(CC$Ben.BECCS) 
## [1] 1007
CC$Ben.DACCS <- CC$Ben_DACCS
length(CC$Ben.DACCS)
## [1] 1007
CC$Ben.EW <- CC$Ben_EW
length(CC$Ben.EW) 
## [1] 1007
CC$Ben.OF <- CC$Ben_OF
length(CC$Ben.OF) 
## [1] 1007
CC$Ben.BF <- CC$Ben_BF
length(CC$Ben.BF) 
## [1] 1007
CC$Ben.NE <- CC$Ben_NE
length(CC$Ben.NE) 
## [1] 1007
CC$Ben.SE <- CC$Ben_SE
length(CC$Ben.SE) 
## [1] 1007
CC$Ben.WE <- CC$Ben_WE
length(CC$Ben.WE) 
## [1] 1007
## Control
CC$Control.AFSCS <- CC$Control_AFSCS
length(CC$Control.AFSCS)
## [1] 1007
CC$Control.BIO <- CC$Control_BIO
length(CC$Control.BIO)
## [1] 1007
CC$Control.BECCS <- CC$Control_BECCS
length(CC$Control.BECCS)
## [1] 1007
CC$Control.DACCS <- CC$Control_DACCS
length(CC$Control.DACCS)
## [1] 1007
CC$Control.EW <- CC$Control_EW
length(CC$Control.EW)
## [1] 1007
CC$Control.OF <- CC$Control_OF
length(CC$Control.OF)
## [1] 1007
CC$Control.BF <- CC$Control_BF
length(CC$Control.BF)
## [1] 1007
CC$Control.NE <- CC$Control_NE
length(CC$Control.NE)
## [1] 1007
CC$Control.SE <- CC$Control_SE
length(CC$Control.SE)
## [1] 1007
CC$Control.WE <- CC$Control_WE
length(CC$Control.WE)
## [1] 1007
## Familiarity
CC$Familiar.AFSCS <- CC$Familiar_AFSCS
length(CC$Familiar.AFSCS)
## [1] 1007
CC$Familiar.BIO <- CC$Familiar_BIO
length(CC$Familiar.BIO)
## [1] 1007
CC$Familiar.BECCS <- CC$Familiar_BECCS
length(CC$Familiar.BECCS)
## [1] 1007
CC$Familiar.DACCS <- CC$Familiar_DACCS
length(CC$Familiar.DACCS)
## [1] 1007
CC$Familiar.EW <- CC$Familiar_EW
length(CC$Familiar.EW)
## [1] 1007
CC$Familiar.OF <- CC$Familiar_OF
length(CC$Familiar.OF)
## [1] 1007
CC$Familiar.BF <- CC$Familiar_BF
length(CC$Familiar.BF)
## [1] 1007
CC$Familiar.NE <- CC$Familiar_NE
length(CC$Familiar.NE)
## [1] 1007
CC$Familiar.SE <- CC$Familiar_SE
length(CC$Familiar.SE)
## [1] 1007
CC$Familiar.WE <- CC$Familiar_WE
length(CC$Familiar.WE)
## [1] 1007
## Naturalness
CC$Naturalness.AFSCS <- CC$Nat_Score_AFSCS
length(CC$Naturalness.AFSCS)
## [1] 1007
CC$Naturalness.BIO <- CC$Nat_Score_BIO
length(CC$Naturalness.BIO)
## [1] 1007
CC$Naturalness.BECCS <- CC$Nat_Score_BECCS
length(CC$Naturalness.BECCS)
## [1] 1007
CC$Naturalness.DACCS <- CC$Nat_Score_DACCS
length(CC$Naturalness.DACCS)
## [1] 1007
CC$Naturalness.EW <- CC$Nat_Score_EW
length(CC$Naturalness.EW)
## [1] 1007
CC$Naturalness.OF <- CC$Nat_Score_OF
length(CC$Naturalness.OF)
## [1] 1007
CC$Naturalness.BF <- CC$Nat_Score_BF
length(CC$Naturalness.BF)
## [1] 1007
CC$Naturalness.NE <- CC$Nat_Score_NE
length(CC$Naturalness.NE)
## [1] 1007
CC$Naturalness.SE <- CC$Nat_Score_SE
length(CC$Naturalness.SE)
## [1] 1007
CC$Naturalness.WE <- CC$Nat_Score_WE
length(CC$Naturalness.WE)
## [1] 1007
## Risk
CC$Risk.AFSCS <- CC$Risk_Score_AFSCS
length(CC$Risk.AFSCS)
## [1] 1007
CC$Risk.BIO <- CC$Risk_Score_BIO
length(CC$Risk.BIO)
## [1] 1007
CC$Risk.BECCS <- CC$Risk_Score_BECCS
length(CC$Risk.BECCS)
## [1] 1007
CC$Risk.DACCS <- CC$Risk_Score_DACCS
length(CC$Risk.DACCS)
## [1] 1007
CC$Risk.EW <- CC$Risk_Score_EW
length(CC$Risk.EW)
## [1] 1007
CC$Risk.OF <- CC$Risk_Score_OF
length(CC$Risk.OF)
## [1] 1007
CC$Risk.BF <- CC$Risk_Score_BF
length(CC$Risk.BF)
## [1] 1007
CC$Risk.NE <- CC$Risk_Score_NE
length(CC$Risk.NE)
## [1] 1007
CC$Risk.SE <- CC$Risk_Score_SE
length(CC$Risk.SE)
## [1] 1007
CC$Risk.WE <- CC$Risk_Score_WE
length(CC$Risk.WE)
## [1] 1007
## Support
CC$Support.AFSCS <- CC$Support_Score_AFSCS
length(CC$Support.AFSCS)
## [1] 1007
CC$Support.BIO <- CC$Support_Score_BIO
length(CC$Support.BIO)
## [1] 1007
CC$Support.BECCS <- CC$Support_Score_BECCS
length(CC$Support.BECCS)
## [1] 1007
CC$Support.DACCS <- CC$Support_Score_DACCS
length(CC$Support.DACCS)
## [1] 1007
CC$Support.EW <- CC$Support_Score_EW
length(CC$Support.EW)
## [1] 1007
CC$Support.OF <- CC$Support_Score_OF
length(CC$Support.OF)
## [1] 1007
CC$Support.BF <- CC$Support_Score_BF
length(CC$Support.BF)
## [1] 1007
CC$Support.NE <- CC$Support_Score_NE
length(CC$Support.NE)
## [1] 1007
CC$Support.SE <- CC$Support_Score_SE
length(CC$Support.SE)
## [1] 1007
CC$Support.WE <- CC$Support_Score_WE
length(CC$Support.WE)
## [1] 1007
## Understanding
CC$Understanding.AFSCS <- CC$Und_AFSCS
length(CC$Understanding.AFSCS)
## [1] 1007
CC$Understanding.BIO <- CC$Und_BIO
length(CC$Understanding.BIO)
## [1] 1007
CC$Understanding.BECCS <- CC$Und_BECCS
length(CC$Understanding.BECCS)
## [1] 1007
CC$Understanding.DACCS <- CC$Und_DACCS
length(CC$Understanding.DACCS)
## [1] 1007
CC$Understanding.EW <- CC$Und_EW
length(CC$Understanding.EW)
## [1] 1007
CC$Understanding.OF <- CC$Und_OF
length(CC$Understanding.OF)
## [1] 1007
CC$Understanding.BF <- CC$Und_BF
length(CC$Understanding.BF)
## [1] 1007
CC$Understanding.NE <- CC$Und_NE
length(CC$Understanding.NE)
## [1] 1007
CC$Understanding.SE <- CC$Und_SE
length(CC$Understanding.SE)
## [1] 1007
CC$Understanding.WE <- CC$Und_AFSCS
length(CC$Understanding.WE)
## [1] 1007
## Familiarity/Understanding (Mean)
length(CC$FR.AFSCS)
## [1] 1007
length(CC$FR.BIO)
## [1] 1007
length(CC$FR.BECCS)
## [1] 1007
length(CC$FR.DACCS)
## [1] 1007
length(CC$FR.EW)
## [1] 1007
length(CC$FR.OF)
## [1] 1007
length(CC$FR.BF)
## [1] 1007
length(CC$FR.NE)
## [1] 1007
length(CC$FR.SE)
## [1] 1007
length(CC$FR.WE)
## [1] 1007

b. Transform: Wide to Long

library(lmerTest)
library(lme4)

#Reshape to long form
CCvector <- c("Ben.AFSCS", "Ben.BIO", "Ben.BECCS", "Ben.DACCS", "Ben.EW", "Ben.OF" , "Ben.BF", "Ben.NE", "Ben.SE", "Ben.WE", "Control.AFSCS" , "Control.BIO" , "Control.BECCS" , "Control.DACCS", "Control.EW", "Control.OF", "Control.BF", "Control.NE", "Control.SE", "Control.WE", "Familiar.AFSCS" , "Familiar.BIO", "Familiar.BECCS" , "Familiar.DACCS", "Familiar.EW", "Familiar.OF", "Familiar.BF", "Familiar.NE", "Familiar.SE", "Familiar.WE", "Naturalness.AFSCS", "Naturalness.BIO" , "Naturalness.BECCS", "Naturalness.DACCS", "Naturalness.EW", "Naturalness.OF", "Naturalness.BF", "Naturalness.NE", "Naturalness.SE", "Naturalness.WE", "Risk.AFSCS", "Risk.BIO", "Risk.BECCS", "Risk.DACCS", "Risk.EW", "Risk.OF", "Risk.BF", "Risk.NE" , "Risk.SE", "Risk.WE", "Support.AFSCS", "Support.BIO", "Support.BECCS" , "Support.DACCS", "Support.EW" , "Support.OF", "Support.BF", "Support.NE", "Support.SE", "Support.WE", "Understanding.AFSCS", "Understanding.BIO", "Understanding.BECCS", "Understanding.DACCS", "Understanding.EW", "Understanding.OF", "Understanding.BF", "Understanding.NE","Understanding.SE","Understanding.WE", "FR.AFSCS", "FR.BIO", "FR.BECCS", "FR.DACCS", "FR.EW", "FR.OF", "FR.BF", "FR.NE", "FR.SE", "FR.WE")

L <- reshape(data = CC,
       varying = CCvector,
       timevar = "Type",
       direction = "long")

c. Center Variables

# Describe & Mean Center Long Variables 

## By Technology Measures
table(L$Type) 
## 
## AFSCS BECCS    BF   BIO DACCS    EW    NE    OF    SE    WE 
##  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007
describe(L$Ben) 
## L$Ben 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3021     7049      101    0.999    57.98    29.92        5       20 
##      .25      .50      .75      .90      .95 
##       40       61       77       90      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
sd(L$Ben, na.rm = TRUE)
## [1] 26.41802
describe(L$Control) 
## L$Control 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3021     7049      100    0.999    64.82    28.44       17       29 
##      .25      .50      .75      .90      .95 
##       50       69       85       99      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(L$Familiar) 
## L$Familiar 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3021     7049      101    0.997     46.4    39.99        0        0 
##      .25      .50      .75      .90      .95 
##       13       45       79       98      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(L$Naturalness) 
## L$Naturalness 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3021     7049      366        1    39.98    24.53     5.00    12.00 
##      .25      .50      .75      .90      .95 
##    24.75    39.00    54.25    70.25    75.00 
## 
## lowest : 0     0.25  0.5   0.75  1    , highest: 98    98.75 99.5  99.75 100
sd(L$Naturalness, na.rm = TRUE)
## [1] 21.54695
describe(L$Risk)
## L$Risk 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3021     7049      201    0.998    33.04    30.73      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      8.0     28.5     52.0     72.5     84.5 
## 
## lowest : 0    0.5  1    1.5  2   , highest: 98   98.5 99   99.5 100
sd(L$Risk, na.rm = TRUE)
## [1] 27.20861
describe(L$Support) 
## L$Support 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3021     7049      201    0.999    59.57    32.84      0.0     13.0 
##      .25      .50      .75      .90      .95 
##     41.5     62.5     82.5     99.0    100.0 
## 
## lowest : 0    0.5  1    1.5  2   , highest: 98   98.5 99   99.5 100
sd(L$Support, na.rm = TRUE)
## [1] 28.93482
describe(L$Understanding) 
## L$Understanding 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3107     6963      101    0.999    57.74    34.27        4       12 
##      .25      .50      .75      .90      .95 
##       34       61       83       98      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(L$FR) 
## L$FR 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3021     7049      201        1    52.39     34.4      4.0     11.0 
##      .25      .50      .75      .90      .95 
##     27.5     51.0     78.0     94.0    100.0 
## 
## lowest : 0    0.5  1    1.5  2   , highest: 98   98.5 99   99.5 100
cor.test (L$Familiar, L$Understanding)
## 
##  Pearson's product-moment correlation
## 
## data:  L$Familiar and L$Understanding
## t = 47.117, df = 2852, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6404416 0.6817284
## sample estimates:
##       cor 
## 0.6615861
L$Benefit.c <- L$Ben - 57.98
L$Control.c <- L$Control - 64.82
L$Familiarity <- L$Familiar
L$Familiarity.c <- L$Familiarity - 46.40
L$Naturalness.c <- L$Naturalness - 39.98 
L$Risk.c <- L$Risk - 33.04
L$Support.c <- L$Support - 59.57
L$Understanding.c <- L$Understanding - 57.74
L$FR.c <- L$FR - 52.39

## Individual Difference Measures 

describe(L$Dem_Age)
## L$Dem_Age 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     9970      100       67        1     45.4    18.64       21       24 
##      .25      .50      .75      .90      .95 
##       31       44       59       67       71 
## 
## lowest : 18 19 20 21 22, highest: 80 81 82 91 93
L$Age.c <- L$Dem_Age - 45.4
describe(L$ATNS_Score)
## L$ATNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10070        0      366        1    54.56    24.38     18.8     26.0 
##      .25      .50      .75      .90      .95 
##     40.2     54.4     69.0     82.0     92.4 
## 
## lowest : 0    2    3    4    6.4 , highest: 97.6 98.8 99.2 99.8 100
L$ATNS_Score.c <- L$ATNS_Score - 54.56
describe(L$CCB_Score)
## L$CCB_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10070        0      250    0.987    81.61    23.21    25.00    46.75 
##      .25      .50      .75      .90      .95 
##    75.00    91.25    99.00   100.00   100.00 
## 
## lowest : 0     2     3.75  4     4.75 , highest: 99    99.25 99.5  99.75 100
L$CCBelief_Score.c <- L$CCB_Score -  81.61
describe(L$CNS_Score)
## L$CNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10070        0      322        1    63.36     18.7     35.0     43.0 
##      .25      .50      .75      .90      .95 
##     52.8     63.0     74.6     85.0     91.8 
## 
## lowest : 0    8.6  10   12.8 16  , highest: 97.8 98.2 98.6 99.6 100
L$CNS_Score.c <- L$CNS_Score -63.36
describe(L$Individualism_Score)
## L$Individualism_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10070        0      266        1    70.77     18.9    40.25    50.00 
##      .25      .50      .75      .90      .95 
##    60.00    71.50    83.75    91.75    95.75 
## 
## lowest : 0.75  6     6.25  6.5   15.5 , highest: 99    99.25 99.5  99.75 100
L$Individualism_Score.c <- L$Individualism_Score - 70.77
describe(L$Collectivism_Score)
## L$Collectivism_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10070        0      341        1    54.19    27.22    12.75    21.50 
##      .25      .50      .75      .90      .95 
##    38.50    54.50    72.00    86.00    93.25 
## 
## lowest : 0     0.25  0.5   1     1.75 , highest: 98.25 98.5  99.5  99.75 100
L$Collectivism_Score.c <- L$Collectivism_Score - 54.19 
describe(L$Ideology)
## L$Ideology 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10070        0       13    0.987  -0.8684    2.065     -3.0     -3.0 
##      .25      .50      .75      .90      .95 
##     -2.5     -1.5      0.0      2.0      2.5 
##                                                                             
## Value       -3.0  -2.5  -2.0  -1.5  -1.0  -0.5   0.0   0.5   1.0   1.5   2.0
## Frequency   1680  1400  1200  1030   700   410  1160   200   420   510   530
## Proportion 0.167 0.139 0.119 0.102 0.070 0.041 0.115 0.020 0.042 0.051 0.053
##                       
## Value        2.5   3.0
## Frequency    380   450
## Proportion 0.038 0.045
## 
## For the frequency table, variable is rounded to the nearest 0
L$Ideology.c <- L$Ideology - 1.94
describe(CC$Dem_SES)
## CC$Dem_SES 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       10    0.985    6.274     2.76        2        3 
##      .25      .50      .75      .90      .95 
##        4        7        8        9       10 
##                                                                       
## Value          1     2     3     4     5     6     7     8     9    10
## Frequency     35    40    91    97    99   108   183   148   122    83
## Proportion 0.035 0.040 0.090 0.096 0.098 0.107 0.182 0.147 0.121 0.083
## 
## For the frequency table, variable is rounded to the nearest 0
L$SES.c <- L$Dem_SE-6.274
describe(CC$EdNum)
## CC$EdNum 
##        n  missing distinct     Info     Mean      Gmd 
##     1007        0        9    0.918    5.471    1.475 
##                                                                 
## Value          2     3     4     5     6     7     8     9    10
## Frequency      5   134    60   233   405   126    19    22     3
## Proportion 0.005 0.133 0.060 0.231 0.402 0.125 0.019 0.022 0.003
## 
## For the frequency table, variable is rounded to the nearest 0
L$EDU.c <- L$EdNum - 5.471

d. Contrast Code - Carbon Dioxide Removal vs Renewable Energy

# Renewable
L$Renewable <- (-1/2)*(L$Type == 'AFSCS') + (-1/2)*(L$Type == 'BIO') + (-1/2)*(L$Type == 'BECCS') + (-1/2)*(L$Type == 'DACCS') + (-1/2)*(L$Type == 'EW') + (-1/2)*(L$Type == 'OF') + (1/2)*(L$Type == 'BF') + (1/2)*(L$Type == 'NE') + (1/2)*(L$Type == 'SE') + (1/2)*(L$Type == 'WE')

e. Contrast Codes (Deviation Coding)

# These codes compare the mean of each technology to the grand mean of all technologies on whatever the outcome variable is (e.g., support)

#1. Direct air capture and carbon sequestration vs. Grand mean
L$DACCS <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') +(1)*(L$Type == 'DACCS') +(0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C2. Nuclear Energy vs. Grand Mean
L$NE <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (1)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C3. Ocean Fertilization vs. Grand Mean
L$OF <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (1)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C4. BECCS vs. Grand Mean
L$BECCS <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (1)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C5. Enhanced Weathering vs. Grand Mean
L$EW <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (1)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C6. Biofuel vs. Grand Mean
L$BF <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (1)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C7. Wind Energy vs. Grand Mean
L$WE <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (1)*(L$Type == 'WE')
                                   
#C8. Solar Energy vs. Grand Mean
L$SE <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (1)*(L$Type == 'SE') + (0)*(L$Type == 'WE')
                                   
#C9. Afforestation/reforestation and Soil Carbon Sequestration vs. Grand Mean
L$AFSCS <- (1)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C10. Biochar  vs. Grand Mean
L$BIO <- (0)*(L$Type == 'AFSCS') + (1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (-1)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

f. Demographics

# Assuming 'gender' is a factor variable with levels: 1 = man, 2 = woman, 3 = nonbinary
# Convert 'gender' to a factor variable if it's not already
L$Gender <- factor(L$Dem_Gen)

# Create contrasts
contrasts(L$Gender) <- cbind(
  "Man vs Woman" = c(1, -1, 0),  # Contrast comparing men to women
  "Man&Woman vs Nonbinary" = c(1/2, 1/2, -1)  # Contrast comparing men and women combined to nonbinary
)

# Check orthogonality
round(cor(contrasts(L$Gender)), 10)  # Should return an identity matrix
##                        Man vs Woman Man&Woman vs Nonbinary
## Man vs Woman                      1                      0
## Man&Woman vs Nonbinary            0                      1
# Now, 'gender' has orthogonal contrast codes

# Ethnicity

# Create Ethnicity variable based on Dem_Ethnicity in data 'L'
L$Ethnicity <- NA
L$Ethnicity[L$Dem_Ethnicity == 1] <- 'Asian'
L$Ethnicity[L$Dem_Ethnicity == 2] <- 'Black'
L$Ethnicity[L$Dem_Ethnicity == 3] <- 'Hispanic'
L$Ethnicity[L$Dem_Ethnicity == 4] <- 'Nat Amer'
L$Ethnicity[L$Dem_Ethnicity == 5] <- 'Nat Pac'
L$Ethnicity[L$Dem_Ethnicity == 6] <- 'White'
L$Ethnicity[L$Dem_Ethnicity == 7] <- 'Other'

# Convert 'Ethnicity' to a factor variable if it's not already
L$Ethnicity <- factor(L$Ethnicity)

# Create dummy variables for each ethnic group compared to White
L$Ethnicity_Asian <- ifelse(L$Ethnicity == "Asian", 1, 0)
L$Ethnicity_Black <- ifelse(L$Ethnicity == "Black", 1, 0)
L$Ethnicity_Hispanic <- ifelse(L$Ethnicity == "Hispanic", 1, 0)
L$Ethnicity_NatAmer <- ifelse(L$Ethnicity == "Nat Amer", 1, 0)
L$Ethnicity_NatPac <- ifelse(L$Ethnicity == "Nat Pac", 1, 0)
L$Ethnicity_Other <- ifelse(L$Ethnicity == "Other", 1, 0)

# Remove dummy variable for White ethnicity
L$Ethnicity_White <- NULL

# Now, 'Ethnicity_Asian', 'Ethnicity_Black', 'Ethnicity_Hispanic', 'Ethnicity_NatAmer', 'Ethnicity_NatPac', and 'Ethnicity_Other' are the dummy variables

V. Correlations

a. Tech by Variables: Benefit, Familiarity/Understanding, Naturalness, Risk, and Support

L$corR <- data.frame(L$Ben, L$FR, L$Naturalness, L$Risk, L$Support)

mydata.cor11 = cor(L$corR, use = "pairwise.complete.obs")
head(round(mydata.cor11,2))
##               L.Ben  L.FR L.Naturalness L.Risk L.Support
## L.Ben          1.00  0.24          0.26  -0.33      0.63
## L.FR           0.24  1.00          0.38  -0.34      0.38
## L.Naturalness  0.26  0.38          1.00  -0.49      0.43
## L.Risk        -0.33 -0.34         -0.49   1.00     -0.61
## L.Support      0.63  0.38          0.43  -0.61      1.00
library("Hmisc")
mydata.rcorr11 = rcorr(as.matrix(mydata.cor11))
mydata.rcorr11
##               L.Ben  L.FR L.Naturalness L.Risk L.Support
## L.Ben          1.00  0.35          0.45  -0.75      0.85
## L.FR           0.35  1.00          0.61  -0.74      0.59
## L.Naturalness  0.45  0.61          1.00  -0.87      0.69
## L.Risk        -0.75 -0.74         -0.87   1.00     -0.95
## L.Support      0.85  0.59          0.69  -0.95      1.00
## 
## n= 5 
## 
## 
## P
##               L.Ben  L.FR   L.Naturalness L.Risk L.Support
## L.Ben                0.5605 0.4480        0.1424 0.0682   
## L.FR          0.5605        0.2730        0.1540 0.2901   
## L.Naturalness 0.4480 0.2730               0.0574 0.1931   
## L.Risk        0.1424 0.1540 0.0574               0.0140   
## L.Support     0.0682 0.2901 0.1931        0.0140
library(corrplot)
## corrplot 0.92 loaded
corrplot(mydata.cor11, method="color")

corrplot(mydata.cor11, addCoef.col = 1,  number.cex = 0.3, method = 'number')

b. Individual Differences

#Individual Differences
L$corID <- data.frame(L$ATNS_Score, L$CCB_Score, L$CNS_Score, L$Individualism_Score, L$Collectivism_Score, L$Ideology)

mydata.cor2 = cor(L$corID, use = "pairwise.complete.obs")
head(round(mydata.cor2,2))
##                       L.ATNS_Score L.CCB_Score L.CNS_Score
## L.ATNS_Score                  1.00       -0.05        0.29
## L.CCB_Score                  -0.05        1.00        0.30
## L.CNS_Score                   0.29        0.30        1.00
## L.Individualism_Score         0.14        0.03        0.12
## L.Collectivism_Score          0.09       -0.19       -0.02
## L.Ideology                    0.04       -0.64       -0.30
##                       L.Individualism_Score L.Collectivism_Score L.Ideology
## L.ATNS_Score                           0.14                 0.09       0.04
## L.CCB_Score                            0.03                -0.19      -0.64
## L.CNS_Score                            0.12                -0.02      -0.30
## L.Individualism_Score                  1.00                 0.21      -0.01
## L.Collectivism_Score                   0.21                 1.00       0.32
## L.Ideology                            -0.01                 0.32       1.00
library("Hmisc")
mydata.rcorr2 = rcorr(as.matrix(mydata.cor2))
mydata.rcorr2
##                       L.ATNS_Score L.CCB_Score L.CNS_Score
## L.ATNS_Score                  1.00       -0.15        0.26
## L.CCB_Score                  -0.15        1.00        0.57
## L.CNS_Score                   0.26        0.57        1.00
## L.Individualism_Score        -0.07       -0.05       -0.08
## L.Collectivism_Score         -0.16       -0.61       -0.52
## L.Ideology                   -0.05       -0.95       -0.72
##                       L.Individualism_Score L.Collectivism_Score L.Ideology
## L.ATNS_Score                          -0.07                -0.16      -0.05
## L.CCB_Score                           -0.05                -0.61      -0.95
## L.CNS_Score                           -0.08                -0.52      -0.72
## L.Individualism_Score                  1.00                 0.10      -0.11
## L.Collectivism_Score                   0.10                 1.00       0.57
## L.Ideology                            -0.11                 0.57       1.00
## 
## n= 6 
## 
## 
## P
##                       L.ATNS_Score L.CCB_Score L.CNS_Score
## L.ATNS_Score                       0.7701      0.6158     
## L.CCB_Score           0.7701                   0.2376     
## L.CNS_Score           0.6158       0.2376                 
## L.Individualism_Score 0.8997       0.9277      0.8832     
## L.Collectivism_Score  0.7594       0.1966      0.2922     
## L.Ideology            0.9263       0.0037      0.1084     
##                       L.Individualism_Score L.Collectivism_Score L.Ideology
## L.ATNS_Score          0.8997                0.7594               0.9263    
## L.CCB_Score           0.9277                0.1966               0.0037    
## L.CNS_Score           0.8832                0.2922               0.1084    
## L.Individualism_Score                       0.8473               0.8427    
## L.Collectivism_Score  0.8473                                     0.2347    
## L.Ideology            0.8427                0.2347
library(corrplot)
corrplot(mydata.cor2, method="color")

corrplot(mydata.cor2, addCoef.col = 1,  number.cex = 0.3, method = 'number')

##c. Zero Order Correlations

# Age and Gender 
cor.test(CC$Dem_Age, CC$Dem_Gen)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Age and CC$Dem_Gen
## t = -2.8079, df = 995, p-value = 0.005084
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1499265 -0.0267263
## sample estimates:
##         cor 
## -0.08866549
# Age and Education 
cor.test(CC$Dem_Age, CC$Dem_Edu)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Age and CC$Dem_Edu
## t = 5.0156, df = 995, p-value = 6.258e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.09588088 0.21700305
## sample estimates:
##       cor 
## 0.1570324
# Age and SES
cor.test(CC$Dem_Age, CC$Dem_SES)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Age and CC$Dem_SES
## t = 1.8151, df = 994, p-value = 0.06982
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.004659095  0.119167081
## sample estimates:
##        cor 
## 0.05747504
# Age and Aversion to Tampering with Nature
cor.test(CC$Dem_Age, CC$ATNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Age and CC$ATNS_Score
## t = 1.0732, df = 995, p-value = 0.2834
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.02814267  0.09588696
## sample estimates:
##        cor 
## 0.03400306
# Age and Climate Change Belief
cor.test(CC$Dem_Age, CC$CCB_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Age and CC$CCB_Score
## t = -5.3, df = 995, p-value = 1.427e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2254643 -0.1046881
## sample estimates:
##        cor 
## -0.1656975
# Age and Connectedness to Nature
cor.test(CC$Dem_Age, CC$CNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Age and CC$CNS_Score
## t = 3.1178, df = 995, p-value = 0.001874
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03649872 0.15947457
## sample estimates:
##        cor 
## 0.09836215
# Age and Political Ideology
cor.test(CC$Dem_Age, CC$Ideology)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Age and CC$Ideology
## t = 4.8249, df = 995, p-value = 1.62e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.08995803 0.21130261
## sample estimates:
##       cor 
## 0.1511999
# Gender and Education 
cor.test(CC$Dem_Gen, CC$Dem_Edu)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Gen and CC$Dem_Edu
## t = 1.045, df = 1005, p-value = 0.2963
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.02889094  0.09452976
## sample estimates:
##      cor 
## 0.032945
# Gender and SES
cor.test(CC$Dem_Gen, CC$Dem_SES)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Gen and CC$Dem_SES
## t = 1.3017, df = 1004, p-value = 0.1933
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.02081245  0.10259577
## sample estimates:
##        cor 
## 0.04104821
# Gender and Aversion to Tampering with Nature
cor.test(CC$Dem_Gen, CC$ATNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Gen and CC$ATNS_Score
## t = -6.7495, df = 1005, p-value = 2.503e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2665865 -0.1483704
## sample estimates:
##        cor 
## -0.2082389
# Gender and Climate Change Belief
cor.test(CC$Dem_Gen, CC$CCB_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Gen and CC$CCB_Score
## t = -2.534, df = 1005, p-value = 0.01143
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.14076367 -0.01799082
## sample estimates:
##         cor 
## -0.07967941
# Gender and Connectedness to Nature
cor.test(CC$Dem_Gen, CC$CNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Gen and CC$CNS_Score
## t = -5.1191, df = 1005, p-value = 3.677e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.21903313 -0.09860699
## sample estimates:
##       cor 
## -0.159413
# Gender and Political Ideology
cor.test(CC$Dem_Gen, CC$Ideology)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Gen and CC$Ideology
## t = 1.9133, df = 1005, p-value = 0.05599
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.00153865  0.12156892
## sample estimates:
##        cor 
## 0.06024422
# Education and SES
cor.test(CC$Dem_Edu, CC$Dem_SES)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Edu and CC$Dem_SES
## t = 11.4, df = 1004, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2826379 0.3921347
## sample estimates:
##       cor 
## 0.3385318
# Education and Aversion to Tampering with Nature
cor.test(CC$Dem_Edu, CC$ATNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Edu and CC$ATNS_Score
## t = -2.4982, df = 1005, p-value = 0.01264
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.13965980 -0.01686516
## sample estimates:
##         cor 
## -0.07856046
# Education and Climate Change Belief
cor.test(CC$Dem_Edu, CC$CCB_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Edu and CC$CCB_Score
## t = 1.3042, df = 1005, p-value = 0.1925
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.02072462  0.10262170
## sample estimates:
##        cor 
## 0.04110515
# Education and Connectedness to Nature
cor.test(CC$Dem_Edu, CC$CNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Edu and CC$CNS_Score
## t = 1.7004, df = 1005, p-value = 0.08936
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.008242423  0.114958753
## sample estimates:
##      cor 
## 0.053562
# Education and Political Ideology
cor.test(CC$Dem_Edu, CC$Ideology)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Edu and CC$Ideology
## t = -2.6518, df = 1005, p-value = 0.008132
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.14439085 -0.02169181
## sample estimates:
##         cor 
## -0.08335725
# SES and Aversion to Tampering with Nature
cor.test(CC$Dem_SES, CC$ATNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_SES and CC$ATNS_Score
## t = -1.7618, df = 1004, p-value = 0.07842
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.116921365  0.006314827
## sample estimates:
##        cor 
## -0.0555147
# SES and Climate Change Belief
cor.test(CC$Dem_SES, CC$CCB_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_SES and CC$CCB_Score
## t = -2.7951, df = 1004, p-value = 0.005287
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.14887180 -0.02620697
## sample estimates:
##         cor 
## -0.08787249
# SES and Connectedness to Nature
cor.test(CC$Dem_SES, CC$CNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_SES and CC$CNS_Score
## t = -1.5389, df = 1004, p-value = 0.1241
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1099887  0.0133372
## sample estimates:
##         cor 
## -0.04851065
# SES and Political Ideology
cor.test(CC$Dem_SES, CC$Ideology)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_SES and CC$Ideology
## t = 3.4441, df = 1004, p-value = 0.0005966
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.0465622 0.1687399
## sample estimates:
##       cor 
## 0.1080591
# ATNS and Climate Change Belief
cor.test(CC$ATNS_Score, CC$CCB_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$ATNS_Score and CC$CCB_Score
## t = -1.5637, df = 1005, p-value = 0.1182
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.11070453  0.01255104
## sample estimates:
##         cor 
## -0.04926431
# ATNS and Connectedness to Nature
cor.test(CC$ATNS_Score, CC$CNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$ATNS_Score and CC$CNS_Score
## t = 9.6442, df = 1005, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2334665 0.3465914
## sample estimates:
##      cor 
## 0.291046
# ATNS and Political Ideology
cor.test(CC$ATNS_Score, CC$Ideology)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$ATNS_Score and CC$Ideology
## t = 1.2313, df = 1005, p-value = 0.2185
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.02302278  0.10034613
## sample estimates:
##        cor 
## 0.03880957
# Climate Change Belief and Connectedness to Nature
cor.test(CC$CCB_Score, CC$CNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$CCB_Score and CC$CNS_Score
## t = 10.087, df = 1005, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2460271 0.3582627
## sample estimates:
##      cor 
## 0.303196
# Climate Change Belief and Political Ideology
cor.test(CC$CCB_Score, CC$Ideology)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$CCB_Score and CC$Ideology
## t = -26.269, df = 1005, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.6732828 -0.5999135
## sample estimates:
##        cor 
## -0.6380441
# Connectedness to Nature and Political Ideology
cor.test(CC$CNS_Score, CC$Ideology)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$CNS_Score and CC$Ideology
## t = -9.8754, df = 1005, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3527090 -0.2400456
## sample estimates:
##        cor 
## -0.2974123

VI. Violin Plots

# Support
library(ggplot2)

# Create a violin plot of means
ggplot(L, aes(x = "", y = Support)) +
  geom_violin(fill = "darkred", color = "darkred") +
  geom_point(aes(y = mean(Support)), color = "black", size = 1, shape = 18) +
  labs(title = "Means for Support",
       y = "Support") +
  theme_minimal()
## Warning: Removed 7049 rows containing non-finite values (`stat_ydensity()`).
## Warning: Removed 10070 rows containing missing values (`geom_point()`).

# Naturalness
library(ggplot2)

# Create a violin plot of means
ggplot(L, aes(x = "", y = Naturalness)) +
  geom_violin(fill = "darkseagreen4", color = "darkseagreen4") +
  geom_point(aes(y = mean(Naturalness)), color = "black", size = 1, shape = 18) +
  labs(title = "Means for Naturalness",
       y = "Naturalness") +
  theme_minimal()
## Warning: Removed 7049 rows containing non-finite values (`stat_ydensity()`).
## Removed 10070 rows containing missing values (`geom_point()`).

# Risk
library(ggplot2)

# Create a violin plot of means
ggplot(L, aes(x = "", y = Risk)) +
  geom_violin(fill = "navajowhite3", color = "navajowhite3") +
  geom_point(aes(y = mean(Risk)), color = "black", size = 1, shape = 18) +
  labs(title = "Means for Risk",
       y = "Risk") +
  theme_minimal()
## Warning: Removed 7049 rows containing non-finite values (`stat_ydensity()`).
## Removed 10070 rows containing missing values (`geom_point()`).

# Benefit
library(ggplot2)

# Create a violin plot of means
ggplot(L, aes(x = "", y = Ben)) +
  geom_violin(fill = "steelblue4", color = "steelblue4") +
  geom_point(aes(y = mean(Ben)), color = "black", size = 1, shape = 18) +
  labs(title = "Means for Benefit",
       y = "Benefit") +
  theme_minimal()
## Warning: Removed 7049 rows containing non-finite values (`stat_ydensity()`).
## Removed 10070 rows containing missing values (`geom_point()`).

a. Naturalness

#DACCS
# Naturalness
library(ggplot2)

# AFSCS
ggplot(CC, aes(x = "", y = Nat_Score_AFSCS)) +
  geom_violin(fill = "darkseagreen4", color = "darkseagreen4") +
  geom_point(aes(y = mean(Nat_Score_AFSCS)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Naturalness for Afforestation/Reforestation",
       y = "Naturalness") +
  theme_minimal()
## Warning: Removed 664 rows containing non-finite values (`stat_ydensity()`).
## Warning: Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Nat_Score_AFSCS)
## CC$Nat_Score_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664      195        1     61.8    22.29    26.65    36.55 
##      .25      .50      .75      .90      .95 
##    48.88    63.25    74.88    87.20    94.90 
## 
## lowest : 0     7     8     11    11.75, highest: 98    98.75 99.5  99.75 100
sd(CC$Nat_Score_AFSCS, na.rm = TRUE)
## [1] 19.74064
# Biochar 
ggplot(CC, aes(x = "", y = Nat_Score_BIO)) +
  geom_violin(fill = "darkseagreen4", color = "darkseagreen4") +
  geom_point(aes(y = mean(Nat_Score_BIO)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Naturalness for Biochar",
       y = "Naturalness") +
  theme_minimal()
## Warning: Removed 675 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Nat_Score_BIO)
## CC$Nat_Score_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675      182        1    39.12    20.95     5.75    13.50 
##      .25      .50      .75      .90      .95 
##    26.88    39.25    51.06    63.25    68.75 
## 
## lowest : 0     0.75  1.75  2.5   2.75 , highest: 76.75 78    87.25 96.5  97.5
sd(CC$Nat_Score_BIO, na.rm = TRUE)
## [1] 18.56122
# Bioenergy Carbon Capture
ggplot(CC, aes(x = "", y = Nat_Score_BECCS)) +
  geom_violin(fill = "darkseagreen4", color = "darkseagreen4") +
  geom_point(aes(y = mean(Nat_Score_BECCS)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Naturalness for Bioenergy and Carbon Capture",
       y = "Naturalness") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 677 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Nat_Score_BECCS)
## CC$Nat_Score_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677      178        1    34.63    18.88     6.25    12.22 
##      .25      .50      .75      .90      .95 
##    24.50    33.75    45.94    54.33    61.39 
## 
## lowest : 0     2.25  2.5   3     4.5  , highest: 75    76.25 77.5  78.75 79
sd(CC$Nat_Score_BECCS, na.rm = TRUE)
## [1] 16.65608
# Direct Air Capture
ggplot(CC, aes(x = "", y = Nat_Score_DACCS)) +
  geom_violin(fill = "darkseagreen4", color = "darkseagreen4") +
  geom_point(aes(y = mean(Nat_Score_DACCS)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Naturalness for Direct Air Capture",
       y = "Naturalness") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 660 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Nat_Score_DACCS)
## CC$Nat_Score_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660      156    0.999    25.53    18.95     0.00     2.50 
##      .25      .50      .75      .90      .95 
##    13.12    24.75    35.75    45.85    56.60 
## 
## lowest : 0     0.25  0.5   2.5   3.5  , highest: 70.5  70.75 75    75.25 79.25
sd(CC$Nat_Score_DACCS, na.rm = TRUE)
## [1] 16.89449
# Enhanced Weathering
ggplot(CC, aes(x = "", y = Nat_Score_EW)) +
  geom_violin(fill = "darkseagreen4", color = "darkseagreen4") +
  geom_point(aes(y = mean(Nat_Score_EW)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Naturalness for Enhanced Weathering",
       y = "Naturalness") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 672 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Nat_Score_EW)
## CC$Nat_Score_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672      187        1    35.84    20.57    5.425   13.000 
##      .25      .50      .75      .90      .95 
##   22.500   36.000   49.125   57.750   65.550 
## 
## lowest : 0     0.5   0.75  2.25  2.5  , highest: 75    76.75 78.5  78.75 87.5
sd(CC$Nat_Score_EW, na.rm = TRUE)
## [1] 18.08834
# Ocean Fertilization 
ggplot(CC, aes(x = "", y = Nat_Score_OF)) +
  geom_violin(fill = "darkseagreen4", color = "darkseagreen4") +
  geom_point(aes(y = mean(Nat_Score_OF)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Naturalness for Ocean Fertilization",
       y = "Naturalness") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 680 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Nat_Score_OF)
## CC$Nat_Score_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680      166        1    31.77    19.83     4.05     8.50 
##      .25      .50      .75      .90      .95 
##    20.00    31.25    42.50    54.35    61.00 
## 
## lowest : 0     0.25  1.25  2.5   3    , highest: 73.5  75    80.25 80.5  84.5
sd(CC$Nat_Score_OF, na.rm = TRUE)
## [1] 17.48905
# Biofuel
ggplot(CC, aes(x = "", y = Nat_Score_BF)) +
  geom_violin(fill = "darkseagreen4", color = "darkseagreen4") +
  geom_point(aes(y = mean(Nat_Score_BF)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Naturalness for Biofuel",
       y = "Naturalness") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 759 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Nat_Score_BF)
## CC$Nat_Score_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759      147        1    39.26    20.21    8.088   14.450 
##      .25      .50      .75      .90      .95 
##   26.688   39.250   50.062   60.725   70.075 
## 
## lowest : 0     0.25  1     1.5   2    , highest: 72.5  73    74.25 75    86.75
sd(CC$Nat_Score_BF, na.rm = TRUE)
## [1] 17.80321
# Nuclear Energy
ggplot(CC, aes(x = "", y = Nat_Score_NE)) +
  geom_violin(fill = "darkseagreen4", color = "darkseagreen4") +
  geom_point(aes(y = mean(Nat_Score_NE)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Naturalness for Nuclear Energy",
       y = "Naturalness") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 750 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Nat_Score_NE)
## CC$Nat_Score_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      139    0.999    26.16    19.39     0.00     2.30 
##      .25      .50      .75      .90      .95 
##    13.50    25.00    38.25    48.25    55.60 
## 
## lowest : 0     1.25  1.5   2     2.5  , highest: 60.5  63.75 65    69.75 75
sd(CC$Nat_Score_NE, na.rm = TRUE)
## [1] 17.14904
# Solar Energy
ggplot(CC, aes(x = "", y = Nat_Score_SE)) +
  geom_violin(fill = "darkseagreen4", color = "darkseagreen4") +
  geom_point(aes(y = mean(Nat_Score_SE)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Naturalness for Solar Energy",
       y = "Naturalness") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 762 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Nat_Score_SE)
## CC$Nat_Score_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762      143        1    55.05    20.62    24.40    31.25 
##      .25      .50      .75      .90      .95 
##    41.75    54.75    69.75    75.00    83.20 
## 
## lowest : 0     2     5.5   14.5  16   , highest: 87.25 87.5  90    92    94
sd(CC$Nat_Score_SE, na.rm = TRUE)
## [1] 18.17609
# Wind Energy
ggplot(CC, aes(x = "", y = Nat_Score_WE)) +
  geom_violin(fill = "darkseagreen4", color = "darkseagreen4") +
  geom_point(aes(y = mean(Nat_Score_WE)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Naturalness for Wind Energy",
       y = "Naturalness") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 750 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Nat_Score_WE)
## CC$Nat_Score_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      146        1    54.36    21.33    21.80    25.75 
##      .25      .50      .75      .90      .95 
##    42.50    55.00    69.50    75.00    80.30 
## 
## lowest : 0     6     7.75  15    15.5 , highest: 86.75 90.5  91.5  92    100
sd(CC$Nat_Score_WE, na.rm = TRUE)
## [1] 18.78237

b. Support

# Support 

# AFSCS
ggplot(CC, aes(x = "", y = Support_Score_AFSCS)) +
  geom_violin(fill = "purple", color = "purple") +
  geom_point(aes(y = mean(Support_Score_AFSCS)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Support for Afforestation/Reforestation",
       y = "Support") +
  theme_minimal()
## Warning: Removed 664 rows containing non-finite values (`stat_ydensity()`).
## Warning: Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Support_Score_AFSCS)
## CC$Support_Score_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664      114    0.991    76.14    25.37    30.25    46.40 
##      .25      .50      .75      .90      .95 
##    62.50    82.00    95.25   100.00   100.00 
## 
## lowest : 0    4    5    10   12.5, highest: 97   97.5 98   99.5 100
sd(CC$Support_Score_AFSCS, na.rm = TRUE)
## [1] 23.61434
# Biochar 
ggplot(CC, aes(x = "", y = Support_Score_BIO)) +
  geom_violin(fill = "purple", color = "purple") +
  geom_point(aes(y = mean(Support_Score_BIO)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Support for Biochar",
       y = "Support") +
  theme_minimal()
## Warning: Removed 675 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Support_Score_BIO)
## CC$Support_Score_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675      142    0.999     53.6    29.85     0.55    13.55 
##      .25      .50      .75      .90      .95 
##    36.50    54.25    74.00    87.00    95.22 
## 
## lowest : 0    1    2.5  3.5  5   , highest: 94   95   95.5 97.5 100
sd(CC$Support_Score_BIO, na.rm = TRUE)
## [1] 26.28137
# Bioenergy Carbon Capture
ggplot(CC, aes(x = "", y = Support_Score_BECCS)) +
  geom_violin(fill = "purple", color = "purple") +
  geom_point(aes(y = mean(Support_Score_BECCS)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Support for Bioenergy and Carbon Capture",
       y = "Support") +
  theme_minimal()
## Warning: Removed 677 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Support_Score_BECCS)
## CC$Support_Score_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677      136    0.999    53.31       31     0.00     9.90 
##      .25      .50      .75      .90      .95 
##    35.25    55.00    74.25    85.00    98.20 
## 
## lowest : 0    1    1.5  2    5   , highest: 93   93.5 95   96   100
sd(CC$Support_Score_BECCS, na.rm = TRUE)
## [1] 27.28703
# Direct Air Capture
ggplot(CC, aes(x = "", y = Support_Score_DACCS)) +
  geom_violin(fill = "purple", color = "purple") +
  geom_point(aes(y = mean(Support_Score_DACCS)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Support for Direct Air Capture",
       y = "Support") +
  theme_minimal()
## Warning: Removed 660 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Support_Score_DACCS)
## CC$Support_Score_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660      148    0.999    52.88    32.02     0.00     5.80 
##      .25      .50      .75      .90      .95 
##    35.50    55.50    73.25    89.40    99.85 
## 
## lowest : 0    0.5  1    2    2.5 , highest: 96.5 97   98.5 99.5 100
sd(CC$Support_Score_DACCS, na.rm = TRUE)
## [1] 28.11655
# Enhanced Weathering
ggplot(CC, aes(x = "", y = Support_Score_EW)) +
  geom_violin(fill = "purple", color = "purple") +
  geom_point(aes(y = mean(Support_Score_EW)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Support for Enhanced Weathering",
       y = "Support") +
  theme_minimal()
## Warning: Removed 672 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Support_Score_EW)
## CC$Support_Score_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672      137    0.999    49.29    31.61      0.0      8.0 
##      .25      .50      .75      .90      .95 
##     29.5     50.5     68.5     85.8     98.6 
## 
## lowest : 0    0.5  1    2    2.5 , highest: 94.5 95   95.5 98   100
sd(CC$Support_Score_EW, na.rm = TRUE)
## [1] 27.63767
# Ocean Fertilization 
ggplot(CC, aes(x = "", y = Support_Score_OF)) +
  geom_violin(fill = "purple", color = "purple") +
  geom_point(aes(y = mean(Support_Score_OF)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Support for Ocean Fertilization",
       y = "Support") +
  theme_minimal()
## Warning: Removed 680 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Support_Score_OF)
## CC$Support_Score_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680      145    0.999    51.22       33     0.00     5.80 
##      .25      .50      .75      .90      .95 
##    27.50    54.50    73.75    89.00    95.00 
## 
## lowest : 0    0.5  2    3    3.5 , highest: 95   95.5 97   97.5 100
sd(CC$Support_Score_OF, na.rm = TRUE)
## [1] 28.83405
# Biofuel
ggplot(CC, aes(x = "", y = Support_Score_BF)) +
  geom_violin(fill = "purple", color = "purple") +
  geom_point(aes(y = mean(Support_Score_BF)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Support for Biofuel",
       y = "Support") +
  theme_minimal()
## Warning: Removed 759 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Support_Score_BF)
## CC$Support_Score_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759      120        1    60.82    27.72    10.00    22.05 
##      .25      .50      .75      .90      .95 
##    50.00    64.00    78.12    92.00    99.00 
## 
## lowest : 0    2.5  4    5    7   , highest: 95   96.5 98   99   100
sd(CC$Support_Score_BF, na.rm = TRUE)
## [1] 24.89028
# Nuclear Energy
ggplot(CC, aes(x = "", y = Support_Score_NE)) +
  geom_violin(fill = "purple", color = "purple") +
  geom_point(aes(y = mean(Support_Score_NE)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Support for Nuclear Energy",
       y = "Support") +
  theme_minimal()
## Warning: Removed 750 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Support_Score_NE)
## CC$Support_Score_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      122    0.999    50.55    35.85      0.0      0.6 
##      .25      .50      .75      .90      .95 
##     27.5     52.0     76.5     91.1     99.2 
## 
## lowest : 0    1    2    3    3.5 , highest: 95   95.5 96   99   100
sd(CC$Support_Score_NE, na.rm = TRUE)
## [1] 31.10287
# Solar Energy
ggplot(CC, aes(x = "", y = Support_Score_SE)) +
  geom_violin(fill = "purple", color = "purple") +
  geom_point(aes(y = mean(Support_Score_SE)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Support for Solar Energy",
       y = "Support") +
  theme_minimal()
## Warning: Removed 762 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Support_Score_SE)
## CC$Support_Score_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       93    0.979    79.51    24.49     30.4     49.2 
##      .25      .50      .75      .90      .95 
##     68.0     87.5    100.0    100.0    100.0 
## 
## lowest : 0    0.5  2.5  10   12  , highest: 97.5 98.5 99   99.5 100
sd(CC$Support_Score_SE, na.rm = TRUE)
## [1] 23.53217
# Wind Energy
ggplot(CC, aes(x = "", y = Support_Score_WE)) +
  geom_violin(fill = "purple", color = "purple") +
  geom_point(aes(y = mean(Support_Score_WE)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Support for Wind Energy",
       y = "Support") +
  theme_minimal()
## Warning: Removed 750 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

describe(CC$Support_Score_WE)
## CC$Support_Score_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       99    0.993    75.07    26.24     19.9     42.5 
##      .25      .50      .75      .90      .95 
##     64.0     80.0     95.5    100.0    100.0 
## 
## lowest : 0    3    10.5 11   15  , highest: 98   98.5 99   99.5 100
sd(CC$Support_Score_WE, na.rm = TRUE)
## [1] 24.65437

c. Risk

# Risk 

# Describe Scores/Scales 
describe(CC$Risk_Score_AFSCS)
## CC$Risk_Score_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664      103    0.987    16.18    20.19      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.5      8.0     24.5     47.3     62.5 
## 
## lowest : 0   0.5 1   1.5 2  , highest: 78  79  80  85  100
describe(CC$Risk_Score_BIO)
## CC$Risk_Score_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675      133        1    33.69    26.45     0.00     3.00 
##      .25      .50      .75      .90      .95 
##    12.50    32.50    50.00    63.00    75.67 
## 
## lowest : 0   0.5 1   1.5 2  , highest: 84  88  90  93  95
describe(CC$Risk_Score_BECCS)
## CC$Risk_Score_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677      140    0.999    38.61    28.99     0.00     3.95 
##      .25      .50      .75      .90      .95 
##    19.50    37.75    55.00    72.05    85.55 
## 
## lowest : 0    0.5  1    2.5  3   , highest: 92.5 93   94   98   100
describe(CC$Risk_Score_DACCS)
## CC$Risk_Score_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660      151        1    42.98    30.22     0.00     5.50 
##      .25      .50      .75      .90      .95 
##    22.25    45.00    62.50    78.10    89.35 
## 
## lowest : 0    0.5  1    2.5  3   , highest: 95.5 98   98.5 99.5 100
describe(CC$Risk_Score_EW)
## CC$Risk_Score_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672      146        1    38.45     28.7     2.35     7.50 
##      .25      .50      .75      .90      .95 
##    17.75    37.00    55.00    75.00    85.00 
## 
## lowest : 0    1    2    2.5  3   , highest: 94   96   97.5 99.5 100
describe(CC$Risk_Score_OF)
## CC$Risk_Score_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680      153        1    46.37    30.58     0.80    10.00 
##      .25      .50      .75      .90      .95 
##    25.25    45.50    66.25    81.50    89.85 
## 
## lowest : 0    0.5  1.5  2    5   , highest: 96   97   98.5 99   100
describe(CC$Risk_Score_BF)
## CC$Risk_Score_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759      105    0.999    26.04    22.96    0.000    0.500 
##      .25      .50      .75      .90      .95 
##    8.375   22.250   40.250   52.300   60.650 
## 
## lowest : 0    0.5  1    1.5  2.5 , highest: 81.5 83.5 85.5 86   100
describe(CC$Risk_Score_NE)
## CC$Risk_Score_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      126        1    52.92     34.7      2.4      6.9 
##      .25      .50      .75      .90      .95 
##     25.0     58.0     75.5     91.5    100.0 
## 
## lowest : 0    0.5  1.5  2    2.5 , highest: 95.5 96.5 98.5 99   100
describe(CC$Risk_Score_SE)
## CC$Risk_Score_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       69    0.955    10.18    13.87      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      3.0     15.0     34.0     42.9 
## 
## lowest : 0    0.5  1    1.5  2   , highest: 45   48.5 51   63   78.5
describe(CC$Risk_Score_WE)
## CC$Risk_Score_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       94    0.988    18.79    23.08      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      1.0     11.0     25.5     52.2     67.3 
## 
## lowest : 0    0.5  1    1.5  2   , highest: 89   89.5 92   98   98.5
sd(CC$Risk_Score_AFSCS, na.rm = TRUE)
## [1] 20.1135
sd(CC$Risk_Score_BIO, na.rm = TRUE)
## [1] 23.16999
sd(CC$Risk_Score_BECCS, na.rm = TRUE)
## [1] 25.48881
sd(CC$Risk_Score_DACCS, na.rm = TRUE)
## [1] 26.347
sd(CC$Risk_Score_EW, na.rm = TRUE)
## [1] 25.2467
sd(CC$Risk_Score_OF, na.rm = TRUE)
## [1] 26.54645
sd(CC$Risk_Score_BF, na.rm = TRUE)
## [1] 20.52519
sd(CC$Risk_Score_NE, na.rm = TRUE)
## [1] 30.17134
sd(CC$Risk_Score_SE, na.rm = TRUE)
## [1] 14.22085
sd(CC$Risk_Score_WE, na.rm = TRUE)
## [1] 22.76701
# AFSCS
ggplot(CC, aes(x = "", y = Risk_Score_AFSCS)) +
  geom_violin(fill = "red", color = "red") +
  geom_point(aes(y = mean(Risk_Score_AFSCS)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Risk for Afforestation/Reforestation",
       y = "Risk") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 664 rows containing non-finite values (`stat_ydensity()`).
## Warning: Removed 1007 rows containing missing values (`geom_point()`).

# Biochar 
ggplot(CC, aes(x = "", y = Risk_Score_BIO)) +
  geom_violin(fill = "red", color = "red") +
  geom_point(aes(y = mean(Risk_Score_BIO)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Risk for Biochar",
       y = "Risk") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 675 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Bioenergy Carbon Capture
ggplot(CC, aes(x = "", y = Risk_Score_BECCS)) +
  geom_violin(fill = "red", color = "red") +
  geom_point(aes(y = mean(Risk_Score_BECCS)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Risk for Bioenergy and Carbon Capture",
       y = "Risk") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 677 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Direct Air Capture
ggplot(CC, aes(x = "", y = Risk_Score_DACCS)) +
  geom_violin(fill = "red", color = "red") +
  geom_point(aes(y = mean(Risk_Score_DACCS)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Risk for Direct Air Capture",
       y = "Risk") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 660 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Enhanced Weathering
ggplot(CC, aes(x = "", y = Risk_Score_EW)) +
  geom_violin(fill = "red", color = "red") +
  geom_point(aes(y = mean(Risk_Score_EW)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Risk for Enhanced Weathering",
       y = "Risk") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 672 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Ocean Fertilization 
ggplot(CC, aes(x = "", y = Risk_Score_OF)) +
  geom_violin(fill = "red", color = "red") +
  geom_point(aes(y = mean(Risk_Score_OF)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Risk for Ocean Fertilization",
       y = "Risk") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 680 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Biofuel
ggplot(CC, aes(x = "", y = Risk_Score_BF)) +
  geom_violin(fill = "red", color = "red") +
  geom_point(aes(y = mean(Risk_Score_BF)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Risk for Biofuel",
       y = "Risk") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 759 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Nuclear Energy
ggplot(CC, aes(x = "", y = Risk_Score_NE)) +
  geom_violin(fill = "red", color = "red") +
  geom_point(aes(y = mean(Risk_Score_NE)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Risk for Nuclear Energy",
       y = "Risk") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 750 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Solar Energy
ggplot(CC, aes(x = "", y = Risk_Score_SE)) +
  geom_violin(fill = "red", color = "red") +
  geom_point(aes(y = mean(Risk_Score_SE)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Risk for Solar Energy",
       y = "Risk") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 762 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Wind Energy
ggplot(CC, aes(x = "", y = Risk_Score_WE)) +
  geom_violin(fill = "red", color = "red") +
  geom_point(aes(y = mean(Risk_Score_WE)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Risk for Wind Energy",
       y = "Support") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 750 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

d. Benefit

# Benefit 
#Descriptives
describe(CC$Ben_AFSCS)
## CC$Ben_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       80    0.999    68.42    26.15     22.1     37.0 
##      .25      .50      .75      .90      .95 
##     55.5     72.0     85.0     97.0    100.0 
## 
## lowest :   0   1   5  10  12, highest:  96  97  98  99 100
describe(CC$Ben_BIO)
## CC$Ben_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       85    0.999    53.47    29.28     6.10    20.00 
##      .25      .50      .75      .90      .95 
##    33.00    56.50    72.25    86.00    92.45 
## 
## lowest :   0   1   3   5   7, highest:  95  97  98  99 100
describe(CC$Ben_BECCS) 
## CC$Ben_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       87    0.999       55    29.13    10.00    18.00 
##      .25      .50      .75      .90      .95 
##    36.00    57.00    74.75    88.00    95.00 
## 
## lowest :   0   1   3   6   7, highest:  94  95  96  97 100
describe(CC$Ben_DACCS)
## CC$Ben_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       89    0.999    55.35    30.26      3.0     15.0 
##      .25      .50      .75      .90      .95 
##     37.0     59.0     75.0     90.0     99.4 
## 
## lowest :   0   1   2   3   5, highest:  93  95  96  98 100
describe(CC$Ben_EW)
## CC$Ben_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       83    0.999    52.15    27.98      0.0     13.8 
##      .25      .50      .75      .90      .95 
##     37.0     55.0     70.0     81.2     90.0 
## 
## lowest :   0   3   4   5   6, highest:  95  96  97  99 100
describe(CC$Ben_OF)
## CC$Ben_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       82    0.999    54.54    28.93      7.6     17.0 
##      .25      .50      .75      .90      .95 
##     36.0     58.0     74.5     86.0     91.7 
## 
## lowest :   0   2   4   5   7, highest:  92  93  95  96 100
describe(CC$Ben_BF)
## CC$Ben_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       82    0.999    51.92    30.47     3.05    10.00 
##      .25      .50      .75      .90      .95 
##    34.00    57.00    70.00    85.00    94.30 
## 
## lowest :   0   1   2   5   6, highest:  93  95  96  97 100
describe(CC$Ben_NE)
## CC$Ben_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       78    0.999    60.18    30.92      0.0     19.2 
##      .25      .50      .75      .90      .95 
##     44.0     66.0     80.0     92.4     98.4 
## 
## lowest :   0   6   9  10  11, highest:  94  95  97  98 100
describe(CC$Ben_SE)
## CC$Ben_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       75    0.998    66.31    29.55     10.4     25.0 
##      .25      .50      .75      .90      .95 
##     50.0     71.0     86.0    100.0    100.0 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
describe(CC$Ben_WE) 
## CC$Ben_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       71    0.998    64.88    28.99      9.6     25.0 
##      .25      .50      .75      .90      .95 
##     51.0     68.0     85.0    100.0    100.0 
## 
## lowest :   0   5   6   8  10, highest:  96  97  98  99 100
sd(CC$Ben_AFSCS, na.rm = TRUE)
## [1] 23.72132
sd(CC$Ben_BIO, na.rm = TRUE)
## [1] 25.6215
sd(CC$Ben_BECCS, na.rm = TRUE)
## [1] 25.51696
sd(CC$Ben_DACCS, na.rm = TRUE)
## [1] 26.63817
sd(CC$Ben_EW, na.rm = TRUE)
## [1] 24.84342
sd(CC$Ben_OF, na.rm = TRUE)
## [1] 25.43145
sd(CC$Ben_BF, na.rm = TRUE)
## [1] 26.71672
sd(CC$Ben_NE, na.rm = TRUE)
## [1] 27.56813
sd(CC$Ben_SE, na.rm = TRUE)
## [1] 26.49281
sd(CC$Ben_WE, na.rm = TRUE)
## [1] 26.12863
# AFSCS
ggplot(CC, aes(x = "", y = Ben_AFSCS)) +
  geom_violin(fill = "royalblue", color = "royalblue") +
  geom_point(aes(y = mean(Ben_AFSCS)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Benefit for Afforestation/Reforestation",
       y = "Benefit") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 664 rows containing non-finite values (`stat_ydensity()`).
## Warning: Removed 1007 rows containing missing values (`geom_point()`).

# Biochar 
ggplot(CC, aes(x = "", y = Ben_BIO)) +
  geom_violin(fill = "royalblue", color = "royalblue") +
  geom_point(aes(y = mean(Ben_BIO)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Benefit for Biochar",
       y = "Benefit") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 675 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Bioenergy Carbon Capture
ggplot(CC, aes(x = "", y = Ben_BECCS)) +
  geom_violin(fill = "royalblue", color = "royalblue") +
  geom_point(aes(y = mean(Ben_BECCS)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Benefit for Bioenergy and Carbon Capture",
       y = "Benefit") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 677 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Direct Air Capture
ggplot(CC, aes(x = "", y = Ben_DACCS)) +
  geom_violin(fill = "royalblue", color = "royalblue") +
  geom_point(aes(y = mean(Ben_DACCS)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Benefit for Direct Air Capture",
       y = "Benefit") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 660 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Enhanced Weathering
ggplot(CC, aes(x = "", y = Ben_EW)) +
  geom_violin(fill = "royalblue", color = "royalblue") +
  geom_point(aes(y = mean(Ben_EW)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Benefit for Enhanced Weathering",
       y = "Benefit") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 672 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Ocean Fertilization 
ggplot(CC, aes(x = "", y = Ben_OF)) +
  geom_violin(fill = "royalblue", color = "royalblue") +
  geom_point(aes(y = mean(Ben_OF)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Benefit for Ocean Fertilization",
       y = "Benefit") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 680 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Biofuel
ggplot(CC, aes(x = "", y = Ben_BF)) +
  geom_violin(fill = "royalblue", color = "royalblue") +
  geom_point(aes(y = mean(Ben_BF)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Benefit for Biofuel",
       y = "Benefit") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 759 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Nuclear Energy
ggplot(CC, aes(x = "", y = Ben_NE)) +
  geom_violin(fill = "royalblue", color = "royalblue") +
  geom_point(aes(y = mean(Ben_NE)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Benefit for Nuclear Energy",
       y = "Benefit") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 750 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Solar Energy
ggplot(CC, aes(x = "", y = Ben_SE)) +
  geom_violin(fill = "royalblue", color = "royalblue") +
  geom_point(aes(y = mean(Ben_SE)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Benefit for Solar Energy",
       y = "Benefit") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 762 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Wind Energy
ggplot(CC, aes(x = "", y = Ben_WE)) +
  geom_violin(fill = "royalblue", color = "royalblue") +
  geom_point(aes(y = mean(Ben_WE)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Benefit for Wind Energy",
       y = "Benefit") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 750 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

e. Familiarity

#Descriptives
describe(CC$Familiar_AFSCS)
## CC$Familiar_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       91    0.997     62.7    34.53        3       12 
##      .25      .50      .75      .90      .95 
##       42       67       89      100      100 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
describe(CC$Familiar_BIO)
## CC$Familiar_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       81    0.993    27.79    29.57     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     4.75    20.00    44.00    68.90    82.00 
## 
## lowest :   0   1   2   3   4, highest:  92  93  94  95 100
describe(CC$Familiar_BECCS)
## CC$Familiar_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       87    0.994    29.64    30.74     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     5.00    21.00    50.00    73.00    83.55 
## 
## lowest :   0   1   2   3   4, highest:  91  92  94  98 100
describe(CC$Familiar_DACCS)
## CC$Familiar_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       82    0.992    26.05    27.55      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      4.5     20.0     42.0     65.0     75.0 
## 
## lowest :   0   1   2   3   4, highest:  89  90  93  99 100
describe(CC$Familiar_EW)
## CC$Familiar_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       76     0.98     22.5    25.19      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     17.0     35.5     60.0     70.0 
## 
## lowest :  0  1  2  3  4, highest: 79 80 87 90 91
describe(CC$Familiar_OF)
## CC$Familiar_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       76    0.992    25.62    27.66      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      4.0     18.0     40.5     62.8     76.0 
## 
## lowest :   0   1   2   3   4, highest:  85  86  87  89 100
describe(CC$Familiar_BF)
## CC$Familiar_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       87    0.999    57.92    32.61      0.0     18.0 
##      .25      .50      .75      .90      .95 
##     36.0     61.0     81.0     93.3    100.0 
## 
## lowest :   0   1   5   6   8, highest:  95  96  98  99 100
describe(CC$Familiar_NE)
## CC$Familiar_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       82    0.998    69.17     29.4     14.8     30.6 
##      .25      .50      .75      .90      .95 
##     53.0     75.0     90.0    100.0    100.0 
## 
## lowest :   0   2   3   4   6, highest:  95  97  98  99 100
describe(CC$Familiar_SE)
## CC$Familiar_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       49    0.941    87.95    15.68     52.2     65.2 
##      .25      .50      .75      .90      .95 
##     82.0     94.0    100.0    100.0    100.0 
## 
## lowest :   0  18  35  41  45, highest:  96  97  98  99 100
describe(CC$Familiar_WE)
## CC$Familiar_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       61    0.982    81.79     20.9     41.6     55.0 
##      .25      .50      .75      .90      .95 
##     75.0     87.0    100.0    100.0    100.0 
## 
## lowest :   0   1   3  13  19, highest:  96  97  98  99 100
#SD
sd(CC$Familiar_AFSCS, na.rm = TRUE)
## [1] 30.60777
sd(CC$Familiar_BIO, na.rm = TRUE)
## [1] 27.00687
sd(CC$Familiar_BECCS, na.rm = TRUE)
## [1] 27.82
sd(CC$Familiar_DACCS, na.rm = TRUE)
## [1] 25.08586
sd(CC$Familiar_EW, na.rm = TRUE)
## [1] 23.20217
sd(CC$Familiar_OF, na.rm = TRUE)
## [1] 25.34433
sd(CC$Familiar_BF, na.rm = TRUE)
## [1] 28.59492
sd(CC$Familiar_NE, na.rm = TRUE)
## [1] 26.59004
sd(CC$Familiar_SE, na.rm = TRUE)
## [1] 16.02333
sd(CC$Familiar_WE, na.rm = TRUE)
## [1] 20.79082
# AFSCS
ggplot(CC, aes(x = "", y = Familiar_AFSCS)) +
  geom_violin(fill = "slategray3", color = "slategray3") +
  geom_point(aes(y = mean(Familiar_AFSCS)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Familiarity for Afforestation/Reforestation",
       y = "Familiarity") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 664 rows containing non-finite values (`stat_ydensity()`).
## Warning: Removed 1007 rows containing missing values (`geom_point()`).

# Biochar 
ggplot(CC, aes(x = "", y = Familiar_BIO)) +
  geom_violin(fill = "slategray3", color = "slategray3") +
  geom_point(aes(y = mean(Familiar_BIO)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Familiarity for Biochar",
       y = "Familiarity") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 675 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Bioenergy Carbon Capture
ggplot(CC, aes(x = "", y = Familiar_BECCS)) +
  geom_violin(fill = "slategray3", color = "slategray3") +
  geom_point(aes(y = mean(Familiar_BECCS)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Familiarity for Bioenergy and Carbon Capture",
       y = "Familiarity") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 677 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Direct Air Capture
ggplot(CC, aes(x = "", y = Familiar_DACCS)) +
  geom_violin(fill = "slategray3", color = "slategray3") +
  geom_point(aes(y = mean(Familiar_DACCS)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Familiarity for Direct Air Capture",
       y = "Familiarity") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 660 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Enhanced Weathering
ggplot(CC, aes(x = "", y = Familiar_EW)) +
  geom_violin(fill = "slategray3", color = "slategray3") +
  geom_point(aes(y = mean(Familiar_EW)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Familiarity for Enhanced Weathering",
       y = "Familiarity") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 672 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Ocean Fertilization 
ggplot(CC, aes(x = "", y = Familiar_OF)) +
  geom_violin(fill = "slategray3", color = "slategray3") +
  geom_point(aes(y = mean(Familiar_OF)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Familiarity for Ocean Fertilization",
       y = "Familiarity") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 680 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Biofuel
ggplot(CC, aes(x = "", y = Familiar_BF)) +
  geom_violin(fill = "slategray3", color = "slategray3") +
  geom_point(aes(y = mean(Familiar_BF)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Familiarity for Biofuel",
       y = "Familiarity") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 759 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Nuclear Energy
ggplot(CC, aes(x = "", y = Familiar_NE)) +
  geom_violin(fill = "slategray3", color = "slategray3") +
  geom_point(aes(y = mean(Familiar_NE)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Familiarity for Nuclear Energy",
       y = "Familiarity") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 750 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Solar Energy
ggplot(CC, aes(x = "", y = Familiar_SE)) +
  geom_violin(fill = "slategray3", color = "slategray3") +
  geom_point(aes(y = mean(Familiar_SE)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Familiarity for Solar Energy",
       y = "Familiarity") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 762 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

# Wind Energy
ggplot(CC, aes(x = "", y = Familiar_WE)) +
  geom_violin(fill = "slategray3", color = "slategray3") +
  geom_point(aes(y = mean(Familiar_WE)), color = "white", size = 3, shape = 18) +
  labs(title = "Means for Familiarity for Wind Energy",
       y = "Familiarity") +
  theme_minimal() +
  coord_cartesian(ylim = c(0, 100))
## Warning: Removed 750 rows containing non-finite values (`stat_ydensity()`).
## Removed 1007 rows containing missing values (`geom_point()`).

VII. Mixed Models

NEW ANALYSIS (POST-MASTERS, March 6, 2024)

Section 1: Concept model

## Model 1: Support ~ Nat + Age + Gender + Ethnicity, + Ideology + ATNS + ATNS*Nat + Ideology*Nat
mod101010 <- lmer(Support ~ Naturalness.c  + Age.c + Gender + Ethnicity_Asian + Ethnicity_Black + Ethnicity_Hispanic + Ethnicity_NatAmer + Ethnicity_NatPac + Ethnicity_Other + ATNS_Score.c*Naturalness.c + Ideology.c*Naturalness.c + (1 | id) + (1|Type), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(mod101010)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Age.c + Gender + Ethnicity_Asian +  
##     Ethnicity_Black + Ethnicity_Hispanic + Ethnicity_NatAmer +  
##     Ethnicity_NatPac + Ethnicity_Other + ATNS_Score.c * Naturalness.c +  
##     Ideology.c * Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27073.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5504 -0.5310  0.0434  0.5511  3.3395 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 213.60   14.615  
##  Type     (Intercept)  50.97    7.139  
##  Residual             351.32   18.744  
## Number of obs: 2991, groups:  id, 997; Type, 10
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   4.986e+01  3.068e+00  2.829e+01  16.249 7.03e-16
## Naturalness.c                 4.160e-01  3.417e-02  2.729e+03  12.176  < 2e-16
## Age.c                        -1.297e-01  3.712e-02  9.876e+02  -3.495 0.000496
## GenderMan vs Woman           -1.705e-01  6.010e-01  9.882e+02  -0.284 0.776755
## GenderMan&Woman vs Nonbinary  6.847e-01  3.562e+00  9.806e+02   0.192 0.847624
## Ethnicity_Asian              -2.552e+00  2.485e+00  9.826e+02  -1.027 0.304743
## Ethnicity_Black              -4.861e+00  1.787e+00  9.829e+02  -2.720 0.006638
## Ethnicity_Hispanic           -1.188e+00  2.855e+00  9.820e+02  -0.416 0.677552
## Ethnicity_NatAmer             5.754e+00  1.827e+01  9.841e+02   0.315 0.752794
## Ethnicity_NatPac             -5.689e-01  9.165e+00  9.865e+02  -0.062 0.950513
## Ethnicity_Other               8.375e+00  5.812e+00  9.825e+02   1.441 0.149938
## ATNS_Score.c                 -1.997e-01  2.774e-02  9.889e+02  -7.196 1.22e-12
## Ideology.c                   -3.827e+00  3.209e-01  9.838e+02 -11.925  < 2e-16
## Naturalness.c:ATNS_Score.c    5.322e-03  7.665e-04  2.747e+03   6.943 4.78e-12
## Naturalness.c:Ideology.c      5.927e-04  9.682e-03  2.677e+03   0.061 0.951197
##                                 
## (Intercept)                  ***
## Naturalness.c                ***
## Age.c                        ***
## GenderMan vs Woman              
## GenderMan&Woman vs Nonbinary    
## Ethnicity_Asian                 
## Ethnicity_Black              ** 
## Ethnicity_Hispanic              
## Ethnicity_NatAmer               
## Ethnicity_NatPac                
## Ethnicity_Other                 
## ATNS_Score.c                 ***
## Ideology.c                   ***
## Naturalness.c:ATNS_Score.c   ***
## Naturalness.c:Ideology.c        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 15 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(mod101010,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 49.86 3.07 43.84 – 55.88 16.25 <0.001
Naturalness c 0.42 0.03 0.35 – 0.48 12.18 <0.001
Age c -0.13 0.04 -0.20 – -0.06 -3.49 <0.001
GenderMan vs Woman -0.17 0.60 -1.35 – 1.01 -0.28 0.777
GenderMan&Woman vs
Nonbinary
0.68 3.56 -6.30 – 7.67 0.19 0.848
Ethnicity Asian -2.55 2.49 -7.42 – 2.32 -1.03 0.305
Ethnicity Black -4.86 1.79 -8.37 – -1.36 -2.72 0.007
Ethnicity Hispanic -1.19 2.86 -6.79 – 4.41 -0.42 0.677
Ethnicity NatAmer 5.75 18.27 -30.06 – 41.57 0.32 0.753
Ethnicity NatPac -0.57 9.16 -18.54 – 17.40 -0.06 0.951
Ethnicity Other 8.38 5.81 -3.02 – 19.77 1.44 0.150
ATNS Score c -0.20 0.03 -0.25 – -0.15 -7.20 <0.001
Ideology c -3.83 0.32 -4.46 – -3.20 -11.92 <0.001
Naturalness c × ATNS
Score c
0.01 0.00 0.00 – 0.01 6.94 <0.001
Naturalness c × Ideology
c
0.00 0.01 -0.02 – 0.02 0.06 0.951
Random Effects
σ2 351.32
τ00 id 213.60
τ00 Type 50.97
ICC 0.43
N id 997
N Type 10
Observations 2991
Marginal R2 / Conditional R2 0.237 / 0.565
## Model 2: Support ~ Nat + Ben + Risk + Age + Gender + Ethnicity, + Ideology + ATNS + ATNS*Risk + ATNS*Ben + ATNS*Nat + Ideology*Nat
mod101011 <- lmer(Support ~ Naturalness.c  + Benefit.c + Risk.c + Age.c + Gender + Ethnicity_Asian + Ethnicity_Black + Ethnicity_Hispanic + Ethnicity_NatAmer + Ethnicity_NatPac + Ethnicity_Other + ATNS_Score.c*Naturalness.c + Ideology.c*Naturalness.c + (1 | id) + (1|Type), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(mod101011)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Benefit.c + Risk.c + Age.c + Gender +  
##     Ethnicity_Asian + Ethnicity_Black + Ethnicity_Hispanic +  
##     Ethnicity_NatAmer + Ethnicity_NatPac + Ethnicity_Other +  
##     ATNS_Score.c * Naturalness.c + Ideology.c * Naturalness.c +  
##     (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 25347.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7138 -0.4924  0.0303  0.5320  4.0800 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 125.044  11.182  
##  Type     (Intercept)   8.437   2.905  
##  Residual             194.204  13.936  
## Number of obs: 2991, groups:  id, 997; Type, 10
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   5.338e+01  1.825e+00  1.067e+02  29.243  < 2e-16
## Naturalness.c                 1.303e-01  2.634e-02  2.714e+03   4.948 7.97e-07
## Benefit.c                     4.518e-01  1.370e-02  2.970e+03  32.979  < 2e-16
## Risk.c                       -3.958e-01  1.508e-02  2.807e+03 -26.246  < 2e-16
## Age.c                        -4.575e-02  2.817e-02  9.843e+02  -1.624  0.10469
## GenderMan vs Woman            1.430e-02  4.558e-01  9.826e+02   0.031  0.97498
## GenderMan&Woman vs Nonbinary  4.593e-01  2.699e+00  9.729e+02   0.170  0.86492
## Ethnicity_Asian              -2.289e+00  1.883e+00  9.745e+02  -1.216  0.22441
## Ethnicity_Black              -4.344e+00  1.355e+00  9.775e+02  -3.206  0.00139
## Ethnicity_Hispanic           -1.644e+00  2.163e+00  9.738e+02  -0.760  0.44744
## Ethnicity_NatAmer             1.226e+01  1.384e+01  9.761e+02   0.886  0.37581
## Ethnicity_NatPac              7.565e+00  6.944e+00  9.786e+02   1.089  0.27621
## Ethnicity_Other              -4.297e-01  4.407e+00  9.767e+02  -0.098  0.92235
## ATNS_Score.c                 -5.561e-02  2.130e-02  1.020e+03  -2.611  0.00917
## Ideology.c                   -2.491e+00  2.448e-01  9.941e+02 -10.174  < 2e-16
## Naturalness.c:ATNS_Score.c    2.454e-03  5.772e-04  2.728e+03   4.251 2.20e-05
## Naturalness.c:Ideology.c     -4.178e-03  7.221e-03  2.658e+03  -0.579  0.56295
##                                 
## (Intercept)                  ***
## Naturalness.c                ***
## Benefit.c                    ***
## Risk.c                       ***
## Age.c                           
## GenderMan vs Woman              
## GenderMan&Woman vs Nonbinary    
## Ethnicity_Asian                 
## Ethnicity_Black              ** 
## Ethnicity_Hispanic              
## Ethnicity_NatAmer               
## Ethnicity_NatPac                
## Ethnicity_Other                 
## ATNS_Score.c                 ** 
## Ideology.c                   ***
## Naturalness.c:ATNS_Score.c   ***
## Naturalness.c:Ideology.c        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 17 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(mod101011,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.38 1.83 49.80 – 56.95 29.24 <0.001
Naturalness c 0.13 0.03 0.08 – 0.18 4.95 <0.001
Benefit c 0.45 0.01 0.42 – 0.48 32.98 <0.001
Risk c -0.40 0.02 -0.43 – -0.37 -26.25 <0.001
Age c -0.05 0.03 -0.10 – 0.01 -1.62 0.104
GenderMan vs Woman 0.01 0.46 -0.88 – 0.91 0.03 0.975
GenderMan&Woman vs
Nonbinary
0.46 2.70 -4.83 – 5.75 0.17 0.865
Ethnicity Asian -2.29 1.88 -5.98 – 1.40 -1.22 0.224
Ethnicity Black -4.34 1.36 -7.00 – -1.69 -3.21 0.001
Ethnicity Hispanic -1.64 2.16 -5.89 – 2.60 -0.76 0.447
Ethnicity NatAmer 12.26 13.84 -14.87 – 39.39 0.89 0.376
Ethnicity NatPac 7.56 6.94 -6.05 – 21.18 1.09 0.276
Ethnicity Other -0.43 4.41 -9.07 – 8.21 -0.10 0.922
ATNS Score c -0.06 0.02 -0.10 – -0.01 -2.61 0.009
Ideology c -2.49 0.24 -2.97 – -2.01 -10.17 <0.001
Naturalness c × ATNS
Score c
0.00 0.00 0.00 – 0.00 4.25 <0.001
Naturalness c × Ideology
c
-0.00 0.01 -0.02 – 0.01 -0.58 0.563
Random Effects
σ2 194.20
τ00 id 125.04
τ00 Type 8.44
ICC 0.41
N id 997
N Type 10
Observations 2991
Marginal R2 / Conditional R2 0.596 / 0.761
# Model 3: Risk ~ Nat + Ben + Age + Gender + Ethnicity, + Ideology + ATNS + ATNS*Ben + ATNS*Nat + Ideology*Nat
mod101012 <- lmer(Risk ~ Naturalness.c  + Benefit.c + Age.c + Gender + Ethnicity_Asian + Ethnicity_Black + Ethnicity_Hispanic + Ethnicity_NatAmer + Ethnicity_NatPac + Ethnicity_Other + ATNS_Score.c*Naturalness.c + ATNS_Score.c*Benefit.c + Ideology.c*Naturalness.c + (1 | id) + (1|Type), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(mod101012)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Naturalness.c + Benefit.c + Age.c + Gender + Ethnicity_Asian +  
##     Ethnicity_Black + Ethnicity_Hispanic + Ethnicity_NatAmer +  
##     Ethnicity_NatPac + Ethnicity_Other + ATNS_Score.c * Naturalness.c +  
##     ATNS_Score.c * Benefit.c + Ideology.c * Naturalness.c + (1 |  
##     id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 26479.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7920 -0.6013 -0.0118  0.5727  3.7146 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 143.80   11.992  
##  Type     (Intercept)  75.21    8.673  
##  Residual             299.84   17.316  
## Number of obs: 2991, groups:  id, 997; Type, 10
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   3.186e+01  3.274e+00  1.740e+01   9.733 1.86e-08
## Naturalness.c                -4.005e-01  3.137e-02  2.786e+03 -12.765  < 2e-16
## Benefit.c                    -2.282e-01  1.597e-02  2.944e+03 -14.292  < 2e-16
## Age.c                         4.001e-02  3.195e-02  9.775e+02   1.253  0.21067
## GenderMan vs Woman            1.358e+00  5.163e-01  9.739e+02   2.630  0.00866
## GenderMan&Woman vs Nonbinary  3.021e+00  3.059e+00  9.660e+02   0.988  0.32362
## Ethnicity_Asian               1.751e+00  2.134e+00  9.677e+02   0.820  0.41221
## Ethnicity_Black               4.020e+00  1.535e+00  9.694e+02   2.619  0.00897
## Ethnicity_Hispanic           -1.531e+00  2.452e+00  9.673e+02  -0.625  0.53240
## Ethnicity_NatAmer            -7.664e+00  1.569e+01  9.705e+02  -0.488  0.62541
## Ethnicity_NatPac              7.809e+00  7.872e+00  9.722e+02   0.992  0.32142
## Ethnicity_Other              -9.125e+00  4.994e+00  9.688e+02  -1.827  0.06796
## ATNS_Score.c                  2.093e-01  2.390e-02  9.807e+02   8.759  < 2e-16
## Ideology.c                    4.590e-01  2.777e-01  9.868e+02   1.653  0.09864
## Naturalness.c:ATNS_Score.c   -5.328e-03  7.264e-04  2.809e+03  -7.335 2.88e-13
## Benefit.c:ATNS_Score.c        1.055e-03  6.403e-04  2.938e+03   1.648  0.09937
## Naturalness.c:Ideology.c     -8.140e-03  8.827e-03  2.744e+03  -0.922  0.35653
##                                 
## (Intercept)                  ***
## Naturalness.c                ***
## Benefit.c                    ***
## Age.c                           
## GenderMan vs Woman           ** 
## GenderMan&Woman vs Nonbinary    
## Ethnicity_Asian                 
## Ethnicity_Black              ** 
## Ethnicity_Hispanic              
## Ethnicity_NatAmer               
## Ethnicity_NatPac                
## Ethnicity_Other              .  
## ATNS_Score.c                 ***
## Ideology.c                   .  
## Naturalness.c:ATNS_Score.c   ***
## Benefit.c:ATNS_Score.c       .  
## Naturalness.c:Ideology.c        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 17 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(mod101012,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 31.86 3.27 25.44 – 38.28 9.73 <0.001
Naturalness c -0.40 0.03 -0.46 – -0.34 -12.76 <0.001
Benefit c -0.23 0.02 -0.26 – -0.20 -14.29 <0.001
Age c 0.04 0.03 -0.02 – 0.10 1.25 0.210
GenderMan vs Woman 1.36 0.52 0.35 – 2.37 2.63 0.009
GenderMan&Woman vs
Nonbinary
3.02 3.06 -2.98 – 9.02 0.99 0.323
Ethnicity Asian 1.75 2.13 -2.43 – 5.93 0.82 0.412
Ethnicity Black 4.02 1.54 1.01 – 7.03 2.62 0.009
Ethnicity Hispanic -1.53 2.45 -6.34 – 3.28 -0.62 0.532
Ethnicity NatAmer -7.66 15.69 -38.43 – 23.11 -0.49 0.625
Ethnicity NatPac 7.81 7.87 -7.63 – 23.24 0.99 0.321
Ethnicity Other -9.13 4.99 -18.92 – 0.67 -1.83 0.068
ATNS Score c 0.21 0.02 0.16 – 0.26 8.76 <0.001
Ideology c 0.46 0.28 -0.09 – 1.00 1.65 0.098
Naturalness c × ATNS
Score c
-0.01 0.00 -0.01 – -0.00 -7.34 <0.001
Benefit c × ATNS Score c 0.00 0.00 -0.00 – 0.00 1.65 0.099
Naturalness c × Ideology
c
-0.01 0.01 -0.03 – 0.01 -0.92 0.357
Random Effects
σ2 299.84
τ00 id 143.80
τ00 Type 75.21
ICC 0.42
N id 997
N Type 10
Observations 2991
Marginal R2 / Conditional R2 0.265 / 0.575
# Model 4: Ben ~ Nat + Risk + Age + Gender + Ethnicity, + Ideology + ATNS + ATNS*Risk + ATNS*Nat + Ideology*Nat
mod101013 <- lmer(Ben ~ Naturalness.c  + Risk.c + Age.c + Gender + Ethnicity_Asian + Ethnicity_Black + Ethnicity_Hispanic + Ethnicity_NatAmer + Ethnicity_NatPac + Ethnicity_Other + ATNS_Score.c*Naturalness.c + ATNS_Score.c*Risk.c + Ideology.c*Naturalness.c + (1 | id) + (1|Type), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(mod101013)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Naturalness.c + Risk.c + Age.c + Gender + Ethnicity_Asian +  
##     Ethnicity_Black + Ethnicity_Hispanic + Ethnicity_NatAmer +  
##     Ethnicity_NatPac + Ethnicity_Other + ATNS_Score.c * Naturalness.c +  
##     ATNS_Score.c * Risk.c + Ideology.c * Naturalness.c + (1 |  
##     id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27081.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5569 -0.5223  0.0692  0.5399  3.4714 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 241.86   15.552  
##  Type     (Intercept)  21.22    4.607  
##  Residual             339.11   18.415  
## Number of obs: 2991, groups:  id, 997; Type, 10
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   5.056e+01  2.601e+00  7.558e+01  19.439  < 2e-16
## Naturalness.c                 1.028e-01  3.507e-02  2.704e+03   2.931  0.00340
## Risk.c                       -2.899e-01  1.961e-02  2.849e+03 -14.782  < 2e-16
## Age.c                        -1.078e-01  3.847e-02  9.832e+02  -2.803  0.00516
## GenderMan vs Woman            9.635e-01  6.231e-01  9.848e+02   1.546  0.12234
## GenderMan&Woman vs Nonbinary  3.175e+00  3.691e+00  9.752e+02   0.860  0.38976
## Ethnicity_Asian               1.281e+00  2.574e+00  9.769e+02   0.498  0.61878
## Ethnicity_Black               2.768e+00  1.854e+00  9.814e+02   1.493  0.13579
## Ethnicity_Hispanic           -6.896e-01  2.958e+00  9.765e+02  -0.233  0.81571
## Ethnicity_NatAmer            -1.822e+01  1.892e+01  9.782e+02  -0.963  0.33585
## Ethnicity_NatPac             -6.557e+00  9.494e+00  9.808e+02  -0.691  0.48994
## Ethnicity_Other               6.335e+00  6.025e+00  9.787e+02   1.051  0.29331
## ATNS_Score.c                 -4.146e-02  2.917e-02  1.027e+03  -1.421  0.15551
## Ideology.c                   -1.875e+00  3.330e-01  9.828e+02  -5.630 2.35e-08
## Naturalness.c:ATNS_Score.c    1.097e-03  9.058e-04  2.779e+03   1.211  0.22588
## Risk.c:ATNS_Score.c           1.659e-03  7.830e-04  2.918e+03   2.119  0.03415
## Naturalness.c:Ideology.c     -1.626e-03  9.599e-03  2.624e+03  -0.169  0.86552
##                                 
## (Intercept)                  ***
## Naturalness.c                ** 
## Risk.c                       ***
## Age.c                        ** 
## GenderMan vs Woman              
## GenderMan&Woman vs Nonbinary    
## Ethnicity_Asian                 
## Ethnicity_Black                 
## Ethnicity_Hispanic              
## Ethnicity_NatAmer               
## Ethnicity_NatPac                
## Ethnicity_Other                 
## ATNS_Score.c                    
## Ideology.c                   ***
## Naturalness.c:ATNS_Score.c      
## Risk.c:ATNS_Score.c          *  
## Naturalness.c:Ideology.c        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 17 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(mod101013,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 50.56 2.60 45.46 – 55.66 19.44 <0.001
Naturalness c 0.10 0.04 0.03 – 0.17 2.93 0.003
Risk c -0.29 0.02 -0.33 – -0.25 -14.78 <0.001
Age c -0.11 0.04 -0.18 – -0.03 -2.80 0.005
GenderMan vs Woman 0.96 0.62 -0.26 – 2.19 1.55 0.122
GenderMan&Woman vs
Nonbinary
3.18 3.69 -4.06 – 10.41 0.86 0.390
Ethnicity Asian 1.28 2.57 -3.77 – 6.33 0.50 0.619
Ethnicity Black 2.77 1.85 -0.87 – 6.40 1.49 0.136
Ethnicity Hispanic -0.69 2.96 -6.49 – 5.11 -0.23 0.816
Ethnicity NatAmer -18.22 18.92 -55.32 – 18.88 -0.96 0.336
Ethnicity NatPac -6.56 9.49 -25.17 – 12.06 -0.69 0.490
Ethnicity Other 6.33 6.02 -5.48 – 18.15 1.05 0.293
ATNS Score c -0.04 0.03 -0.10 – 0.02 -1.42 0.155
Ideology c -1.87 0.33 -2.53 – -1.22 -5.63 <0.001
Naturalness c × ATNS
Score c
0.00 0.00 -0.00 – 0.00 1.21 0.226
Risk c × ATNS Score c 0.00 0.00 0.00 – 0.00 2.12 0.034
Naturalness c × Ideology
c
-0.00 0.01 -0.02 – 0.02 -0.17 0.866
Random Effects
σ2 339.11
τ00 id 241.86
τ00 Type 21.22
ICC 0.44
N id 997
N Type 10
Observations 2991
Marginal R2 / Conditional R2 0.163 / 0.528

Section 2: Where does naturalness come from?

mod101014 <- lmer(Naturalness ~ Familiarity.c + Age.c + Gender + Ethnicity_Asian + Ethnicity_Black + Ethnicity_Hispanic + Ethnicity_NatAmer + Ethnicity_NatPac + Ethnicity_Other  + (1 | id) + (1|Type), data = L)

summary(mod101014)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Familiarity.c + Age.c + Gender + Ethnicity_Asian +  
##     Ethnicity_Black + Ethnicity_Hispanic + Ethnicity_NatAmer +  
##     Ethnicity_NatPac + Ethnicity_Other + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 25480.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4869 -0.6164 -0.0097  0.6038  3.3709 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  68.3     8.265  
##  Type     (Intercept) 108.3    10.405  
##  Residual             237.0    15.394  
## Number of obs: 2991, groups:  id, 997; Type, 10
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    39.42644    3.51223   11.45331  11.225 1.58e-07
## Familiarity.c                   0.16997    0.01269 2941.35167  13.394  < 2e-16
## Age.c                          -0.07695    0.02455  983.34593  -3.134 0.001776
## GenderMan vs Woman              1.39967    0.39160  997.67155   3.574 0.000368
## GenderMan&Woman vs Nonbinary    0.85461    2.37264  979.31514   0.360 0.718780
## Ethnicity_Asian                -1.34202    1.65754  981.28224  -0.810 0.418340
## Ethnicity_Black                 0.74261    1.18187  983.59710   0.628 0.529930
## Ethnicity_Hispanic             -0.90958    1.90485  982.28579  -0.478 0.633109
## Ethnicity_NatAmer              15.26006   12.17427  981.12406   1.253 0.210334
## Ethnicity_NatPac                2.51732    6.10813  986.41524   0.412 0.680336
## Ethnicity_Other                 0.02663    3.87135  982.14556   0.007 0.994513
##                                 
## (Intercept)                  ***
## Familiarity.c                ***
## Age.c                        ** 
## GenderMan vs Woman           ***
## GenderMan&Woman vs Nonbinary    
## Ethnicity_Asian                 
## Ethnicity_Black                 
## Ethnicity_Hispanic              
## Ethnicity_NatAmer               
## Ethnicity_NatPac                
## Ethnicity_Other                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Fmlrt. Age.c  GndMvW GM&WvN Ethn_A Ethn_B Ethn_H Eth_NA
## Familirty.c -0.012                                                        
## Age.c        0.024  0.049                                                 
## GndrMnvsWmn -0.001  0.113 -0.060                                          
## GndrMn&WmvN -0.326  0.007 -0.115  0.002                                   
## Ethncty_Asn -0.023 -0.024  0.132 -0.016 -0.038                            
## Ethncty_Blc -0.050  0.037  0.136 -0.041  0.001  0.118                     
## Ethncty_Hsp -0.047 -0.031  0.119 -0.057  0.050  0.077  0.104              
## Ethncty_NtA -0.005  0.003 -0.048  0.036  0.002  0.003  0.006  0.001       
## Ethncty_NtP -0.006 -0.007  0.043  0.029 -0.011  0.026  0.033  0.020  0.002
## Ethncty_Oth -0.011  0.014  0.038  0.018 -0.014  0.036  0.049  0.028  0.003
##             Eth_NP
## Familirty.c       
## Age.c             
## GndrMnvsWmn       
## GndrMn&WmvN       
## Ethncty_Asn       
## Ethncty_Blc       
## Ethncty_Hsp       
## Ethncty_NtA       
## Ethncty_NtP       
## Ethncty_Oth  0.010
tab_model(mod101014,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 39.43 3.51 32.54 – 46.31 11.23 <0.001
Familiarity c 0.17 0.01 0.15 – 0.19 13.39 <0.001
Age c -0.08 0.02 -0.13 – -0.03 -3.13 0.002
GenderMan vs Woman 1.40 0.39 0.63 – 2.17 3.57 <0.001
GenderMan&Woman vs
Nonbinary
0.85 2.37 -3.80 – 5.51 0.36 0.719
Ethnicity Asian -1.34 1.66 -4.59 – 1.91 -0.81 0.418
Ethnicity Black 0.74 1.18 -1.57 – 3.06 0.63 0.530
Ethnicity Hispanic -0.91 1.90 -4.64 – 2.83 -0.48 0.633
Ethnicity NatAmer 15.26 12.17 -8.61 – 39.13 1.25 0.210
Ethnicity NatPac 2.52 6.11 -9.46 – 14.49 0.41 0.680
Ethnicity Other 0.03 3.87 -7.56 – 7.62 0.01 0.995
Random Effects
σ2 236.98
τ00 id 68.30
τ00 Type 108.27
ICC 0.43
N id 997
N Type 10
Observations 2991
Marginal R2 / Conditional R2 0.084 / 0.475

Section 3: Moderators

Aversion to Tampering

# Looks at interactions from Section 1

# Interaction Plots: ATNS, Political Ideology, Climate Change Belief

## ATNS

## Model 2: Support ~ Nat + Ben + Risk + Age + Gender + Ethnicity, + Ideology + ATNS + ATNS*Risk + ATNS*Ben + ATNS*Nat + Ideology*Nat
mod101011 <- lmer(Support ~ Naturalness.c  + Benefit.c + Risk.c + Age.c + Gender + Ethnicity_Asian + Ethnicity_Black + Ethnicity_Hispanic + Ethnicity_NatAmer + Ethnicity_NatPac + Ethnicity_Other + ATNS_Score.c*Naturalness.c + Ideology.c*Naturalness.c + (1 | id) + (1|Type), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(mod101011)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Benefit.c + Risk.c + Age.c + Gender +  
##     Ethnicity_Asian + Ethnicity_Black + Ethnicity_Hispanic +  
##     Ethnicity_NatAmer + Ethnicity_NatPac + Ethnicity_Other +  
##     ATNS_Score.c * Naturalness.c + Ideology.c * Naturalness.c +  
##     (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 25347.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7138 -0.4924  0.0303  0.5320  4.0800 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 125.044  11.182  
##  Type     (Intercept)   8.437   2.905  
##  Residual             194.204  13.936  
## Number of obs: 2991, groups:  id, 997; Type, 10
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   5.338e+01  1.825e+00  1.067e+02  29.243  < 2e-16
## Naturalness.c                 1.303e-01  2.634e-02  2.714e+03   4.948 7.97e-07
## Benefit.c                     4.518e-01  1.370e-02  2.970e+03  32.979  < 2e-16
## Risk.c                       -3.958e-01  1.508e-02  2.807e+03 -26.246  < 2e-16
## Age.c                        -4.575e-02  2.817e-02  9.843e+02  -1.624  0.10469
## GenderMan vs Woman            1.430e-02  4.558e-01  9.826e+02   0.031  0.97498
## GenderMan&Woman vs Nonbinary  4.593e-01  2.699e+00  9.729e+02   0.170  0.86492
## Ethnicity_Asian              -2.289e+00  1.883e+00  9.745e+02  -1.216  0.22441
## Ethnicity_Black              -4.344e+00  1.355e+00  9.775e+02  -3.206  0.00139
## Ethnicity_Hispanic           -1.644e+00  2.163e+00  9.738e+02  -0.760  0.44744
## Ethnicity_NatAmer             1.226e+01  1.384e+01  9.761e+02   0.886  0.37581
## Ethnicity_NatPac              7.565e+00  6.944e+00  9.786e+02   1.089  0.27621
## Ethnicity_Other              -4.297e-01  4.407e+00  9.767e+02  -0.098  0.92235
## ATNS_Score.c                 -5.561e-02  2.130e-02  1.020e+03  -2.611  0.00917
## Ideology.c                   -2.491e+00  2.448e-01  9.941e+02 -10.174  < 2e-16
## Naturalness.c:ATNS_Score.c    2.454e-03  5.772e-04  2.728e+03   4.251 2.20e-05
## Naturalness.c:Ideology.c     -4.178e-03  7.221e-03  2.658e+03  -0.579  0.56295
##                                 
## (Intercept)                  ***
## Naturalness.c                ***
## Benefit.c                    ***
## Risk.c                       ***
## Age.c                           
## GenderMan vs Woman              
## GenderMan&Woman vs Nonbinary    
## Ethnicity_Asian                 
## Ethnicity_Black              ** 
## Ethnicity_Hispanic              
## Ethnicity_NatAmer               
## Ethnicity_NatPac                
## Ethnicity_Other                 
## ATNS_Score.c                 ** 
## Ideology.c                   ***
## Naturalness.c:ATNS_Score.c   ***
## Naturalness.c:Ideology.c        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 17 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(mod101011,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.38 1.83 49.80 – 56.95 29.24 <0.001
Naturalness c 0.13 0.03 0.08 – 0.18 4.95 <0.001
Benefit c 0.45 0.01 0.42 – 0.48 32.98 <0.001
Risk c -0.40 0.02 -0.43 – -0.37 -26.25 <0.001
Age c -0.05 0.03 -0.10 – 0.01 -1.62 0.104
GenderMan vs Woman 0.01 0.46 -0.88 – 0.91 0.03 0.975
GenderMan&Woman vs
Nonbinary
0.46 2.70 -4.83 – 5.75 0.17 0.865
Ethnicity Asian -2.29 1.88 -5.98 – 1.40 -1.22 0.224
Ethnicity Black -4.34 1.36 -7.00 – -1.69 -3.21 0.001
Ethnicity Hispanic -1.64 2.16 -5.89 – 2.60 -0.76 0.447
Ethnicity NatAmer 12.26 13.84 -14.87 – 39.39 0.89 0.376
Ethnicity NatPac 7.56 6.94 -6.05 – 21.18 1.09 0.276
Ethnicity Other -0.43 4.41 -9.07 – 8.21 -0.10 0.922
ATNS Score c -0.06 0.02 -0.10 – -0.01 -2.61 0.009
Ideology c -2.49 0.24 -2.97 – -2.01 -10.17 <0.001
Naturalness c × ATNS
Score c
0.00 0.00 0.00 – 0.00 4.25 <0.001
Naturalness c × Ideology
c
-0.00 0.01 -0.02 – 0.01 -0.58 0.563
Random Effects
σ2 194.20
τ00 id 125.04
τ00 Type 8.44
ICC 0.41
N id 997
N Type 10
Observations 2991
Marginal R2 / Conditional R2 0.596 / 0.761
confint(mod101011)
## Computing profile confidence intervals ...
##                                      2.5 %       97.5 %
## .sig01                        10.323895804 11.867791425
## .sig02                         1.730179826  4.770330870
## .sigma                        13.499808096 14.368449583
## (Intercept)                   49.837531244 56.917178339
## Naturalness.c                  0.078991170  0.182356825
## Benefit.c                      0.425208681  0.479079608
## Risk.c                        -0.425561197 -0.366160518
## Age.c                         -0.100626300  0.009231650
## GenderMan vs Woman            -0.874821962  0.902506459
## GenderMan&Woman vs Nonbinary  -4.803066764  5.721547101
## Ethnicity_Asian               -5.956204961  1.385492151
## Ethnicity_Black               -6.984768815 -1.700420834
## Ethnicity_Hispanic            -5.860972095  2.573307363
## Ethnicity_NatAmer            -14.711287798 39.248261942
## Ethnicity_NatPac              -5.967715777 21.107377583
## Ethnicity_Other               -9.021423123  8.162366952
## ATNS_Score.c                  -0.097052851 -0.013960376
## Ideology.c                    -2.966990500 -2.012174025
## Naturalness.c:ATNS_Score.c     0.001321252  0.003580691
## Naturalness.c:Ideology.c      -0.018305710  0.009958888
library (ggplot2)

# Interaction Plot

# +1 SD, -1 SD Aversion to Tampering with Nature Score
L$ATNS_sd <- sd(L$ATNS_Score, na.rm = TRUE)
L$MinusOneSD <- (L$ATNS_Score.c + L$ATNS_sd)
L$PlusOneSD <- (L$ATNS_Score.c - L$ATNS_sd)

L$MinusOneSD <- as.numeric(as.character(L$MinusOneSD))
L$PlusOneSD <- as.numeric(as.character(L$PlusOneSD))

#Look at coeffients for interaction at +1/-1 SD
M.MinusOne <- lmer(Support ~ MinusOneSD*Naturalness.c  + Benefit.c + Risk.c + Age.c + Gender + Ethnicity_Asian + Ethnicity_Black + Ethnicity_Hispanic + Ethnicity_NatAmer + Ethnicity_NatPac + Ethnicity_Other + Ideology.c*Naturalness.c + (1 | id) + (1|Type), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
M.PlusOne <- lmer(Support ~ PlusOneSD*Naturalness.c*Naturalness.c  + Benefit.c + Risk.c + Age.c + Gender + Ethnicity_Asian + Ethnicity_Black + Ethnicity_Hispanic + Ethnicity_NatAmer + Ethnicity_NatPac + Ethnicity_Other + Ideology.c*Naturalness.c + (1 | id) + (1|Type), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(M.MinusOne)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ MinusOneSD * Naturalness.c + Benefit.c + Risk.c + Age.c +  
##     Gender + Ethnicity_Asian + Ethnicity_Black + Ethnicity_Hispanic +  
##     Ethnicity_NatAmer + Ethnicity_NatPac + Ethnicity_Other +  
##     Ideology.c * Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 25347.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7138 -0.4924  0.0303  0.5320  4.0800 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 125.044  11.182  
##  Type     (Intercept)   8.437   2.905  
##  Residual             194.204  13.936  
## Number of obs: 2991, groups:  id, 997; Type, 10
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   5.457e+01  1.887e+00  1.205e+02  28.915  < 2e-16
## MinusOneSD                   -5.561e-02  2.130e-02  1.020e+03  -2.611  0.00917
## Naturalness.c                 7.759e-02  2.901e-02  2.668e+03   2.675  0.00752
## Benefit.c                     4.518e-01  1.370e-02  2.970e+03  32.979  < 2e-16
## Risk.c                       -3.958e-01  1.508e-02  2.807e+03 -26.246  < 2e-16
## Age.c                        -4.575e-02  2.817e-02  9.843e+02  -1.624  0.10469
## GenderMan vs Woman            1.430e-02  4.558e-01  9.826e+02   0.031  0.97498
## GenderMan&Woman vs Nonbinary  4.593e-01  2.699e+00  9.729e+02   0.170  0.86492
## Ethnicity_Asian              -2.289e+00  1.883e+00  9.745e+02  -1.216  0.22441
## Ethnicity_Black              -4.344e+00  1.355e+00  9.775e+02  -3.206  0.00139
## Ethnicity_Hispanic           -1.644e+00  2.163e+00  9.738e+02  -0.760  0.44744
## Ethnicity_NatAmer             1.226e+01  1.384e+01  9.761e+02   0.886  0.37581
## Ethnicity_NatPac              7.565e+00  6.944e+00  9.786e+02   1.089  0.27621
## Ethnicity_Other              -4.297e-01  4.407e+00  9.767e+02  -0.098  0.92235
## Ideology.c                   -2.491e+00  2.448e-01  9.941e+02 -10.174  < 2e-16
## MinusOneSD:Naturalness.c      2.454e-03  5.772e-04  2.728e+03   4.251  2.2e-05
## Naturalness.c:Ideology.c     -4.178e-03  7.221e-03  2.658e+03  -0.579  0.56295
##                                 
## (Intercept)                  ***
## MinusOneSD                   ** 
## Naturalness.c                ** 
## Benefit.c                    ***
## Risk.c                       ***
## Age.c                           
## GenderMan vs Woman              
## GenderMan&Woman vs Nonbinary    
## Ethnicity_Asian                 
## Ethnicity_Black              ** 
## Ethnicity_Hispanic              
## Ethnicity_NatAmer               
## Ethnicity_NatPac                
## Ethnicity_Other                 
## Ideology.c                   ***
## MinusOneSD:Naturalness.c     ***
## Naturalness.c:Ideology.c        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 17 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(M.MinusOne,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.57 1.89 50.87 – 58.27 28.91 <0.001
MinusOneSD -0.06 0.02 -0.10 – -0.01 -2.61 0.009
Naturalness c 0.08 0.03 0.02 – 0.13 2.68 0.008
Benefit c 0.45 0.01 0.42 – 0.48 32.98 <0.001
Risk c -0.40 0.02 -0.43 – -0.37 -26.25 <0.001
Age c -0.05 0.03 -0.10 – 0.01 -1.62 0.104
GenderMan vs Woman 0.01 0.46 -0.88 – 0.91 0.03 0.975
GenderMan&Woman vs
Nonbinary
0.46 2.70 -4.83 – 5.75 0.17 0.865
Ethnicity Asian -2.29 1.88 -5.98 – 1.40 -1.22 0.224
Ethnicity Black -4.34 1.36 -7.00 – -1.69 -3.21 0.001
Ethnicity Hispanic -1.64 2.16 -5.89 – 2.60 -0.76 0.447
Ethnicity NatAmer 12.26 13.84 -14.87 – 39.39 0.89 0.376
Ethnicity NatPac 7.56 6.94 -6.05 – 21.18 1.09 0.276
Ethnicity Other -0.43 4.41 -9.07 – 8.21 -0.10 0.922
Ideology c -2.49 0.24 -2.97 – -2.01 -10.17 <0.001
MinusOneSD × Naturalness
c
0.00 0.00 0.00 – 0.00 4.25 <0.001
Naturalness c × Ideology
c
-0.00 0.01 -0.02 – 0.01 -0.58 0.563
Random Effects
σ2 194.20
τ00 id 125.04
τ00 Type 8.44
ICC 0.41
N id 997
N Type 10
Observations 2991
Marginal R2 / Conditional R2 0.596 / 0.761
summary(M.PlusOne)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ PlusOneSD * Naturalness.c * Naturalness.c + Benefit.c +  
##     Risk.c + Age.c + Gender + Ethnicity_Asian + Ethnicity_Black +  
##     Ethnicity_Hispanic + Ethnicity_NatAmer + Ethnicity_NatPac +  
##     Ethnicity_Other + Ideology.c * Naturalness.c + (1 | id) +      (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 25347.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7138 -0.4924  0.0303  0.5320  4.0800 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 125.044  11.182  
##  Type     (Intercept)   8.437   2.905  
##  Residual             194.204  13.936  
## Number of obs: 2991, groups:  id, 997; Type, 10
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   5.218e+01  1.876e+00  1.181e+02  27.812  < 2e-16
## PlusOneSD                    -5.561e-02  2.130e-02  1.020e+03  -2.611  0.00917
## Naturalness.c                 1.831e-01  2.923e-02  2.774e+03   6.264 4.35e-10
## Benefit.c                     4.518e-01  1.370e-02  2.970e+03  32.979  < 2e-16
## Risk.c                       -3.958e-01  1.508e-02  2.807e+03 -26.246  < 2e-16
## Age.c                        -4.575e-02  2.817e-02  9.843e+02  -1.624  0.10469
## GenderMan vs Woman            1.430e-02  4.558e-01  9.826e+02   0.031  0.97498
## GenderMan&Woman vs Nonbinary  4.593e-01  2.699e+00  9.729e+02   0.170  0.86492
## Ethnicity_Asian              -2.289e+00  1.883e+00  9.745e+02  -1.216  0.22441
## Ethnicity_Black              -4.344e+00  1.355e+00  9.775e+02  -3.206  0.00139
## Ethnicity_Hispanic           -1.644e+00  2.163e+00  9.738e+02  -0.760  0.44744
## Ethnicity_NatAmer             1.226e+01  1.384e+01  9.761e+02   0.886  0.37581
## Ethnicity_NatPac              7.565e+00  6.944e+00  9.786e+02   1.089  0.27621
## Ethnicity_Other              -4.297e-01  4.407e+00  9.767e+02  -0.098  0.92235
## Ideology.c                   -2.491e+00  2.448e-01  9.941e+02 -10.174  < 2e-16
## PlusOneSD:Naturalness.c       2.454e-03  5.772e-04  2.728e+03   4.251 2.20e-05
## Naturalness.c:Ideology.c     -4.178e-03  7.221e-03  2.658e+03  -0.579  0.56295
##                                 
## (Intercept)                  ***
## PlusOneSD                    ** 
## Naturalness.c                ***
## Benefit.c                    ***
## Risk.c                       ***
## Age.c                           
## GenderMan vs Woman              
## GenderMan&Woman vs Nonbinary    
## Ethnicity_Asian                 
## Ethnicity_Black              ** 
## Ethnicity_Hispanic              
## Ethnicity_NatAmer               
## Ethnicity_NatPac                
## Ethnicity_Other                 
## Ideology.c                   ***
## PlusOneSD:Naturalness.c      ***
## Naturalness.c:Ideology.c        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 17 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(M.PlusOne,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 52.18 1.88 48.50 – 55.86 27.81 <0.001
PlusOneSD -0.06 0.02 -0.10 – -0.01 -2.61 0.009
Naturalness c 0.18 0.03 0.13 – 0.24 6.26 <0.001
Benefit c 0.45 0.01 0.42 – 0.48 32.98 <0.001
Risk c -0.40 0.02 -0.43 – -0.37 -26.25 <0.001
Age c -0.05 0.03 -0.10 – 0.01 -1.62 0.104
GenderMan vs Woman 0.01 0.46 -0.88 – 0.91 0.03 0.975
GenderMan&Woman vs
Nonbinary
0.46 2.70 -4.83 – 5.75 0.17 0.865
Ethnicity Asian -2.29 1.88 -5.98 – 1.40 -1.22 0.224
Ethnicity Black -4.34 1.36 -7.00 – -1.69 -3.21 0.001
Ethnicity Hispanic -1.64 2.16 -5.89 – 2.60 -0.76 0.447
Ethnicity NatAmer 12.26 13.84 -14.87 – 39.39 0.89 0.376
Ethnicity NatPac 7.56 6.94 -6.05 – 21.18 1.09 0.276
Ethnicity Other -0.43 4.41 -9.07 – 8.21 -0.10 0.922
Ideology c -2.49 0.24 -2.97 – -2.01 -10.17 <0.001
PlusOneSD × Naturalness c 0.00 0.00 0.00 – 0.00 4.25 <0.001
Naturalness c × Ideology
c
-0.00 0.01 -0.02 – 0.01 -0.58 0.563
Random Effects
σ2 194.20
τ00 id 125.04
τ00 Type 8.44
ICC 0.41
N id 997
N Type 10
Observations 2991
Marginal R2 / Conditional R2 0.596 / 0.761
# Extract predicted values from the models
L$M.PlusOne.pred <- predict(M.PlusOne, allow.new.levels = TRUE, newdata = L)
L$M.MinusOne.pred <- predict(M.MinusOne, allow.new.levels = TRUE, newdata = L)

# Plot the predicted values against the original data
library(ggplot2)


#create plot
p <- plot_model(mod101011, type = "pred",
                terms = c("Naturalness.c", "ATNS_Score.c [-21.50, 21.50]")) +
  ggtitle("") +
  ylab("Support (0-100)") +
  xlab("Naturalness 0-100 (Mean Centered at 39.98)") +
  theme_minimal() +
  theme(panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        panel.background = element_blank(),
        axis.line = element_line(colour = "black"),
        legend.background = element_rect(fill = "white", color = "white"))

p <- p + labs(color = "Aversion to Tampering with Nature")

(mod101011 <- p +
  scale_color_manual(labels = c("-1 SD", "+1 SD"),
                       values = c("blue", "red")) +
  scale_fill_manual(values = c("blue", "red")) +
  scale_y_continuous(breaks = c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100), limits = c(20, 100)) +
    scale_x_continuous(breaks = c(-50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50),                   
                     limits = c(-50, 50)))
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: Removed 6 rows containing missing values (`geom_line()`).

Political Ideology

Climate Change Belief

Section 4: Relationships

##c. Zero Order Correlations

# Age and Gender 
cor.test(CC$Dem_Age, CC$Dem_Gen)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Age and CC$Dem_Gen
## t = -2.8079, df = 995, p-value = 0.005084
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1499265 -0.0267263
## sample estimates:
##         cor 
## -0.08866549
# Age and Education 
cor.test(CC$Dem_Age, CC$Dem_Edu)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Age and CC$Dem_Edu
## t = 5.0156, df = 995, p-value = 6.258e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.09588088 0.21700305
## sample estimates:
##       cor 
## 0.1570324
# Age and SES
cor.test(CC$Dem_Age, CC$Dem_SES)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Age and CC$Dem_SES
## t = 1.8151, df = 994, p-value = 0.06982
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.004659095  0.119167081
## sample estimates:
##        cor 
## 0.05747504
# Age and Aversion to Tampering with Nature
cor.test(CC$Dem_Age, CC$ATNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Age and CC$ATNS_Score
## t = 1.0732, df = 995, p-value = 0.2834
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.02814267  0.09588696
## sample estimates:
##        cor 
## 0.03400306
# Age and Climate Change Belief
cor.test(CC$Dem_Age, CC$CCB_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Age and CC$CCB_Score
## t = -5.3, df = 995, p-value = 1.427e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2254643 -0.1046881
## sample estimates:
##        cor 
## -0.1656975
# Age and Connectedness to Nature
cor.test(CC$Dem_Age, CC$CNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Age and CC$CNS_Score
## t = 3.1178, df = 995, p-value = 0.001874
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03649872 0.15947457
## sample estimates:
##        cor 
## 0.09836215
# Age and Political Ideology
cor.test(CC$Dem_Age, CC$Ideology)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Age and CC$Ideology
## t = 4.8249, df = 995, p-value = 1.62e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.08995803 0.21130261
## sample estimates:
##       cor 
## 0.1511999
# Gender and Education 
cor.test(CC$Dem_Gen, CC$Dem_Edu)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Gen and CC$Dem_Edu
## t = 1.045, df = 1005, p-value = 0.2963
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.02889094  0.09452976
## sample estimates:
##      cor 
## 0.032945
# Gender and SES
cor.test(CC$Dem_Gen, CC$Dem_SES)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Gen and CC$Dem_SES
## t = 1.3017, df = 1004, p-value = 0.1933
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.02081245  0.10259577
## sample estimates:
##        cor 
## 0.04104821
# Gender and Aversion to Tampering with Nature
cor.test(CC$Dem_Gen, CC$ATNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Gen and CC$ATNS_Score
## t = -6.7495, df = 1005, p-value = 2.503e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2665865 -0.1483704
## sample estimates:
##        cor 
## -0.2082389
# Gender and Climate Change Belief
cor.test(CC$Dem_Gen, CC$CCB_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Gen and CC$CCB_Score
## t = -2.534, df = 1005, p-value = 0.01143
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.14076367 -0.01799082
## sample estimates:
##         cor 
## -0.07967941
# Gender and Connectedness to Nature
cor.test(CC$Dem_Gen, CC$CNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Gen and CC$CNS_Score
## t = -5.1191, df = 1005, p-value = 3.677e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.21903313 -0.09860699
## sample estimates:
##       cor 
## -0.159413
# Gender and Political Ideology
cor.test(CC$Dem_Gen, CC$Ideology)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Gen and CC$Ideology
## t = 1.9133, df = 1005, p-value = 0.05599
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.00153865  0.12156892
## sample estimates:
##        cor 
## 0.06024422
# Education and SES
cor.test(CC$Dem_Edu, CC$Dem_SES)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Edu and CC$Dem_SES
## t = 11.4, df = 1004, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2826379 0.3921347
## sample estimates:
##       cor 
## 0.3385318
# Education and Aversion to Tampering with Nature
cor.test(CC$Dem_Edu, CC$ATNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Edu and CC$ATNS_Score
## t = -2.4982, df = 1005, p-value = 0.01264
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.13965980 -0.01686516
## sample estimates:
##         cor 
## -0.07856046
# Education and Climate Change Belief
cor.test(CC$Dem_Edu, CC$CCB_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Edu and CC$CCB_Score
## t = 1.3042, df = 1005, p-value = 0.1925
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.02072462  0.10262170
## sample estimates:
##        cor 
## 0.04110515
# Education and Connectedness to Nature
cor.test(CC$Dem_Edu, CC$CNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Edu and CC$CNS_Score
## t = 1.7004, df = 1005, p-value = 0.08936
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.008242423  0.114958753
## sample estimates:
##      cor 
## 0.053562
# Education and Political Ideology
cor.test(CC$Dem_Edu, CC$Ideology)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_Edu and CC$Ideology
## t = -2.6518, df = 1005, p-value = 0.008132
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.14439085 -0.02169181
## sample estimates:
##         cor 
## -0.08335725
# SES and Aversion to Tampering with Nature
cor.test(CC$Dem_SES, CC$ATNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_SES and CC$ATNS_Score
## t = -1.7618, df = 1004, p-value = 0.07842
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.116921365  0.006314827
## sample estimates:
##        cor 
## -0.0555147
# SES and Climate Change Belief
cor.test(CC$Dem_SES, CC$CCB_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_SES and CC$CCB_Score
## t = -2.7951, df = 1004, p-value = 0.005287
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.14887180 -0.02620697
## sample estimates:
##         cor 
## -0.08787249
# SES and Connectedness to Nature
cor.test(CC$Dem_SES, CC$CNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_SES and CC$CNS_Score
## t = -1.5389, df = 1004, p-value = 0.1241
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1099887  0.0133372
## sample estimates:
##         cor 
## -0.04851065
# SES and Political Ideology
cor.test(CC$Dem_SES, CC$Ideology)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$Dem_SES and CC$Ideology
## t = 3.4441, df = 1004, p-value = 0.0005966
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.0465622 0.1687399
## sample estimates:
##       cor 
## 0.1080591
# ATNS and Climate Change Belief
cor.test(CC$ATNS_Score, CC$CCB_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$ATNS_Score and CC$CCB_Score
## t = -1.5637, df = 1005, p-value = 0.1182
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.11070453  0.01255104
## sample estimates:
##         cor 
## -0.04926431
# ATNS and Connectedness to Nature
cor.test(CC$ATNS_Score, CC$CNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$ATNS_Score and CC$CNS_Score
## t = 9.6442, df = 1005, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2334665 0.3465914
## sample estimates:
##      cor 
## 0.291046
# ATNS and Political Ideology
cor.test(CC$ATNS_Score, CC$Ideology)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$ATNS_Score and CC$Ideology
## t = 1.2313, df = 1005, p-value = 0.2185
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.02302278  0.10034613
## sample estimates:
##        cor 
## 0.03880957
# Climate Change Belief and Connectedness to Nature
cor.test(CC$CCB_Score, CC$CNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$CCB_Score and CC$CNS_Score
## t = 10.087, df = 1005, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2460271 0.3582627
## sample estimates:
##      cor 
## 0.303196
# Climate Change Belief and Political Ideology
cor.test(CC$CCB_Score, CC$Ideology)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$CCB_Score and CC$Ideology
## t = -26.269, df = 1005, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.6732828 -0.5999135
## sample estimates:
##        cor 
## -0.6380441
# Connectedness to Nature and Political Ideology
cor.test(CC$CNS_Score, CC$Ideology)
## 
##  Pearson's product-moment correlation
## 
## data:  CC$CNS_Score and CC$Ideology
## t = -9.8754, df = 1005, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3527090 -0.2400456
## sample estimates:
##        cor 
## -0.2974123

Support

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict support?

modA.71 <- lmer(Support ~ (1|id) + (1|Type), data = L)

summary(modA.71)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27956.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2256 -0.5082  0.0638  0.5568  3.1006 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 309.7    17.60   
##  Type     (Intercept) 144.0    12.00   
##  Residual             406.3    20.16   
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##             Estimate Std. Error     df t value Pr(>|t|)    
## (Intercept)   60.228      3.852  9.333   15.63 5.23e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modA.71,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.23 3.85 52.67 – 67.78 15.63 <0.001
Random Effects
σ2 406.28
τ00 id 309.67
τ00 Type 143.96
ICC 0.53
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.000 / 0.528

Q.2: Does naturalness predict support, over and above climate change method contrasts?

modA.7 <- lmer(Support ~ Naturalness.c + (1|id) + (1|Type), data = L)

summary(modA.7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27614.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4977 -0.5399  0.0304  0.5444  3.2984 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 294.31   17.155  
##  Type     (Intercept)  48.25    6.946  
##  Residual             356.41   18.879  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   6.005e+01  2.289e+00 9.775e+00   26.24 2.17e-10 ***
## Naturalness.c 4.524e-01  2.331e-02 2.667e+03   19.41  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Naturlnss.c -0.004
tab_model(modA.7,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.05 2.29 55.56 – 64.54 26.24 <0.001
Naturalness c 0.45 0.02 0.41 – 0.50 19.41 <0.001
Random Effects
σ2 356.41
τ00 id 294.31
τ00 Type 48.25
ICC 0.49
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.120 / 0.551

Q.3: Does perceived risk predict support, over and above climate change method contrasts?

modA.966 <- lmer(Support ~ Risk.c + Benefit.c + (1|id) + (1|Type), data = L)

summary(modA.966)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Risk.c + Benefit.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 25787
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7027 -0.4973  0.0319  0.5133  4.1021 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 144.99   12.041  
##  Type     (Intercept)  11.95    3.457  
##  Residual             200.80   14.170  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   59.82464    1.18608   10.58526   50.44 5.88e-14 ***
## Risk.c        -0.45542    0.01418 2627.49269  -32.11  < 2e-16 ***
## Benefit.c      0.47641    0.01387 3015.94636   34.34  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) Risk.c
## Risk.c    0.006        
## Benefit.c 0.000  0.321
tab_model(modA.966,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.82 1.19 57.50 – 62.15 50.44 <0.001
Risk c -0.46 0.01 -0.48 – -0.43 -32.11 <0.001
Benefit c 0.48 0.01 0.45 – 0.50 34.34 <0.001
Random Effects
σ2 200.80
τ00 id 144.99
τ00 Type 11.95
ICC 0.44
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.537 / 0.740

Q.4: Does perceived benefit predict support, over and above perceived risk, naturalness, and climate change method contrasts?

modA.101 <- lmer(Support ~ Naturalness.c + Risk.c + Benefit.c + (1|id) + (1|Type), data = L)

summary(modA.101)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Risk.c + Benefit.c + (1 | id) + (1 |  
##     Type)
##    Data: L
## 
## REML criterion at convergence: 25731.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4519 -0.5042  0.0334  0.5033  3.7828 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 145.694  12.070  
##  Type     (Intercept)   7.085   2.662  
##  Residual             195.724  13.990  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     59.78924    0.95878   11.87834  62.360 2.58e-16 ***
## Naturalness.c    0.14536    0.01829 2352.66247   7.947 2.93e-15 ***
## Risk.c          -0.41733    0.01488 2817.01224 -28.053  < 2e-16 ***
## Benefit.c        0.46739    0.01378 3013.44379  33.922  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Risk.c
## Naturlnss.c -0.003              
## Risk.c       0.006  0.347       
## Benefit.c    0.000 -0.081  0.274
tab_model(modA.101,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.79 0.96 57.91 – 61.67 62.36 <0.001
Naturalness c 0.15 0.02 0.11 – 0.18 7.95 <0.001
Risk c -0.42 0.01 -0.45 – -0.39 -28.05 <0.001
Benefit c 0.47 0.01 0.44 – 0.49 33.92 <0.001
Random Effects
σ2 195.72
τ00 id 145.69
τ00 Type 7.09
ICC 0.44
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.557 / 0.751

Q.5: Does perceived familiarity/understanding predict support, over and above climate change method contrasts?

modA.11566 <- lmer(Support ~ FR.c + Naturalness.c + (1|id) + (1|Type), data = L)

summary(modA.11566)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ FR.c + Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27483.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5353 -0.5089  0.0419  0.5623  3.2725 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 283.96   16.851  
##  Type     (Intercept)  15.75    3.968  
##  Residual             341.13   18.470  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   5.960e+01  1.405e+00 1.083e+01   42.43 2.19e-13 ***
## FR.c          2.326e-01  1.921e-02 1.313e+03   12.11  < 2e-16 ***
## Naturalness.c 3.823e-01  2.349e-02 2.306e+03   16.27  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) FR.c  
## FR.c        -0.025       
## Naturlnss.c  0.002 -0.288
tab_model(modA.11566,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.60 1.40 56.85 – 62.36 42.43 <0.001
FR c 0.23 0.02 0.19 – 0.27 12.11 <0.001
Naturalness c 0.38 0.02 0.34 – 0.43 16.27 <0.001
Random Effects
σ2 341.13
τ00 id 283.96
τ00 Type 15.75
ICC 0.47
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.199 / 0.573

Q.6: Does perceived familiarity/understanding predict support, over and above perceived benefit, risk, naturalness, and climate change method contrasts?

modA.115 <- lmer(Support ~ Naturalness.c + Risk.c + Benefit.c + FR.c  + (1 | id) + (1|Type), data = L)

summary(modA.115)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Risk.c + Benefit.c + FR.c + (1 | id) +  
##     (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 25688.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4781 -0.5076  0.0331  0.5082  3.6633 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 143.318  11.972  
##  Type     (Intercept)   1.574   1.255  
##  Residual             193.465  13.909  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     59.59967    0.60414   19.26152  98.652  < 2e-16 ***
## Naturalness.c    0.12016    0.01814 1255.89944   6.624 5.17e-11 ***
## Risk.c          -0.40623    0.01470 2105.58261 -27.641  < 2e-16 ***
## Benefit.c        0.45814    0.01371 2936.19308  33.426  < 2e-16 ***
## FR.c             0.10385    0.01342  204.82794   7.736 4.58e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Risk.c Bnft.c
## Naturlnss.c  0.004                     
## Risk.c       0.002  0.346              
## Benefit.c    0.003 -0.056  0.250       
## FR.c        -0.028 -0.234  0.148 -0.112
tab_model(modA.115,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.60 0.60 58.42 – 60.78 98.65 <0.001
Naturalness c 0.12 0.02 0.08 – 0.16 6.62 <0.001
Risk c -0.41 0.01 -0.44 – -0.38 -27.64 <0.001
Benefit c 0.46 0.01 0.43 – 0.49 33.43 <0.001
FR c 0.10 0.01 0.08 – 0.13 7.74 <0.001
Random Effects
σ2 193.46
τ00 id 143.32
τ00 Type 1.57
ICC 0.43
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.579 / 0.759

Q.7: How does benefit predict support?

modA.715656 <- lmer(Support ~ Benefit.c + (1|id) + (1|Type), data = L)

summary(modA.715656)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Benefit.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 26643.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8395 -0.5101  0.0306  0.5117  4.2361 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 162.32   12.740  
##  Type     (Intercept)  75.73    8.702  
##  Residual             278.89   16.700  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 6.008e+01  2.798e+00 9.302e+00   21.47 3.05e-09 ***
## Benefit.c   6.188e-01  1.513e-02 2.997e+03   40.90  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr)
## Benefit.c -0.001
tab_model(modA.715656,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.08 2.80 54.59 – 65.57 21.47 <0.001
Benefit c 0.62 0.02 0.59 – 0.65 40.90 <0.001
Random Effects
σ2 278.89
τ00 id 162.32
τ00 Type 75.73
ICC 0.46
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.341 / 0.644

Q.8: How does risk predict support?

modA.7156566 <- lmer(Support ~ Risk.c + (1|id) + (1|Type), data = L)

summary(modA.7156566)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Risk.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 26760.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6382 -0.4865  0.0528  0.5307  3.9976 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 249.98   15.811  
##  Type     (Intercept)  24.19    4.918  
##  Residual             258.86   16.089  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   59.84827    1.65969   10.57827   36.06 2.04e-12 ***
## Risk.c        -0.61121    0.01572 2715.53500  -38.88  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##        (Intr)
## Risk.c 0.006
tab_model(modA.7156566,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.85 1.66 56.59 – 63.10 36.06 <0.001
Risk c -0.61 0.02 -0.64 – -0.58 -38.88 <0.001
Random Effects
σ2 258.86
τ00 id 249.98
τ00 Type 24.19
ICC 0.51
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.342 / 0.680

Naturalness

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict naturalness perception?

modA.89 <- lmer(Naturalness ~  (1|id) + (1|Type), data = L)

summary(modA.89)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 25951.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5568 -0.6137 -0.0214  0.6137  3.4134 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  65.94    8.121  
##  Type     (Intercept) 159.37   12.624  
##  Residual             256.45   16.014  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##             Estimate Std. Error     df t value Pr(>|t|)    
## (Intercept)   40.352      4.011  9.059   10.06 3.24e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modA.89,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.35 4.01 32.49 – 48.22 10.06 <0.001
Random Effects
σ2 256.45
τ00 id 65.94
τ00 Type 159.37
ICC 0.47
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.000 / 0.468

Q.2: Do risks and benefits predict naturalness perception, over and above climate change method contrasts?

#Note: Understanding/familiarity mean score taken from two item measure. 
modA.946611 <- lmer(Naturalness ~ Risk.c + Benefit.c + (1 | id) + (1|Type), data = L)

summary(modA.946611)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Risk.c + Benefit.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 25548.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6055 -0.6051  0.0034  0.5958  3.3347 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  65.46    8.091  
##  Type     (Intercept)  82.75    9.097  
##  Residual             218.85   14.794  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   40.18486    2.90064    9.06458  13.854 2.09e-07 ***
## Risk.c        -0.24539    0.01371 2963.81148 -17.896  < 2e-16 ***
## Benefit.c      0.06804    0.01307 2778.57351   5.206 2.08e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) Risk.c
## Risk.c    0.003        
## Benefit.c 0.000  0.312
tab_model(modA.946611,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.18 2.90 34.50 – 45.87 13.85 <0.001
Risk c -0.25 0.01 -0.27 – -0.22 -17.90 <0.001
Benefit c 0.07 0.01 0.04 – 0.09 5.21 <0.001
Random Effects
σ2 218.85
τ00 id 65.46
τ00 Type 82.75
ICC 0.40
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.132 / 0.482

Q.3: Does risk, benefit, and familiarity/understanding predict naturalness perception, over and above understanding and climate change method contrasts?

modA.9433 <- lmer(Naturalness ~ Risk.c + Benefit.c + FR.c + (1 | id) + (1|Type), data = L)

summary(modA.9433)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Risk.c + Benefit.c + FR.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 25461.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6946 -0.5940  0.0134  0.5731  3.3437 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  70.91    8.421  
##  Type     (Intercept)  62.77    7.923  
##  Residual             207.88   14.418  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   39.91859    2.53341    9.09074  15.757 6.57e-08 ***
## Risk.c        -0.22394    0.01375 2973.01620 -16.288  < 2e-16 ***
## Benefit.c      0.05265    0.01301 2821.08592   4.047 5.33e-05 ***
## FR.c           0.13698    0.01393 2865.09972   9.837  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) Risk.c Bnft.c
## Risk.c     0.001              
## Benefit.c  0.001  0.286       
## FR.c      -0.011  0.179 -0.112
tab_model(modA.9433,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 39.92 2.53 34.95 – 44.89 15.76 <0.001
Risk c -0.22 0.01 -0.25 – -0.20 -16.29 <0.001
Benefit c 0.05 0.01 0.03 – 0.08 4.05 <0.001
FR c 0.14 0.01 0.11 – 0.16 9.84 <0.001
Random Effects
σ2 207.88
τ00 id 70.91
τ00 Type 62.77
ICC 0.39
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.192 / 0.508

Q.4: Does understanding/familiarity (mean score) predict naturalness perception, over and above climate change method contrasts?

#Note: Understanding/familiarity mean score taken from two item measure. 
modA.94 <- lmer(Naturalness ~ FR.c +  (1 | id) + (1|Type), data = L)

summary(modA.94)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ FR.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 25776.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6685 -0.6030 -0.0056  0.5873  3.4752 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  75.33    8.679  
##  Type     (Intercept) 107.08   10.348  
##  Residual             233.47   15.280  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 3.994e+01  3.296e+00 9.077e+00   12.12 6.55e-07 ***
## FR.c        1.971e-01  1.424e-02 2.900e+03   13.84  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##      (Intr)
## FR.c -0.009
tab_model(modA.94,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 39.94 3.30 33.48 – 46.41 12.12 <0.001
FR c 0.20 0.01 0.17 – 0.23 13.84 <0.001
Random Effects
σ2 233.47
τ00 id 75.33
τ00 Type 107.08
ICC 0.44
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.077 / 0.482

Q.5: Nat ~ Risk

#Note: Understanding/familiarity mean score taken from two item measure. 
modA.9466 <- lmer(Naturalness ~ Risk.c +  (1 | id) + (1|Type), data = L)

summary(modA.9466)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Risk.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 25568.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8316 -0.6073  0.0142  0.5880  3.2699 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  69.11    8.313  
##  Type     (Intercept)  83.74    9.151  
##  Residual             218.81   14.792  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   40.18716    2.91829    9.07280   13.77 2.18e-07 ***
## Risk.c        -0.26845    0.01309 2987.14042  -20.51  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##        (Intr)
## Risk.c 0.003
tab_model(modA.9466,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.19 2.92 34.47 – 45.91 13.77 <0.001
Risk c -0.27 0.01 -0.29 – -0.24 -20.51 <0.001
Random Effects
σ2 218.81
τ00 id 69.11
τ00 Type 83.74
ICC 0.41
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.126 / 0.485

Q.6: Nat ~ Ben

modA.94667 <- lmer(Naturalness ~ Benefit.c +  (1 | id) + (1|Type), data = L)

summary(modA.94667)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Benefit.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 25842.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3270 -0.6200 -0.0147  0.6070  3.3697 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  59.91    7.74   
##  Type     (Intercept) 142.52   11.94   
##  Residual             249.34   15.79   
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 4.032e+01  3.794e+00 9.055e+00   10.63 2.05e-06 ***
## Benefit.c   1.409e-01  1.295e-02 2.734e+03   10.88  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr)
## Benefit.c -0.001
tab_model(modA.94667,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.32 3.79 32.88 – 47.76 10.63 <0.001
Benefit c 0.14 0.01 0.12 – 0.17 10.88 <0.001
Random Effects
σ2 249.34
τ00 id 59.91
τ00 Type 142.52
ICC 0.45
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.030 / 0.465

Risk

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict risk perception?

modA.82 <- lmer(Risk ~ (1|id) + (1|Type), data = L)

summary(modA.82)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27537.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5722 -0.6107 -0.0700  0.5559  3.6678 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 183.5    13.55   
##  Type     (Intercept) 197.0    14.04   
##  Residual             391.9    19.80   
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##             Estimate Std. Error     df t value Pr(>|t|)    
## (Intercept)   32.429      4.474  9.129   7.249 4.48e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modA.82,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.43 4.47 23.66 – 41.20 7.25 <0.001
Random Effects
σ2 391.88
τ00 id 183.48
τ00 Type 197.00
ICC 0.49
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.000 / 0.493

Q.2: Does benefit predict risk perception, over and above climate change method contrasts?

modA.88 <- lmer(Risk ~ Benefit.c + (1|id) + (1|Type), data = L)

summary(modA.88)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Benefit.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27226.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4624 -0.6151 -0.0514  0.5896  3.5658 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 174.2    13.20   
##  Type     (Intercept) 164.0    12.81   
##  Residual             348.6    18.67   
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   32.50204    4.08567    9.14213   7.955 2.11e-05 ***
## Benefit.c     -0.30388    0.01662 2966.54852 -18.286  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr)
## Benefit.c -0.001
tab_model(modA.88,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.50 4.09 24.49 – 40.51 7.96 <0.001
Benefit c -0.30 0.02 -0.34 – -0.27 -18.29 <0.001
Random Effects
σ2 348.56
τ00 id 174.17
τ00 Type 164.02
ICC 0.49
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.086 / 0.536

Q.3: Does naturalness predict risk perception, over and above climate change method contrasts?

modA.8 <- lmer(Risk ~ Naturalness.c + (1|id) + (1|Type), data = L)

summary(modA.8)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27132.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3202 -0.6043 -0.0232  0.5679  3.6956 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 180.42   13.432  
##  Type     (Intercept)  74.95    8.657  
##  Residual             333.16   18.253  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     32.6060     2.7905    9.2052   11.69 7.92e-07 ***
## Naturalness.c   -0.4630     0.0219 2895.6104  -21.14  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Naturlnss.c -0.003
tab_model(modA.8,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.61 2.79 27.13 – 38.08 11.68 <0.001
Naturalness c -0.46 0.02 -0.51 – -0.42 -21.14 <0.001
Random Effects
σ2 333.16
τ00 id 180.42
τ00 Type 74.95
ICC 0.43
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.145 / 0.516

Q.4: Does benefit predict risk perception, over and above naturalness and climate change method contrasts?

modA.99 <- lmer(Risk ~ Naturalness.c + Benefit.c + (1|id) + (1|Type), data = L)

summary(modA.99)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Naturalness.c + Benefit.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 26907
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1055 -0.5880 -0.0152  0.5804  3.7304 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 176.06   13.269  
##  Type     (Intercept)  72.26    8.501  
##  Residual             304.37   17.446  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     32.64204    2.73937    9.22291   11.92 6.57e-07 ***
## Naturalness.c   -0.40073    0.02143 2876.23838  -18.70  < 2e-16 ***
## Benefit.c       -0.24992    0.01608 2998.12337  -15.54  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln.
## Naturlnss.c -0.003       
## Benefit.c   -0.001 -0.188
tab_model(modA.99,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.64 2.74 27.27 – 38.01 11.92 <0.001
Naturalness c -0.40 0.02 -0.44 – -0.36 -18.70 <0.001
Benefit c -0.25 0.02 -0.28 – -0.22 -15.54 <0.001
Random Effects
σ2 304.37
τ00 id 176.06
τ00 Type 72.26
ICC 0.45
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.211 / 0.566

Q.5: Does familiarity/understanding predict risk perception, over and above climate change method contrasts?

modA.8666 <- lmer(Risk ~ FR.c + (1|id) + (1|Type), data = L)

summary(modA.8666)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ FR.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27384.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4712 -0.5859 -0.0533  0.5354  4.1431 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 187.2    13.68   
##  Type     (Intercept) 127.6    11.30   
##  Residual             365.8    19.13   
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   32.92751    3.61576    9.16767   9.107 6.83e-06 ***
## FR.c          -0.24003    0.01871 2956.34056 -12.832  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##      (Intr)
## FR.c -0.011
tab_model(modA.8666,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.93 3.62 25.84 – 40.02 9.11 <0.001
FR c -0.24 0.02 -0.28 – -0.20 -12.83 <0.001
Random Effects
σ2 365.84
τ00 id 187.23
τ00 Type 127.63
ICC 0.46
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.070 / 0.500

Q.6: Does understanding/familiarity predict risk perception, over and above naturalness, benefit, and climate change method contrasts?

modA.100 <- lmer(Risk ~ Naturalness.c + Benefit.c + FR.c +  (1|id) + (1|Type), data = L)

summary(modA.100)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Naturalness.c + Benefit.c + FR.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 26868.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5461 -0.6065 -0.0057  0.5658  3.9443 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 174.46   13.21   
##  Type     (Intercept)  60.06    7.75   
##  Residual             299.78   17.31   
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     32.87341    2.50624    9.26184  13.117 2.72e-07 ***
## Naturalness.c   -0.36707    0.02188 2926.84707 -16.780  < 2e-16 ***
## Benefit.c       -0.23538    0.01612 2994.55937 -14.603  < 2e-16 ***
## FR.c            -0.11990    0.01789 2869.59603  -6.704 2.44e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Bnft.c
## Naturlnss.c  0.000              
## Benefit.c    0.001 -0.150       
## FR.c        -0.014 -0.236 -0.135
tab_model(modA.100,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.87 2.51 27.96 – 37.79 13.12 <0.001
Naturalness c -0.37 0.02 -0.41 – -0.32 -16.78 <0.001
Benefit c -0.24 0.02 -0.27 – -0.20 -14.60 <0.001
FR c -0.12 0.02 -0.15 – -0.08 -6.70 <0.001
Random Effects
σ2 299.78
τ00 id 174.46
τ00 Type 60.06
ICC 0.44
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.243 / 0.575

Benefit

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict perceived benefit?

modA.109 <- lmer(Ben ~  (1|id) + (1|Type), data = L)

summary(modA.109)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27740.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4202 -0.5167  0.0697  0.5663  3.1505 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 283.16   16.827  
##  Type     (Intercept)  41.71    6.458  
##  Residual             381.93   19.543  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##             Estimate Std. Error    df t value Pr(>|t|)    
## (Intercept)    58.21       2.14 10.05    27.2 9.62e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modA.109,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.21 2.14 54.02 – 62.41 27.20 <0.001
Random Effects
σ2 381.93
τ00 id 283.16
τ00 Type 41.71
ICC 0.46
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.000 / 0.460

Q.2: How does risk perception predict benefit, over and above climate change method contrasts?

modA.113 <- lmer(Ben ~ Risk.c +  (1|id) + (1|Type), data = L)

summary(modA.113)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Risk.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27419.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5527 -0.5112  0.0725  0.5394  3.2070 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 264.69   16.269  
##  Type     (Intercept)  22.33    4.726  
##  Residual             339.24   18.419  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   58.0172     1.6158   10.6968   35.91 1.69e-12 ***
## Risk.c        -0.3283     0.0176 2605.9916  -18.65  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##        (Intr)
## Risk.c 0.006
tab_model(modA.113,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.02 1.62 54.85 – 61.19 35.91 <0.001
Risk c -0.33 0.02 -0.36 – -0.29 -18.65 <0.001
Random Effects
σ2 339.24
τ00 id 264.69
τ00 Type 22.33
ICC 0.46
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.113 / 0.520

Q.3: How does naturalness predict benefit, over and above climate change method contrasts?

modA.110 <- lmer(Ben ~ Naturalness.c + (1|id) + (1|Type), data = L)

summary(modA.110)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27635.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4640 -0.5131  0.0589  0.5595  3.2689 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 266.46   16.324  
##  Type     (Intercept)  19.33    4.396  
##  Residual             371.96   19.286  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     58.1167     1.5241   10.8684   38.13 6.34e-13 ***
## Naturalness.c    0.2509     0.0233 2056.6656   10.77  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Naturlnss.c -0.005
tab_model(modA.110,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.12 1.52 55.13 – 61.11 38.13 <0.001
Naturalness c 0.25 0.02 0.21 – 0.30 10.77 <0.001
Random Effects
σ2 371.96
τ00 id 266.46
τ00 Type 19.33
ICC 0.43
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.043 / 0.459

Q.4: How does famililiarity/understanding predict benefit, over and above climate change method contrasts?

modA.11766 <- lmer(Ben ~ FR.c +  (1|id) + (1|Type), data = L)

summary(modA.11766)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ FR.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27642.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5108 -0.4992  0.0584  0.5578  3.1241 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 279.61   16.722  
##  Type     (Intercept)  14.98    3.871  
##  Residual             368.02   19.184  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)  57.81785    1.37893  11.60654   41.93 4.92e-14 ***
## FR.c          0.19946    0.01886 943.69013   10.58  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##      (Intr)
## FR.c -0.026
tab_model(modA.11766,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 57.82 1.38 55.11 – 60.52 41.93 <0.001
FR c 0.20 0.02 0.16 – 0.24 10.58 <0.001
Random Effects
σ2 368.02
τ00 id 279.61
τ00 Type 14.98
ICC 0.44
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.051 / 0.473

Q.5: How does risk perception predict benefit, over and above naturalness and climate change method contrasts?

modA.114 <- lmer(Ben ~ Risk.c + Naturalness.c + (1|id) + (1|Type), data = L)

summary(modA.114)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Risk.c + Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27405.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5761 -0.5129  0.0682  0.5435  3.3057 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 257.94   16.060  
##  Type     (Intercept)  21.07    4.591  
##  Residual             339.31   18.420  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     57.99758    1.57423   10.68237  36.842 1.33e-12 ***
## Risk.c          -0.29694    0.01894 2934.73084 -15.678  < 2e-16 ***
## Naturalness.c    0.10627    0.02418 2672.23334   4.394 1.16e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Risk.c
## Risk.c       0.005       
## Naturlnss.c -0.003  0.376
tab_model(modA.114,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.00 1.57 54.91 – 61.08 36.84 <0.001
Risk c -0.30 0.02 -0.33 – -0.26 -15.68 <0.001
Naturalness c 0.11 0.02 0.06 – 0.15 4.39 <0.001
Random Effects
σ2 339.31
τ00 id 257.94
τ00 Type 21.07
ICC 0.45
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.125 / 0.520

Q.6: How does understanding/familiarity predict benefit, over and above risk perception, naturalness, and climate change method contrasts?

modA.117 <- lmer(Ben ~ Risk.c + Naturalness.c + FR.c +  (1|id) + (1|Type), data = L)

summary(modA.117)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Risk.c + Naturalness.c + FR.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27380.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6109 -0.5016  0.0707  0.5471  3.3377 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 257.03   16.03   
##  Type     (Intercept)  16.89    4.11   
##  Residual             335.50   18.32   
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     57.80706    1.43490   10.95546  40.286 2.93e-13 ***
## Risk.c          -0.27937    0.01907 2943.22940 -14.648  < 2e-16 ***
## Naturalness.c    0.07695    0.02457 2725.39995   3.132  0.00175 ** 
## FR.c             0.10810    0.01918 1574.87965   5.636 2.05e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Risk.c Ntrln.
## Risk.c       0.001              
## Naturlnss.c  0.002  0.332       
## FR.c        -0.024  0.160 -0.211
tab_model(modA.117,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 57.81 1.43 54.99 – 60.62 40.29 <0.001
Risk c -0.28 0.02 -0.32 – -0.24 -14.65 <0.001
Naturalness c 0.08 0.02 0.03 – 0.13 3.13 0.002
FR c 0.11 0.02 0.07 – 0.15 5.64 <0.001
Random Effects
σ2 335.50
τ00 id 257.03
τ00 Type 16.89
ICC 0.45
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.146 / 0.530

Familiarity/Understanding (Mean score)

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict understanding and familiarity (mean score)?

modA.12 <- lmer(FR ~ (1|id) + (1|Type), data = L)

summary(modA.12)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27196.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0398 -0.5867 -0.0115  0.5977  3.0985 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 204.6    14.31   
##  Type     (Intercept) 418.7    20.46   
##  Residual             329.5    18.15   
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##             Estimate Std. Error     df t value Pr(>|t|)    
## (Intercept)   54.473      6.495  9.081   8.387 1.43e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modA.12,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.47 6.49 41.74 – 67.21 8.39 <0.001
Random Effects
σ2 329.46
τ00 id 204.65
τ00 Type 418.66
ICC 0.65
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.000 / 0.654

Q.2: How does naturalness predict understanding and familiarity (mean score), over and above climate change method contrasts?

modA.130 <- lmer(FR ~ Naturalness.c +  (1|id) + (1|Type), data = L)

summary(modA.130)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 26990.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9390 -0.5692  0.0046  0.5977  3.1914 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 213.5    14.61   
##  Type     (Intercept) 323.8    17.99   
##  Residual             297.7    17.25   
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   5.435e+01  5.718e+00 9.101e+00   9.506 5.03e-06 ***
## Naturalness.c 3.171e-01  2.123e-02 2.851e+03  14.937  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Naturlnss.c -0.001
tab_model(modA.130,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.35 5.72 43.14 – 65.56 9.51 <0.001
Naturalness c 0.32 0.02 0.28 – 0.36 14.94 <0.001
Random Effects
σ2 297.71
τ00 id 213.52
τ00 Type 323.77
ICC 0.64
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.053 / 0.662

Moderators of Naturalness and Support

Age

modA.110000006 <- lmer(Support ~ Age.c*Naturalness.c + (1|id) + (1|Type), data = L)

summary(modA.110000006)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Age.c * Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27316.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5224 -0.5295  0.0384  0.5436  3.2562 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 283.06   16.824  
##  Type     (Intercept)  48.23    6.945  
##  Residual             354.72   18.834  
## Number of obs: 2991, groups:  id, 997; Type, 10
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.018e+01  2.287e+00  9.738e+00  26.317 2.25e-10 ***
## Age.c               -2.010e-01  3.926e-02  9.989e+02  -5.121 3.65e-07 ***
## Naturalness.c        4.400e-01  2.340e-02  2.641e+03  18.802  < 2e-16 ***
## Age.c:Naturalness.c  6.204e-03  1.213e-03  2.628e+03   5.115 3.36e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Age.c  Ntrln.
## Age.c       -0.001              
## Naturlnss.c -0.004  0.054       
## Ag.c:Ntrln.  0.014 -0.028 -0.060
tab_model(modA.110000006,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.18 2.29 55.69 – 64.66 26.32 <0.001
Age c -0.20 0.04 -0.28 – -0.12 -5.12 <0.001
Naturalness c 0.44 0.02 0.39 – 0.49 18.80 <0.001
Age c × Naturalness c 0.01 0.00 0.00 – 0.01 5.12 <0.001
Random Effects
σ2 354.72
τ00 id 283.06
τ00 Type 48.23
ICC 0.48
N id 997
N Type 10
Observations 2991
Marginal R2 / Conditional R2 0.140 / 0.555
confint(modA.110000006)
## Computing profile confidence intervals ...
##                            2.5 %       97.5 %
## .sig01              15.761013795 17.906616783
## .sig02               4.366448360 11.154730613
## .sigma              18.255668956 19.428164355
## (Intercept)         55.501268970 64.857800112
## Age.c               -0.277955673 -0.124039823
## Naturalness.c        0.394469793  0.487140614
## Age.c:Naturalness.c  0.003827503  0.008583623
library (ggplot2)
# Interaction Plot

# +1 SD, -1 SD Aversion to Tampering with Nature Score
L$Age_sd <- sd(L$Dem_Age, na.rm = TRUE)
L$MinusOneSDAge <- (L$Age.c + L$Age_sd)
L$PlusOneSDAge <- (L$Age.c - L$Age_sd)

L$MinusOneSDAge <- as.numeric(as.character(L$MinusOneSDAge))
L$PlusOneSDAge <- as.numeric(as.character(L$PlusOneSDAge))

#Look at coeffients for interaction at +1/-1 SD
M.MinusOneAge <- lmer(Support ~ MinusOneSDAge*Naturalness.c + (1|id) + (1|Type), data = L)
M.PlusOneAge <- lmer(Support ~ PlusOneSDAge*Naturalness.c + (1|id) + (1|Type), data = L)

summary(M.MinusOneAge)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ MinusOneSDAge * Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27316.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5224 -0.5295  0.0384  0.5436  3.2562 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 283.06   16.824  
##  Type     (Intercept)  48.23    6.945  
##  Residual             354.72   18.834  
## Number of obs: 2991, groups:  id, 997; Type, 10
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                  6.343e+01  2.374e+00  1.131e+01  26.722 1.42e-11
## MinusOneSDAge               -2.010e-01  3.926e-02  9.989e+02  -5.121 3.65e-07
## Naturalness.c                3.396e-01  3.145e-02  2.681e+03  10.798  < 2e-16
## MinusOneSDAge:Naturalness.c  6.204e-03  1.213e-03  2.628e+03   5.115 3.36e-07
##                                
## (Intercept)                 ***
## MinusOneSDAge               ***
## Naturalness.c               ***
## MinusOneSDAge:Naturalness.c ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) MnOSDA Ntrln.
## MinusOnSDAg -0.268              
## Naturlnss.c -0.027  0.058       
## MnsOnSDA:N.  0.021 -0.028 -0.669
tab_model(M.MinusOneAge,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 63.43 2.37 58.78 – 68.09 26.72 <0.001
MinusOneSDAge -0.20 0.04 -0.28 – -0.12 -5.12 <0.001
Naturalness c 0.34 0.03 0.28 – 0.40 10.80 <0.001
MinusOneSDAge ×
Naturalness c
0.01 0.00 0.00 – 0.01 5.12 <0.001
Random Effects
σ2 354.72
τ00 id 283.06
τ00 Type 48.23
ICC 0.48
N id 997
N Type 10
Observations 2991
Marginal R2 / Conditional R2 0.140 / 0.555
summary(M.PlusOneAge)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ PlusOneSDAge * Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27316.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5224 -0.5295  0.0384  0.5436  3.2562 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 283.06   16.824  
##  Type     (Intercept)  48.23    6.945  
##  Residual             354.72   18.834  
## Number of obs: 2991, groups:  id, 997; Type, 10
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 5.692e+01  2.373e+00  1.129e+01  23.987 4.82e-11
## PlusOneSDAge               -2.010e-01  3.926e-02  9.989e+02  -5.121 3.65e-07
## Naturalness.c               5.405e-01  2.964e-02  2.702e+03  18.239  < 2e-16
## PlusOneSDAge:Naturalness.c  6.204e-03  1.213e-03  2.628e+03   5.115 3.36e-07
##                               
## (Intercept)                ***
## PlusOneSDAge               ***
## Naturalness.c              ***
## PlusOneSDAge:Naturalness.c ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) PlOSDA Ntrln.
## PlusOneSDAg  0.267              
## Naturlnss.c  0.012  0.024       
## PlsOnSDA:N.  0.005 -0.028  0.615
tab_model(M.PlusOneAge,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.92 2.37 52.27 – 61.57 23.99 <0.001
PlusOneSDAge -0.20 0.04 -0.28 – -0.12 -5.12 <0.001
Naturalness c 0.54 0.03 0.48 – 0.60 18.24 <0.001
PlusOneSDAge ×
Naturalness c
0.01 0.00 0.00 – 0.01 5.12 <0.001
Random Effects
σ2 354.72
τ00 id 283.06
τ00 Type 48.23
ICC 0.48
N id 997
N Type 10
Observations 2991
Marginal R2 / Conditional R2 0.140 / 0.555
# Extract predicted values from the models
L$M.PlusOne.predAge <- predict(M.PlusOneAge, allow.new.levels = TRUE, newdata = L)
L$M.MinusOne.predAge <- predict(M.MinusOneAge, allow.new.levels = TRUE, newdata = L)

# Plot the predicted values against the original data
library(ggplot2)


# Create plot of aversion to tampering with nature interacting with naturalness in predicting support of technologies. 

m.w4 <- lmer(Support ~ Age.c*Naturalness.c + (1|id) + (1|Type), data = L)
summary (m.w4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Age.c * Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27316.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5224 -0.5295  0.0384  0.5436  3.2562 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 283.06   16.824  
##  Type     (Intercept)  48.23    6.945  
##  Residual             354.72   18.834  
## Number of obs: 2991, groups:  id, 997; Type, 10
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.018e+01  2.287e+00  9.738e+00  26.317 2.25e-10 ***
## Age.c               -2.010e-01  3.926e-02  9.989e+02  -5.121 3.65e-07 ***
## Naturalness.c        4.400e-01  2.340e-02  2.641e+03  18.802  < 2e-16 ***
## Age.c:Naturalness.c  6.204e-03  1.213e-03  2.628e+03   5.115 3.36e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Age.c  Ntrln.
## Age.c       -0.001              
## Naturlnss.c -0.004  0.054       
## Ag.c:Ntrln.  0.014 -0.028 -0.060
#create plot
p2 <- plot_model(m.w4, type = "pred",
                terms = c("Naturalness.c", "Age.c [-21.50, 21.50]")) +
  ggtitle("") +
  ylab("Support (0-100)") +
  xlab("Naturalness 0-100 (Mean Centered at 39.98)") +
  theme_minimal() +
  theme(panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        panel.background = element_blank(),
        axis.line = element_line(colour = "black"),
        legend.background = element_rect(fill = "white", color = "white"))

p2 <- p2 + labs(color = "Age")

(p.w4 <- p2 +
  scale_color_manual(labels = c("-1 SD", "+1 SD"),
                       values = c("blue", "red")) +
  scale_fill_manual(values = c("blue", "red")) +
  scale_y_continuous(breaks = c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100), limits = c(20, 100)) +
    scale_x_continuous(breaks = c(-50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50),                   
                     limits = c(-50, 50)))
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: Removed 6 rows containing missing values (`geom_line()`).

Aversion to Tampering with Nature (SUPPORT)

modA.11 <- lmer(Support ~ ATNS_Score.c*Naturalness.c  + (1|id) + (1|Type), data = L)

summary(modA.11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ ATNS_Score.c * Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27522
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5823 -0.5342  0.0326  0.5438  3.3820 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 267.70   16.362  
##  Type     (Intercept)  49.01    7.001  
##  Residual             350.10   18.711  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 6.020e+01  2.299e+00  9.670e+00  26.185 2.65e-10
## ATNS_Score.c               -2.189e-01  2.880e-02  1.008e+03  -7.601 6.71e-14
## Naturalness.c               4.282e-01  2.311e-02  2.697e+03  18.529  < 2e-16
## ATNS_Score.c:Naturalness.c  5.545e-03  7.726e-04  2.708e+03   7.177 9.16e-13
##                               
## (Intercept)                ***
## ATNS_Score.c               ***
## Naturalness.c              ***
## ATNS_Score.c:Naturalness.c ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) ATNS_Sc. Ntrln.
## ATNS_Scor.c  0.000                
## Naturlnss.c -0.005  0.041         
## ATNS_Sc.:N.  0.009  0.033   -0.097
tab_model(modA.11,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.20 2.30 55.69 – 64.71 26.19 <0.001
ATNS Score c -0.22 0.03 -0.28 – -0.16 -7.60 <0.001
Naturalness c 0.43 0.02 0.38 – 0.47 18.53 <0.001
ATNS Score c ×
Naturalness c
0.01 0.00 0.00 – 0.01 7.18 <0.001
Random Effects
σ2 350.10
τ00 id 267.70
τ00 Type 49.01
ICC 0.47
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.161 / 0.560
confint(modA.11)
## Computing profile confidence intervals ...
##                                   2.5 %       97.5 %
## .sig01                     15.317619663 17.422919792
## .sig02                      4.407071920 11.237385560
## .sigma                     18.139326047 19.298179967
## (Intercept)                55.499601239 64.909641145
## ATNS_Score.c               -0.275367807 -0.162433732
## Naturalness.c               0.383173112  0.474627385
## ATNS_Score.c:Naturalness.c  0.004031156  0.007060033
library (ggplot2)
# Interaction Plot

# +1 SD, -1 SD Aversion to Tampering with Nature Score
L$ATNS_sd <- sd(L$ATNS_Score, na.rm = TRUE)
L$MinusOneSD <- (L$ATNS_Score.c + L$ATNS_sd)
L$PlusOneSD <- (L$ATNS_Score.c - L$ATNS_sd)

L$MinusOneSD <- as.numeric(as.character(L$MinusOneSD))
L$PlusOneSD <- as.numeric(as.character(L$PlusOneSD))

#Look at coeffients for interaction at +1/-1 SD
M.MinusOne <- lmer(Support ~ MinusOneSD*Naturalness.c + (1|id) + (1|Type), data = L)
M.PlusOne <- lmer(Support ~ PlusOneSD*Naturalness.c + (1|id) + (1|Type), data = L)

summary(M.MinusOne)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ MinusOneSD * Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27522
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5823 -0.5342  0.0326  0.5438  3.3820 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 267.70   16.362  
##  Type     (Intercept)  49.01    7.001  
##  Residual             350.10   18.711  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               6.491e+01  2.381e+00  1.112e+01  27.262 1.55e-11 ***
## MinusOneSD               -2.189e-01  2.880e-02  1.008e+03  -7.601 6.71e-14 ***
## Naturalness.c             3.090e-01  2.974e-02  2.742e+03  10.391  < 2e-16 ***
## MinusOneSD:Naturalness.c  5.545e-03  7.726e-04  2.708e+03   7.177 9.16e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) MnsOSD Ntrln.
## MinusOneSD  -0.260              
## Naturlnss.c -0.012  0.013       
## MnsOnSD:Nt.  0.000  0.033 -0.634
tab_model(M.MinusOne,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 64.91 2.38 60.24 – 69.57 27.26 <0.001
MinusOneSD -0.22 0.03 -0.28 – -0.16 -7.60 <0.001
Naturalness c 0.31 0.03 0.25 – 0.37 10.39 <0.001
MinusOneSD × Naturalness
c
0.01 0.00 0.00 – 0.01 7.18 <0.001
Random Effects
σ2 350.10
τ00 id 267.70
τ00 Type 49.01
ICC 0.47
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.161 / 0.560
summary(M.PlusOne)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ PlusOneSD * Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27522
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5823 -0.5342  0.0326  0.5438  3.3820 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 267.70   16.362  
##  Type     (Intercept)  49.01    7.001  
##  Residual             350.10   18.711  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              5.550e+01  2.381e+00  1.112e+01  23.308 8.54e-11 ***
## PlusOneSD               -2.189e-01  2.880e-02  1.008e+03  -7.601 6.71e-14 ***
## Naturalness.c            5.473e-01  2.711e-02  2.753e+03  20.190  < 2e-16 ***
## PlusOneSD:Naturalness.c  5.545e-03  7.726e-04  2.708e+03   7.177 9.16e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) PlsOSD Ntrln.
## PlusOneSD   0.260               
## Naturlnss.c 0.016  0.055        
## PlsOnSD:Nt. 0.017  0.033  0.529
tab_model(M.PlusOne,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 55.50 2.38 50.83 – 60.16 23.31 <0.001
PlusOneSD -0.22 0.03 -0.28 – -0.16 -7.60 <0.001
Naturalness c 0.55 0.03 0.49 – 0.60 20.19 <0.001
PlusOneSD × Naturalness c 0.01 0.00 0.00 – 0.01 7.18 <0.001
Random Effects
σ2 350.10
τ00 id 267.70
τ00 Type 49.01
ICC 0.47
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.161 / 0.560
# Extract predicted values from the models
L$M.PlusOne.pred <- predict(M.PlusOne, allow.new.levels = TRUE, newdata = L)
L$M.MinusOne.pred <- predict(M.MinusOne, allow.new.levels = TRUE, newdata = L)

# Plot the predicted values against the original data
library(ggplot2)


# Create plot of aversion to tampering with nature interacting with naturalness in predicting support of technologies. 

m.w3 <- lmer(Support ~ ATNS_Score.c*Naturalness.c + Renewable + (1|id) + (1|Type), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary (m.w3 )
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ ATNS_Score.c * Naturalness.c + Renewable + (1 | id) +  
##     (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27513.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5763 -0.5315  0.0339  0.5414  3.3866 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 267.69   16.361  
##  Type     (Intercept)  36.64    6.053  
##  Residual             350.11   18.711  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 6.100e+01  2.053e+00  8.725e+00  29.716 4.51e-10
## ATNS_Score.c               -2.189e-01  2.880e-02  1.008e+03  -7.600 6.73e-14
## Naturalness.c               4.289e-01  2.306e-02  2.574e+03  18.596  < 2e-16
## Renewable                   7.829e+00  3.975e+00  7.672e+00   1.969    0.086
## ATNS_Score.c:Naturalness.c  5.541e-03  7.726e-04  2.708e+03   7.172 9.46e-13
##                               
## (Intercept)                ***
## ATNS_Score.c               ***
## Naturalness.c              ***
## Renewable                  .  
## ATNS_Score.c:Naturalness.c ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) ATNS_Sc. Ntrln. Renwbl
## ATNS_Scor.c  0.000                       
## Naturlnss.c -0.011  0.040                
## Renewable    0.198 -0.001   -0.032       
## ATNS_Sc.:N.  0.009  0.033   -0.097 -0.003
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
#create plot
p <- plot_model(m.w3, type = "pred",
                terms = c("Naturalness.c", "ATNS_Score.c [-21.50, 21.50]")) +
  ggtitle("") +
  ylab("Support (0-100)") +
  xlab("Naturalness 0-100 (Mean Centered at 39.98)") +
  theme_minimal() +
  theme(panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        panel.background = element_blank(),
        axis.line = element_line(colour = "black"),
        legend.background = element_rect(fill = "white", color = "white"))

p <- p + labs(color = "Aversion to Tampering with Nature")

(p.w3 <- p +
  scale_color_manual(labels = c("-1 SD", "+1 SD"),
                       values = c("blue", "red")) +
  scale_fill_manual(values = c("blue", "red")) +
  scale_y_continuous(breaks = c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100), limits = c(20, 100)) +
    scale_x_continuous(breaks = c(-50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50),                   
                     limits = c(-50, 50)))
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: Removed 6 rows containing missing values (`geom_line()`).

Aversion to Tampering with Nature (Naturalness)

modA.11bonus1 <- lmer(Naturalness ~ ATNS_Score.c  + (1|id) + (1|Type), data = L)

summary(modA.11bonus1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ ATNS_Score.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 25948.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6435 -0.6157 -0.0282  0.6100  3.4151 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  64.68    8.042  
##  Type     (Intercept) 159.19   12.617  
##  Residual             256.46   16.014  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    40.35200    4.00877    9.05756  10.066 3.23e-06 ***
## ATNS_Score.c   -0.05509    0.01798 1004.29852  -3.064  0.00224 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## ATNS_Scor.c 0.000
tab_model(modA.11bonus1,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.35 4.01 32.49 – 48.21 10.07 <0.001
ATNS Score c -0.06 0.02 -0.09 – -0.02 -3.06 0.002
Random Effects
σ2 256.46
τ00 id 64.68
τ00 Type 159.19
ICC 0.47
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.003 / 0.468
confint(modA.11bonus1)
## Computing profile confidence intervals ...
##                    2.5 %      97.5 %
## .sig01        7.13820769  8.90749908
## .sig02        8.13023791 20.02938788
## .sigma       15.53139665 16.52310933
## (Intercept)  32.12396760 48.58112423
## ATNS_Score.c -0.09033827 -0.01983642

Aversion to Tampering with Nature (Risk and Benefit)

modA.11bonus2 <- lmer(Risk ~ Benefit.c + ATNS_Score.c  + (1|id) + (1|Type), data = L)

summary(modA.11bonus2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Benefit.c + ATNS_Score.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27128.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7076 -0.6119 -0.0453  0.5879  3.4449 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 144.7    12.03   
##  Type     (Intercept) 164.8    12.84   
##  Residual             349.1    18.69   
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    32.49797    4.09190    9.11306   7.942 2.18e-05 ***
## Benefit.c      -0.28730    0.01633 2924.27674 -17.595  < 2e-16 ***
## ATNS_Score.c    0.24953    0.02379 1002.03616  10.491  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Bnft.c
## Benefit.c   -0.001       
## ATNS_Scor.c  0.000  0.083
tab_model(modA.11bonus2,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.50 4.09 24.47 – 40.52 7.94 <0.001
Benefit c -0.29 0.02 -0.32 – -0.26 -17.60 <0.001
ATNS Score c 0.25 0.02 0.20 – 0.30 10.49 <0.001
Random Effects
σ2 349.14
τ00 id 144.73
τ00 Type 164.82
ICC 0.47
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.125 / 0.536
confint(modA.11bonus2)
## Computing profile confidence intervals ...
##                   2.5 %     97.5 %
## .sig01       11.0197075 13.0285790
## .sig02        8.2549457 20.4036871
## .sigma       18.1176554 19.2774155
## (Intercept)  24.0993735 40.8943026
## Benefit.c    -0.3195323 -0.2551751
## ATNS_Score.c  0.2028875  0.2961552
modA.11bonus3 <- lmer(Ben ~ Risk.c + ATNS_Score.c  + (1|id) + (1|Type), data = L)

summary(modA.11bonus3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Risk.c + ATNS_Score.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27423.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5244 -0.5180  0.0706  0.5399  3.2272 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 264.68   16.269  
##  Type     (Intercept)  22.35    4.727  
##  Residual             339.26   18.419  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    58.01896    1.61624   10.69756  35.898  1.7e-12 ***
## Risk.c         -0.32524    0.01788 2550.23120 -18.190  < 2e-16 ***
## ATNS_Score.c   -0.02795    0.02896 1053.05934  -0.965    0.335    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Risk.c
## Risk.c       0.006       
## ATNS_Scor.c -0.001 -0.176
tab_model(modA.11bonus3,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.02 1.62 54.85 – 61.19 35.90 <0.001
Risk c -0.33 0.02 -0.36 – -0.29 -18.19 <0.001
ATNS Score c -0.03 0.03 -0.08 – 0.03 -0.96 0.335
Random Effects
σ2 339.26
τ00 id 264.68
τ00 Type 22.35
ICC 0.46
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.115 / 0.520
confint(modA.11bonus3)
## Computing profile confidence intervals ...
##                    2.5 %      97.5 %
## .sig01       15.23823277 17.31582126
## .sig02        2.91314320  7.67587677
## .sigma       17.86024733 19.00089858
## (Intercept)  54.72365934 61.31496696
## Risk.c       -0.36021878 -0.29020449
## ATNS_Score.c -0.08470647  0.02883807

Climate Change Belief

modA.110000000 <- lmer(Support ~ CCBelief_Score.c*Naturalness.c  + (1|id) + (1|Type), data = L)

summary(modA.110000000)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ CCBelief_Score.c * Naturalness.c + (1 | id) + (1 |  
##     Type)
##    Data: L
## 
## REML criterion at convergence: 27302.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7501 -0.5443  0.0452  0.5458  3.1976 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 180.61   13.439  
##  Type     (Intercept)  49.47    7.034  
##  Residual             355.73   18.861  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                                 Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                    6.002e+01  2.291e+00 9.382e+00  26.201  4.3e-10
## CCBelief_Score.c               4.583e-01  2.326e-02 1.019e+03  19.701  < 2e-16
## Naturalness.c                  4.371e-01  2.249e-02 2.820e+03  19.440  < 2e-16
## CCBelief_Score.c:Naturalness.c 1.463e-03  7.159e-04 2.797e+03   2.043   0.0411
##                                   
## (Intercept)                    ***
## CCBelief_Score.c               ***
## Naturalness.c                  ***
## CCBelief_Score.c:Naturalness.c *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) CCBl_S. Ntrln.
## CCBlf_Scr.c -0.001               
## Naturlnss.c -0.004 -0.036        
## CCBlf_S.:N. -0.009  0.096   0.036
tab_model(modA.110000000,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.02 2.29 55.53 – 64.51 26.20 <0.001
CCBelief Score c 0.46 0.02 0.41 – 0.50 19.70 <0.001
Naturalness c 0.44 0.02 0.39 – 0.48 19.44 <0.001
CCBelief Score c ×
Naturalness c
0.00 0.00 0.00 – 0.00 2.04 0.041
Random Effects
σ2 355.73
τ00 id 180.61
τ00 Type 49.47
ICC 0.39
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.268 / 0.555
confint(modA.110000000)
## Computing profile confidence intervals ...
##                                       2.5 %      97.5 %
## .sig01                         1.242458e+01 14.45374878
## .sig02                         4.429316e+00 11.27627061
## .sigma                         1.828471e+01 19.45315696
## (Intercept)                    5.532953e+01 64.71510403
## CCBelief_Score.c               4.127114e-01  0.50392343
## Naturalness.c                  3.933521e-01  0.48228787
## CCBelief_Score.c:Naturalness.c 6.038998e-05  0.00286732
library (ggplot2)
# Interaction Plot

L$CCBelief_Score.c <- L$CCB_Score -  81.61

# +1 SD, -1 SD Aversion to Tampering with Nature Score
L$CCB_sd <- sd(L$CCB_Score, na.rm = TRUE)
L$MinusOneSDCCB <- (L$CCBelief_Score.c + L$CCB_sd)
L$PlusOneSDCCB <- (L$CCBelief_Score.c - L$CCB_sd)

L$MinusOneSDCCB <- as.numeric(as.character(L$MinusOneSDCCB))
L$PlusOneSDCCB <- as.numeric(as.character(L$PlusOneSDCCB))

#Look at coeffients for interaction at +1/-1 SD
M.MinusOneCCB <- lmer(Support ~ MinusOneSDCCB*Naturalness.c + (1|id) + (1|Type), data = L)
M.PlusOneCCB <- lmer(Support ~ PlusOneSDCCB*Naturalness.c + (1|id) + (1|Type), data = L)

summary(M.MinusOneCCB)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ MinusOneSDCCB * Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27302.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7501 -0.5443  0.0452  0.5458  3.1976 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 180.61   13.439  
##  Type     (Intercept)  49.47    7.034  
##  Residual             355.73   18.861  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                 4.922e+01  2.356e+00 1.049e+01  20.893 6.86e-10 ***
## MinusOneSDCCB               4.583e-01  2.326e-02 1.019e+03  19.701  < 2e-16 ***
## Naturalness.c               4.027e-01  2.762e-02 2.877e+03  14.578  < 2e-16 ***
## MinusOneSDCCB:Naturalness.c 1.463e-03  7.159e-04 2.797e+03   2.043   0.0411 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) MnOSDCCB Ntrln.
## MinsOnSDCCB -0.233                
## Naturlnss.c  0.023 -0.088         
## MnOSDCCB:N. -0.031  0.096   -0.582
tab_model(M.MinusOneCCB,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 49.22 2.36 44.60 – 53.84 20.89 <0.001
MinusOneSDCCB 0.46 0.02 0.41 – 0.50 19.70 <0.001
Naturalness c 0.40 0.03 0.35 – 0.46 14.58 <0.001
MinusOneSDCCB ×
Naturalness c
0.00 0.00 0.00 – 0.00 2.04 0.041
Random Effects
σ2 355.73
τ00 id 180.61
τ00 Type 49.47
ICC 0.39
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.268 / 0.555
summary(M.PlusOneCCB)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ PlusOneSDCCB * Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27302.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7501 -0.5443  0.0452  0.5458  3.1976 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 180.61   13.439  
##  Type     (Intercept)  49.47    7.034  
##  Residual             355.73   18.861  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                7.082e+01  2.355e+00 1.048e+01  30.072 1.63e-11 ***
## PlusOneSDCCB               4.583e-01  2.326e-02 1.019e+03  19.701  < 2e-16 ***
## Naturalness.c              4.716e-01  2.859e-02 2.850e+03  16.494  < 2e-16 ***
## PlusOneSDCCB:Naturalness.c 1.463e-03  7.159e-04 2.797e+03   2.043   0.0411 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) PlOSDCCB Ntrln.
## PlusOnSDCCB  0.232                
## Naturlnss.c -0.001  0.029         
## PlOSDCCB:N.  0.014  0.096    0.618
tab_model(M.PlusOneCCB,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 70.82 2.35 66.20 – 75.44 30.07 <0.001
PlusOneSDCCB 0.46 0.02 0.41 – 0.50 19.70 <0.001
Naturalness c 0.47 0.03 0.42 – 0.53 16.49 <0.001
PlusOneSDCCB ×
Naturalness c
0.00 0.00 0.00 – 0.00 2.04 0.041
Random Effects
σ2 355.73
τ00 id 180.61
τ00 Type 49.47
ICC 0.39
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.268 / 0.555
# Extract predicted values from the models
L$M.PlusOne.predCCB <- predict(M.PlusOneCCB, allow.new.levels = TRUE, newdata = L)
L$M.MinusOne.predCCB <- predict(M.MinusOneCCB, allow.new.levels = TRUE, newdata = L)

# Plot the predicted values against the original data
library(ggplot2)


# Create plot of aversion to tampering with nature interacting with naturalness in predicting support of technologies. 

m.w5 <- lmer(Support ~ CCBelief_Score.c*Naturalness.c + (1|id) + (1|Type), data = L)
summary (m.w5)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ CCBelief_Score.c * Naturalness.c + (1 | id) + (1 |  
##     Type)
##    Data: L
## 
## REML criterion at convergence: 27302.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7501 -0.5443  0.0452  0.5458  3.1976 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 180.61   13.439  
##  Type     (Intercept)  49.47    7.034  
##  Residual             355.73   18.861  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                                 Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                    6.002e+01  2.291e+00 9.382e+00  26.201  4.3e-10
## CCBelief_Score.c               4.583e-01  2.326e-02 1.019e+03  19.701  < 2e-16
## Naturalness.c                  4.371e-01  2.249e-02 2.820e+03  19.440  < 2e-16
## CCBelief_Score.c:Naturalness.c 1.463e-03  7.159e-04 2.797e+03   2.043   0.0411
##                                   
## (Intercept)                    ***
## CCBelief_Score.c               ***
## Naturalness.c                  ***
## CCBelief_Score.c:Naturalness.c *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) CCBl_S. Ntrln.
## CCBlf_Scr.c -0.001               
## Naturlnss.c -0.004 -0.036        
## CCBlf_S.:N. -0.009  0.096   0.036
#create plot
p3 <- plot_model(m.w5, type = "pred",
                terms = c("Naturalness.c", "CCBelief_Score.c [-40, 40]")) +
  ggtitle("") +
  ylab("Support (0-100)") +
  xlab("Naturalness 0-100 (Mean Centered at 39.98)") +
  theme_minimal() +
  theme(panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        panel.background = element_blank(),
        axis.line = element_line(colour = "black"),
        legend.background = element_rect(fill = "white", color = "white"))

p3 <- p3 + labs(color = "Climate Change Belief")

(p.w5 <- p3 +
  scale_color_manual(labels = c("-1 SD", "+1 SD"),
                       values = c("blue", "red")) +
  scale_fill_manual(values = c("blue", "red")) +
  scale_y_continuous(breaks = c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100), limits = c(0, 120)) +
    scale_x_continuous(breaks = c(-80, -70, -60, -50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50, 60, 70, 80),                   
                     limits = c(-80, 80)))
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

#### Connectedness to Nature

modA.110000004 <- lmer(Support ~ CNS_Score.c*Naturalness.c + (1|id) + (1|Type), data = L)

summary(modA.110000004)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ CNS_Score.c * Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27587.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6228 -0.5329  0.0359  0.5409  3.2918 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 291.57   17.075  
##  Type     (Intercept)  47.21    6.871  
##  Residual             351.15   18.739  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                            Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)               6.004e+01  2.265e+00 9.789e+00  26.511 1.92e-10 ***
## CNS_Score.c               1.547e-01  3.820e-02 1.005e+03   4.049 5.53e-05 ***
## Naturalness.c             4.439e-01  2.320e-02 2.667e+03  19.129  < 2e-16 ***
## CNS_Score.c:Naturalness.c 5.645e-03  1.061e-03 2.676e+03   5.323 1.11e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) CNS_Sc. Ntrln.
## CNS_Score.c  0.000               
## Naturlnss.c -0.004  0.004        
## CNS_Scr.:N. -0.001  0.033  -0.074
tab_model(modA.110000004,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.04 2.26 55.60 – 64.48 26.51 <0.001
CNS Score c 0.15 0.04 0.08 – 0.23 4.05 <0.001
Naturalness c 0.44 0.02 0.40 – 0.49 19.13 <0.001
CNS Score c × Naturalness
c
0.01 0.00 0.00 – 0.01 5.32 <0.001
Random Effects
σ2 351.15
τ00 id 291.57
τ00 Type 47.21
ICC 0.49
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.133 / 0.559
confint(modA.110000004)
## Computing profile confidence intervals ...
##                                  2.5 %       97.5 %
## .sig01                    16.015230624 18.155036999
## .sig02                     4.322601518 11.036899204
## .sigma                    18.166204575 19.327118916
## (Intercept)               55.412998414 64.678985977
## CNS_Score.c                0.079820684  0.229586755
## Naturalness.c              0.398710835  0.490546405
## CNS_Score.c:Naturalness.c  0.003565125  0.007725237

Political Ideology: Does ideology depend on perceptions of naturalness in predicting support, over and above burger contrasts?

# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.110000008 <- lmer(Support  ~ Ideology.c + (1|id) + (1|Type), data = L)

summary(modA.110000008)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Ideology.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27809
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2823 -0.5220  0.0622  0.5711  3.2584 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 248.8    15.77   
##  Type     (Intercept) 143.4    11.97   
##  Residual             406.4    20.16   
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   48.3557     3.9505   10.4052   12.24 1.65e-07 ***
## Ideology.c    -4.2278     0.3346 1003.6802  -12.64  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr)
## Ideology.c 0.238
tab_model(modA.110000008,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 48.36 3.95 40.61 – 56.10 12.24 <0.001
Ideology c -4.23 0.33 -4.88 – -3.57 -12.64 <0.001
Random Effects
σ2 406.35
τ00 id 248.85
τ00 Type 143.39
ICC 0.49
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.071 / 0.527
confint(modA.110000008)
## Computing profile confidence intervals ...
##                 2.5 %    97.5 %
## .sig01      14.680827 16.882318
## .sig02       7.689003 19.054431
## .sigma      19.549949 20.798930
## (Intercept) 40.308511 56.406339
## Ideology.c  -4.883933 -3.571767

Political Ideology: Does ideology depend on perceptions of naturalness in predicting support, over and above burger contrasts?

# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.110000005 <- lmer(Support ~ Ideology.c*Naturalness.c  + (1|id) + (1|Type), data = L)

summary(modA.110000005)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Ideology.c * Naturalness.c + (1 | id) + (1 | Type)
##    Data: L
## 
## REML criterion at convergence: 27479.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5615 -0.5381  0.0376  0.5465  3.1855 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 240.07   15.494  
##  Type     (Intercept)  49.72    7.051  
##  Residual             356.56   18.883  
## Number of obs: 3021, groups:  id, 1007; Type, 10
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               4.883e+01  2.481e+00  1.276e+01  19.677 6.33e-11 ***
## Ideology.c               -3.998e+00  3.237e-01  1.005e+03 -12.352  < 2e-16 ***
## Naturalness.c             4.394e-01  3.439e-02  2.747e+03  12.778  < 2e-16 ***
## Ideology.c:Naturalness.c -9.597e-04  9.746e-03  2.677e+03  -0.098    0.922    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Idlgy. Ntrln.
## Ideology.c  0.366               
## Naturlnss.c 0.019  0.043        
## Idlgy.c:Nt. 0.017  0.024  0.744
tab_model(modA.110000005,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 48.83 2.48 43.96 – 53.69 19.68 <0.001
Ideology c -4.00 0.32 -4.63 – -3.36 -12.35 <0.001
Naturalness c 0.44 0.03 0.37 – 0.51 12.78 <0.001
Ideology c × Naturalness
c
-0.00 0.01 -0.02 – 0.02 -0.10 0.922
Random Effects
σ2 356.56
τ00 id 240.07
τ00 Type 49.72
ICC 0.45
N id 1007
N Type 10
Observations 3021
Marginal R2 / Conditional R2 0.191 / 0.554
confint(modA.110000005)
## Computing profile confidence intervals ...
##                                2.5 %      97.5 %
## .sig01                   14.45709623 16.54447978
## .sig02                    4.43895051 11.31323294
## .sigma                   18.30560202 19.47555921
## (Intercept)              43.82387221 53.83201673
## Ideology.c               -4.63220885 -3.36313938
## Naturalness.c             0.37242512  0.50775201
## Ideology.c:Naturalness.c -0.02008768  0.01815798

#VIII. Deviation Coded Models

Support

Set #1

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict support?
modA.71444 <- lmer(Support ~ DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.71444)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS +  
##     (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27888.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2299 -0.5111  0.0607  0.5552  3.1022 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 309.7    17.60   
##  Residual             406.2    20.16   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   60.2345     0.6670 1016.3399  90.313  < 2e-16 ***
## DACCS         -7.7095     1.1375 2380.1041  -6.777 1.54e-11 ***
## NE            -9.3404     1.3268 2482.4889  -7.040 2.48e-12 ***
## OF            -9.9708     1.1705 2392.1093  -8.519  < 2e-16 ***
## BECCS         -5.8768     1.1650 2387.8451  -5.045 4.89e-07 ***
## EW           -10.0224     1.1568 2385.9393  -8.664  < 2e-16 ***
## BF            -0.7135     1.3490 2483.2374  -0.529    0.597    
## WE            15.6042     1.3266 2480.5218  11.763  < 2e-16 ***
## SE            19.4142     1.3567 2483.7684  14.310  < 2e-16 ***
## AFSCS         15.9948     1.1439 2382.9907  13.983  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr) DACCS  NE     OF     BECCS  EW     BF     WE     SE    
## DACCS -0.028                                                        
## NE     0.023 -0.092                                                 
## OF    -0.016 -0.115 -0.073                                          
## BECCS -0.018 -0.111 -0.098 -0.119                                   
## EW    -0.021 -0.107 -0.085 -0.116 -0.109                            
## BF     0.030 -0.094 -0.171 -0.110 -0.096 -0.097                     
## WE     0.022 -0.080 -0.170 -0.094 -0.092 -0.097 -0.171              
## SE     0.033 -0.103 -0.172 -0.104 -0.093 -0.097 -0.173 -0.172       
## AFSCS -0.025 -0.111 -0.109 -0.110 -0.118 -0.112 -0.092 -0.088 -0.081
tab_model(modA.71444,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.23 0.67 58.93 – 61.54 90.31 <0.001
DACCS -7.71 1.14 -9.94 – -5.48 -6.78 <0.001
NE -9.34 1.33 -11.94 – -6.74 -7.04 <0.001
OF -9.97 1.17 -12.27 – -7.68 -8.52 <0.001
BECCS -5.88 1.16 -8.16 – -3.59 -5.04 <0.001
EW -10.02 1.16 -12.29 – -7.75 -8.66 <0.001
BF -0.71 1.35 -3.36 – 1.93 -0.53 0.597
WE 15.60 1.33 13.00 – 18.21 11.76 <0.001
SE 19.41 1.36 16.75 – 22.07 14.31 <0.001
AFSCS 15.99 1.14 13.75 – 18.24 13.98 <0.001
Random Effects
σ2 406.25
τ00 id 309.74
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.150 / 0.517
Q.2: Does naturalness predict support, over and above climate change method contrasts?
modA.7444 <- lmer(Support ~ Naturalness.c + DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.7444)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + DACCS + NE + OF + BECCS + EW + BF +  
##     WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27555.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5008 -0.5399  0.0313  0.5419  3.2984 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 294.4    17.16   
##  Residual             356.4    18.88   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     60.06679    0.64251 1015.86154  93.488  < 2e-16 ***
## Naturalness.c    0.44546    0.02349 2795.60249  18.961  < 2e-16 ***
## DACCS           -0.99636    1.12542 2415.54374  -0.885  0.37607    
## NE              -2.77864    1.29367 2496.67041  -2.148  0.03182 *  
## OF              -6.26532    1.11661 2383.86521  -5.611 2.24e-08 ***
## BECCS           -3.49410    1.10092 2369.62156  -3.174  0.00152 ** 
## EW              -7.91475    1.09171 2372.39823  -7.250 5.62e-13 ***
## BF              -0.28951    1.26777 2460.26449  -0.228  0.81939    
## WE               9.42505    1.28868 2480.04872   7.314 3.49e-13 ***
## SE              12.62230    1.32421 2499.36105   9.532  < 2e-16 ***
## AFSCS            6.37199    1.18798 2455.76383   5.364 8.92e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. DACCS  NE     OF     BECCS  EW     BF     WE    
## Naturlnss.c -0.014                                                        
## DACCS       -0.030  0.315                                                 
## NE           0.017  0.267  0.001                                          
## OF          -0.018  0.176 -0.052 -0.021                                   
## BECCS       -0.018  0.113 -0.070 -0.063 -0.097                            
## EW          -0.021  0.100 -0.069 -0.054 -0.097 -0.097                     
## BF           0.029  0.019 -0.083 -0.161 -0.105 -0.093 -0.094              
## WE           0.024 -0.254 -0.152 -0.227 -0.133 -0.116 -0.118 -0.171       
## SE           0.035 -0.271 -0.179 -0.233 -0.146 -0.119 -0.120 -0.172 -0.092
## AFSCS       -0.016 -0.427 -0.230 -0.209 -0.173 -0.154 -0.144 -0.091  0.032
##             SE    
## Naturlnss.c       
## DACCS             
## NE                
## OF                
## BECCS             
## EW                
## BF                
## WE                
## SE                
## AFSCS        0.046
tab_model(modA.7444,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.07 0.64 58.81 – 61.33 93.49 <0.001
Naturalness c 0.45 0.02 0.40 – 0.49 18.96 <0.001
DACCS -1.00 1.13 -3.20 – 1.21 -0.89 0.376
NE -2.78 1.29 -5.32 – -0.24 -2.15 0.032
OF -6.27 1.12 -8.45 – -4.08 -5.61 <0.001
BECCS -3.49 1.10 -5.65 – -1.34 -3.17 0.002
EW -7.91 1.09 -10.06 – -5.77 -7.25 <0.001
BF -0.29 1.27 -2.78 – 2.20 -0.23 0.819
WE 9.43 1.29 6.90 – 11.95 7.31 <0.001
SE 12.62 1.32 10.03 – 15.22 9.53 <0.001
AFSCS 6.37 1.19 4.04 – 8.70 5.36 <0.001
Random Effects
σ2 356.37
τ00 id 294.39
ICC 0.45
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.224 / 0.575
Q.3: Nat Ben Risk Predicting Support
modA.74445511 <- lmer(Support ~ Naturalness.c + Benefit.c + Risk.c + DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.74445511)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Benefit.c + Risk.c + DACCS + NE + OF +  
##     BECCS + EW + BF + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25689.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4550 -0.5095  0.0335  0.5025  3.7798 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 145.6    12.07   
##  Residual             195.7    13.99   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     59.81482    0.45918 1003.58733 130.266  < 2e-16 ***
## Naturalness.c    0.14095    0.01857 2863.29821   7.590 4.31e-14 ***
## Benefit.c        0.46634    0.01381 3007.84868  33.764  < 2e-16 ***
## Risk.c          -0.41425    0.01501 2990.28692 -27.599  < 2e-16 ***
## DACCS            0.42091    0.83319 2432.47909   0.505   0.6135    
## NE               0.55870    0.98316 2540.76780   0.568   0.5699    
## OF              -1.17842    0.83619 2410.74493  -1.409   0.1589    
## BECCS           -1.45967    0.81447 2383.74279  -1.792   0.0732 .  
## EW              -4.42861    0.80929 2389.20448  -5.472 4.91e-08 ***
## BF               0.57440    0.94768 2502.85410   0.606   0.5445    
## WE               3.80039    0.95962 2525.91992   3.960 7.69e-05 ***
## SE               4.29501    0.99893 2529.50674   4.300 1.78e-05 ***
## AFSCS            1.20536    0.88309 2486.72827   1.365   0.1724    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.74445511,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.81 0.46 58.91 – 60.72 130.27 <0.001
Naturalness c 0.14 0.02 0.10 – 0.18 7.59 <0.001
Benefit c 0.47 0.01 0.44 – 0.49 33.76 <0.001
Risk c -0.41 0.02 -0.44 – -0.38 -27.60 <0.001
DACCS 0.42 0.83 -1.21 – 2.05 0.51 0.613
NE 0.56 0.98 -1.37 – 2.49 0.57 0.570
OF -1.18 0.84 -2.82 – 0.46 -1.41 0.159
BECCS -1.46 0.81 -3.06 – 0.14 -1.79 0.073
EW -4.43 0.81 -6.02 – -2.84 -5.47 <0.001
BF 0.57 0.95 -1.28 – 2.43 0.61 0.544
WE 3.80 0.96 1.92 – 5.68 3.96 <0.001
SE 4.30 1.00 2.34 – 6.25 4.30 <0.001
AFSCS 1.21 0.88 -0.53 – 2.94 1.36 0.172
Random Effects
σ2 195.74
τ00 id 145.65
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.580 / 0.759
Q.4: Fam/Und Nat Ben Risk Predicting Support
modA.74445511 <- lmer(Support ~ Naturalness.c + Benefit.c + Risk.c + FR.c + DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.74445511)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Benefit.c + Risk.c + FR.c + DACCS +  
##     NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25657.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4852 -0.5053  0.0383  0.5115  3.6947 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 143.2    11.96   
##  Residual             193.5    13.91   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     59.63520    0.45654 1008.32565 130.623  < 2e-16 ***
## Naturalness.c    0.11838    0.01880 2895.51251   6.296 3.51e-10 ***
## Benefit.c        0.45790    0.01379 3006.62058  33.202  < 2e-16 ***
## Risk.c          -0.40292    0.01502 2990.80080 -26.821  < 2e-16 ***
## FR.c             0.09437    0.01499 3006.96174   6.295 3.53e-10 ***
## DACCS            1.69096    0.85251 2466.18843   1.984  0.04742 *  
## NE              -1.21149    1.01682 2619.16689  -1.191  0.23359    
## OF              -0.03470    0.85083 2446.50902  -0.041  0.96747    
## BECCS           -0.10504    0.83785 2438.15755  -0.125  0.90024    
## EW              -2.55639    0.85779 2515.04425  -2.980  0.00291 ** 
## BF               0.06658    0.94553 2509.69888   0.070  0.94387    
## WE               1.73440    1.00884 2585.03325   1.719  0.08570 .  
## SE               1.97172    1.05936 2607.97944   1.861  0.06282 .  
## AFSCS            0.75609    0.88075 2487.46739   0.858  0.39072    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.74445511,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.64 0.46 58.74 – 60.53 130.62 <0.001
Naturalness c 0.12 0.02 0.08 – 0.16 6.30 <0.001
Benefit c 0.46 0.01 0.43 – 0.48 33.20 <0.001
Risk c -0.40 0.02 -0.43 – -0.37 -26.82 <0.001
FR c 0.09 0.01 0.06 – 0.12 6.29 <0.001
DACCS 1.69 0.85 0.02 – 3.36 1.98 0.047
NE -1.21 1.02 -3.21 – 0.78 -1.19 0.234
OF -0.03 0.85 -1.70 – 1.63 -0.04 0.967
BECCS -0.11 0.84 -1.75 – 1.54 -0.13 0.900
EW -2.56 0.86 -4.24 – -0.87 -2.98 0.003
BF 0.07 0.95 -1.79 – 1.92 0.07 0.944
WE 1.73 1.01 -0.24 – 3.71 1.72 0.086
SE 1.97 1.06 -0.11 – 4.05 1.86 0.063
AFSCS 0.76 0.88 -0.97 – 2.48 0.86 0.391
Random Effects
σ2 193.52
τ00 id 143.16
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.585 / 0.761
Q.5: Does the interaction of naturalness and contrasts predict support, over and above climate change method contrasts?
modA.744455 <- lmer(Support ~ Naturalness.c *(DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS) + (1|id), data = L)

summary(modA.744455)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c * (DACCS + NE + OF + BECCS + EW + BF +  
##     WE + SE + AFSCS) + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27550.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5500 -0.5456  0.0489  0.5393  3.3462 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 297.5    17.25   
##  Residual             350.5    18.72   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)           61.39887    0.69412 1300.42578  88.456  < 2e-16 ***
## Naturalness.c          0.45808    0.02371 2786.57851  19.317  < 2e-16 ***
## DACCS                 -1.75816    1.40426 2419.27762  -1.252 0.210684    
## NE                     0.47048    1.58970 2464.95296   0.296 0.767290    
## OF                    -6.36005    1.22448 2378.49507  -5.194 2.23e-07 ***
## BECCS                 -4.69508    1.16570 2368.90017  -4.028 5.81e-05 ***
## EW                    -9.01420    1.13312 2360.46374  -7.955 2.75e-15 ***
## BF                    -1.60046    1.28652 2448.80813  -1.244 0.213610    
## WE                     9.57640    1.56448 2468.64843   6.121 1.08e-09 ***
## SE                    14.81002    1.64916 2481.29782   8.980  < 2e-16 ***
## AFSCS                  6.76256    1.58998 2440.04036   4.253 2.19e-05 ***
## Naturalness.c:DACCS    0.02274    0.06412 2448.38813   0.355 0.722889    
## Naturalness.c:NE       0.31821    0.07296 2477.62471   4.362 1.34e-05 ***
## Naturalness.c:OF       0.13171    0.06395 2454.35483   2.059 0.039552 *  
## Naturalness.c:BECCS    0.01775    0.06659 2460.75868   0.267 0.789793    
## Naturalness.c:EW       0.04266    0.06121 2441.99572   0.697 0.485941    
## Naturalness.c:BF       0.03273    0.07172 2481.63749   0.456 0.648186    
## Naturalness.c:WE      -0.11913    0.06791 2523.71340  -1.754 0.079518 .  
## Naturalness.c:SE      -0.24276    0.07120 2505.32469  -3.409 0.000662 ***
## Naturalness.c:AFSCS   -0.09124    0.05734 2525.36213  -1.591 0.111649    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.744455,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 61.40 0.69 60.04 – 62.76 88.46 <0.001
Naturalness c 0.46 0.02 0.41 – 0.50 19.32 <0.001
DACCS -1.76 1.40 -4.51 – 1.00 -1.25 0.211
NE 0.47 1.59 -2.65 – 3.59 0.30 0.767
OF -6.36 1.22 -8.76 – -3.96 -5.19 <0.001
BECCS -4.70 1.17 -6.98 – -2.41 -4.03 <0.001
EW -9.01 1.13 -11.24 – -6.79 -7.96 <0.001
BF -1.60 1.29 -4.12 – 0.92 -1.24 0.214
WE 9.58 1.56 6.51 – 12.64 6.12 <0.001
SE 14.81 1.65 11.58 – 18.04 8.98 <0.001
AFSCS 6.76 1.59 3.64 – 9.88 4.25 <0.001
Naturalness c × DACCS 0.02 0.06 -0.10 – 0.15 0.35 0.723
Naturalness c × NE 0.32 0.07 0.18 – 0.46 4.36 <0.001
Naturalness c × OF 0.13 0.06 0.01 – 0.26 2.06 0.040
Naturalness c × BECCS 0.02 0.07 -0.11 – 0.15 0.27 0.790
Naturalness c × EW 0.04 0.06 -0.08 – 0.16 0.70 0.486
Naturalness c × BF 0.03 0.07 -0.11 – 0.17 0.46 0.648
Naturalness c × WE -0.12 0.07 -0.25 – 0.01 -1.75 0.079
Naturalness c × SE -0.24 0.07 -0.38 – -0.10 -3.41 0.001
Naturalness c × AFSCS -0.09 0.06 -0.20 – 0.02 -1.59 0.112
Random Effects
σ2 350.53
τ00 id 297.49
ICC 0.46
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.232 / 0.585

Set #2

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict support?
modA.71444777 <- lmer(Support ~ DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.71444777)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS +  
##     (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27888.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2299 -0.5111  0.0607  0.5552  3.1022 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 309.7    17.60   
##  Residual             406.2    20.16   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   60.2345     0.6670 1016.3399  90.313  < 2e-16 ***
## DACCS         -7.7095     1.1375 2380.1041  -6.777 1.54e-11 ***
## NE            -9.3404     1.3268 2482.4889  -7.040 2.48e-12 ***
## OF            -9.9708     1.1705 2392.1093  -8.519  < 2e-16 ***
## BECCS         -5.8768     1.1650 2387.8451  -5.045 4.89e-07 ***
## EW           -10.0224     1.1568 2385.9393  -8.664  < 2e-16 ***
## BIO            0.7135     1.3490 2483.2374   0.529    0.597    
## WE            15.6042     1.3266 2480.5218  11.763  < 2e-16 ***
## SE            19.4142     1.3567 2483.7684  14.310  < 2e-16 ***
## AFSCS         15.9948     1.1439 2382.9907  13.983  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr) DACCS  NE     OF     BECCS  EW     BIO    WE     SE    
## DACCS -0.028                                                        
## NE     0.023 -0.092                                                 
## OF    -0.016 -0.115 -0.073                                          
## BECCS -0.018 -0.111 -0.098 -0.119                                   
## EW    -0.021 -0.107 -0.085 -0.116 -0.109                            
## BIO   -0.030  0.094  0.171  0.110  0.096  0.097                     
## WE     0.022 -0.080 -0.170 -0.094 -0.092 -0.097  0.171              
## SE     0.033 -0.103 -0.172 -0.104 -0.093 -0.097  0.173 -0.172       
## AFSCS -0.025 -0.111 -0.109 -0.110 -0.118 -0.112  0.092 -0.088 -0.081
tab_model(modA.71444777,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.23 0.67 58.93 – 61.54 90.31 <0.001
DACCS -7.71 1.14 -9.94 – -5.48 -6.78 <0.001
NE -9.34 1.33 -11.94 – -6.74 -7.04 <0.001
OF -9.97 1.17 -12.27 – -7.68 -8.52 <0.001
BECCS -5.88 1.16 -8.16 – -3.59 -5.04 <0.001
EW -10.02 1.16 -12.29 – -7.75 -8.66 <0.001
BIO 0.71 1.35 -1.93 – 3.36 0.53 0.597
WE 15.60 1.33 13.00 – 18.21 11.76 <0.001
SE 19.41 1.36 16.75 – 22.07 14.31 <0.001
AFSCS 15.99 1.14 13.75 – 18.24 13.98 <0.001
Random Effects
σ2 406.25
τ00 id 309.74
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.150 / 0.517
Q.2: Does naturalness predict support, over and above climate change method contrasts?
modA.7444777 <- lmer(Support ~ Naturalness.c + DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.7444777)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + DACCS + NE + OF + BECCS + EW + BIO +  
##     WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27555.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5008 -0.5399  0.0313  0.5419  3.2984 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 294.4    17.16   
##  Residual             356.4    18.88   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     60.06679    0.64251 1015.86154  93.488  < 2e-16 ***
## Naturalness.c    0.44546    0.02349 2795.60249  18.961  < 2e-16 ***
## DACCS           -0.99636    1.12542 2415.54374  -0.885  0.37607    
## NE              -2.77864    1.29367 2496.67041  -2.148  0.03182 *  
## OF              -6.26532    1.11661 2383.86521  -5.611 2.24e-08 ***
## BECCS           -3.49410    1.10092 2369.62156  -3.174  0.00152 ** 
## EW              -7.91475    1.09171 2372.39823  -7.250 5.62e-13 ***
## BIO              0.28951    1.26777 2460.26449   0.228  0.81939    
## WE               9.42505    1.28868 2480.04872   7.314 3.49e-13 ***
## SE              12.62230    1.32421 2499.36105   9.532  < 2e-16 ***
## AFSCS            6.37199    1.18798 2455.76383   5.364 8.92e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. DACCS  NE     OF     BECCS  EW     BIO    WE    
## Naturlnss.c -0.014                                                        
## DACCS       -0.030  0.315                                                 
## NE           0.017  0.267  0.001                                          
## OF          -0.018  0.176 -0.052 -0.021                                   
## BECCS       -0.018  0.113 -0.070 -0.063 -0.097                            
## EW          -0.021  0.100 -0.069 -0.054 -0.097 -0.097                     
## BIO         -0.029 -0.019  0.083  0.161  0.105  0.093  0.094              
## WE           0.024 -0.254 -0.152 -0.227 -0.133 -0.116 -0.118  0.171       
## SE           0.035 -0.271 -0.179 -0.233 -0.146 -0.119 -0.120  0.172 -0.092
## AFSCS       -0.016 -0.427 -0.230 -0.209 -0.173 -0.154 -0.144  0.091  0.032
##             SE    
## Naturlnss.c       
## DACCS             
## NE                
## OF                
## BECCS             
## EW                
## BIO               
## WE                
## SE                
## AFSCS        0.046
tab_model(modA.7444777,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.07 0.64 58.81 – 61.33 93.49 <0.001
Naturalness c 0.45 0.02 0.40 – 0.49 18.96 <0.001
DACCS -1.00 1.13 -3.20 – 1.21 -0.89 0.376
NE -2.78 1.29 -5.32 – -0.24 -2.15 0.032
OF -6.27 1.12 -8.45 – -4.08 -5.61 <0.001
BECCS -3.49 1.10 -5.65 – -1.34 -3.17 0.002
EW -7.91 1.09 -10.06 – -5.77 -7.25 <0.001
BIO 0.29 1.27 -2.20 – 2.78 0.23 0.819
WE 9.43 1.29 6.90 – 11.95 7.31 <0.001
SE 12.62 1.32 10.03 – 15.22 9.53 <0.001
AFSCS 6.37 1.19 4.04 – 8.70 5.36 <0.001
Random Effects
σ2 356.37
τ00 id 294.39
ICC 0.45
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.224 / 0.575
Q.3: Nat Ben Risk Predicting Support
modA.7444551176 <- lmer(Support ~ Naturalness.c + Benefit.c + Risk.c + DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.7444551176)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Benefit.c + Risk.c + DACCS + NE + OF +  
##     BECCS + EW + BIO + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25689.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4550 -0.5095  0.0335  0.5025  3.7798 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 145.6    12.07   
##  Residual             195.7    13.99   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     59.81482    0.45918 1003.58733 130.266  < 2e-16 ***
## Naturalness.c    0.14095    0.01857 2863.29821   7.590 4.31e-14 ***
## Benefit.c        0.46634    0.01381 3007.84868  33.764  < 2e-16 ***
## Risk.c          -0.41425    0.01501 2990.28692 -27.599  < 2e-16 ***
## DACCS            0.42091    0.83319 2432.47909   0.505   0.6135    
## NE               0.55870    0.98316 2540.76780   0.568   0.5699    
## OF              -1.17842    0.83619 2410.74493  -1.409   0.1589    
## BECCS           -1.45967    0.81447 2383.74279  -1.792   0.0732 .  
## EW              -4.42861    0.80929 2389.20448  -5.472 4.91e-08 ***
## BIO             -0.57440    0.94768 2502.85410  -0.606   0.5445    
## WE               3.80039    0.95962 2525.91992   3.960 7.69e-05 ***
## SE               4.29501    0.99893 2529.50674   4.300 1.78e-05 ***
## AFSCS            1.20536    0.88309 2486.72827   1.365   0.1724    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.7444551176,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.81 0.46 58.91 – 60.72 130.27 <0.001
Naturalness c 0.14 0.02 0.10 – 0.18 7.59 <0.001
Benefit c 0.47 0.01 0.44 – 0.49 33.76 <0.001
Risk c -0.41 0.02 -0.44 – -0.38 -27.60 <0.001
DACCS 0.42 0.83 -1.21 – 2.05 0.51 0.613
NE 0.56 0.98 -1.37 – 2.49 0.57 0.570
OF -1.18 0.84 -2.82 – 0.46 -1.41 0.159
BECCS -1.46 0.81 -3.06 – 0.14 -1.79 0.073
EW -4.43 0.81 -6.02 – -2.84 -5.47 <0.001
BIO -0.57 0.95 -2.43 – 1.28 -0.61 0.544
WE 3.80 0.96 1.92 – 5.68 3.96 <0.001
SE 4.30 1.00 2.34 – 6.25 4.30 <0.001
AFSCS 1.21 0.88 -0.53 – 2.94 1.36 0.172
Random Effects
σ2 195.74
τ00 id 145.65
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.580 / 0.759
Q.4: Fam/Und Nat Ben Risk Predicting Support
modA.7444551144 <- lmer(Support ~ Naturalness.c + Benefit.c + Risk.c + FR.c + DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.7444551144)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Benefit.c + Risk.c + FR.c + DACCS +  
##     NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25657.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4852 -0.5053  0.0383  0.5115  3.6947 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 143.2    11.96   
##  Residual             193.5    13.91   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     59.63520    0.45654 1008.32565 130.623  < 2e-16 ***
## Naturalness.c    0.11838    0.01880 2895.51251   6.296 3.51e-10 ***
## Benefit.c        0.45790    0.01379 3006.62058  33.202  < 2e-16 ***
## Risk.c          -0.40292    0.01502 2990.80080 -26.821  < 2e-16 ***
## FR.c             0.09437    0.01499 3006.96174   6.295 3.53e-10 ***
## DACCS            1.69096    0.85251 2466.18843   1.984  0.04742 *  
## NE              -1.21149    1.01682 2619.16689  -1.191  0.23359    
## OF              -0.03470    0.85083 2446.50902  -0.041  0.96747    
## BECCS           -0.10504    0.83785 2438.15755  -0.125  0.90024    
## EW              -2.55639    0.85779 2515.04425  -2.980  0.00291 ** 
## BIO             -0.06658    0.94553 2509.69888  -0.070  0.94387    
## WE               1.73440    1.00884 2585.03325   1.719  0.08570 .  
## SE               1.97172    1.05936 2607.97944   1.861  0.06282 .  
## AFSCS            0.75609    0.88075 2487.46739   0.858  0.39072    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.7444551144,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.64 0.46 58.74 – 60.53 130.62 <0.001
Naturalness c 0.12 0.02 0.08 – 0.16 6.30 <0.001
Benefit c 0.46 0.01 0.43 – 0.48 33.20 <0.001
Risk c -0.40 0.02 -0.43 – -0.37 -26.82 <0.001
FR c 0.09 0.01 0.06 – 0.12 6.29 <0.001
DACCS 1.69 0.85 0.02 – 3.36 1.98 0.047
NE -1.21 1.02 -3.21 – 0.78 -1.19 0.234
OF -0.03 0.85 -1.70 – 1.63 -0.04 0.967
BECCS -0.11 0.84 -1.75 – 1.54 -0.13 0.900
EW -2.56 0.86 -4.24 – -0.87 -2.98 0.003
BIO -0.07 0.95 -1.92 – 1.79 -0.07 0.944
WE 1.73 1.01 -0.24 – 3.71 1.72 0.086
SE 1.97 1.06 -0.11 – 4.05 1.86 0.063
AFSCS 0.76 0.88 -0.97 – 2.48 0.86 0.391
Random Effects
σ2 193.52
τ00 id 143.16
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.585 / 0.761
Q.5: Does the interaction of naturalness and contrasts predict support, over and above climate change method contrasts?
modA.74445533 <- lmer(Support ~ Naturalness.c *(DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS) + (1|id), data = L)

summary(modA.74445533)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c * (DACCS + NE + OF + BECCS + EW + BIO +  
##     WE + SE + AFSCS) + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27550.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5500 -0.5456  0.0489  0.5393  3.3462 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 297.5    17.25   
##  Residual             350.5    18.72   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)           61.39887    0.69412 1300.42578  88.456  < 2e-16 ***
## Naturalness.c          0.45808    0.02371 2786.57851  19.317  < 2e-16 ***
## DACCS                 -1.75816    1.40426 2419.27762  -1.252 0.210684    
## NE                     0.47048    1.58970 2464.95296   0.296 0.767290    
## OF                    -6.36005    1.22448 2378.49507  -5.194 2.23e-07 ***
## BECCS                 -4.69508    1.16570 2368.90017  -4.028 5.81e-05 ***
## EW                    -9.01420    1.13312 2360.46374  -7.955 2.75e-15 ***
## BIO                    1.60046    1.28652 2448.80813   1.244 0.213610    
## WE                     9.57640    1.56448 2468.64843   6.121 1.08e-09 ***
## SE                    14.81002    1.64916 2481.29782   8.980  < 2e-16 ***
## AFSCS                  6.76256    1.58998 2440.04036   4.253 2.19e-05 ***
## Naturalness.c:DACCS    0.02274    0.06412 2448.38813   0.355 0.722889    
## Naturalness.c:NE       0.31821    0.07296 2477.62471   4.362 1.34e-05 ***
## Naturalness.c:OF       0.13171    0.06395 2454.35483   2.059 0.039552 *  
## Naturalness.c:BECCS    0.01775    0.06659 2460.75868   0.267 0.789793    
## Naturalness.c:EW       0.04266    0.06121 2441.99572   0.697 0.485941    
## Naturalness.c:BIO     -0.03273    0.07172 2481.63749  -0.456 0.648186    
## Naturalness.c:WE      -0.11913    0.06791 2523.71340  -1.754 0.079518 .  
## Naturalness.c:SE      -0.24276    0.07120 2505.32469  -3.409 0.000662 ***
## Naturalness.c:AFSCS   -0.09124    0.05734 2525.36213  -1.591 0.111649    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.74445533,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 61.40 0.69 60.04 – 62.76 88.46 <0.001
Naturalness c 0.46 0.02 0.41 – 0.50 19.32 <0.001
DACCS -1.76 1.40 -4.51 – 1.00 -1.25 0.211
NE 0.47 1.59 -2.65 – 3.59 0.30 0.767
OF -6.36 1.22 -8.76 – -3.96 -5.19 <0.001
BECCS -4.70 1.17 -6.98 – -2.41 -4.03 <0.001
EW -9.01 1.13 -11.24 – -6.79 -7.96 <0.001
BIO 1.60 1.29 -0.92 – 4.12 1.24 0.214
WE 9.58 1.56 6.51 – 12.64 6.12 <0.001
SE 14.81 1.65 11.58 – 18.04 8.98 <0.001
AFSCS 6.76 1.59 3.64 – 9.88 4.25 <0.001
Naturalness c × DACCS 0.02 0.06 -0.10 – 0.15 0.35 0.723
Naturalness c × NE 0.32 0.07 0.18 – 0.46 4.36 <0.001
Naturalness c × OF 0.13 0.06 0.01 – 0.26 2.06 0.040
Naturalness c × BECCS 0.02 0.07 -0.11 – 0.15 0.27 0.790
Naturalness c × EW 0.04 0.06 -0.08 – 0.16 0.70 0.486
Naturalness c × BIO -0.03 0.07 -0.17 – 0.11 -0.46 0.648
Naturalness c × WE -0.12 0.07 -0.25 – 0.01 -1.75 0.079
Naturalness c × SE -0.24 0.07 -0.38 – -0.10 -3.41 0.001
Naturalness c × AFSCS -0.09 0.06 -0.20 – 0.02 -1.59 0.112
Random Effects
σ2 350.53
τ00 id 297.49
ICC 0.46
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.232 / 0.585

Naturalness

Set #1

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict naturalness?
modA.71444888 <- lmer(Naturalness ~ DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.71444888)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS +  
##     (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25882.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5623 -0.6131 -0.0219  0.6137  3.4124 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  65.98    8.123  
##  Residual             256.42   16.013  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   40.3544     0.3901 1027.4504 103.457  < 2e-16 ***
## DACCS        -14.9730     0.8706 2633.0772 -17.198  < 2e-16 ***
## NE           -14.4713     1.0060 2757.7982 -14.386  < 2e-16 ***
## OF            -8.4667     0.8948 2649.1062  -9.462  < 2e-16 ***
## BECCS         -5.4749     0.8910 2644.5116  -6.145 9.20e-10 ***
## EW            -4.6006     0.8848 2641.5512  -5.199 2.15e-07 ***
## BF            -1.0643     1.0226 2760.2000  -1.041    0.298    
## WE            13.9641     1.0059 2756.7292  13.882  < 2e-16 ***
## SE            15.0008     1.0284 2761.1074  14.586  < 2e-16 ***
## AFSCS         21.5355     0.8753 2636.2795  24.604  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr) DACCS  NE     OF     BECCS  EW     BF     WE     SE    
## DACCS -0.038                                                        
## NE     0.033 -0.100                                                 
## OF    -0.023 -0.107 -0.090                                          
## BECCS -0.025 -0.105 -0.104 -0.111                                   
## EW    -0.029 -0.102 -0.096 -0.109 -0.104                            
## BF     0.043 -0.102 -0.155 -0.112 -0.104 -0.104                     
## WE     0.033 -0.093 -0.154 -0.102 -0.101 -0.103 -0.155              
## SE     0.046 -0.108 -0.156 -0.109 -0.103 -0.105 -0.157 -0.156       
## AFSCS -0.035 -0.103 -0.110 -0.104 -0.109 -0.105 -0.101 -0.098 -0.095
tab_model(modA.71444888,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.35 0.39 39.59 – 41.12 103.46 <0.001
DACCS -14.97 0.87 -16.68 – -13.27 -17.20 <0.001
NE -14.47 1.01 -16.44 – -12.50 -14.39 <0.001
OF -8.47 0.89 -10.22 – -6.71 -9.46 <0.001
BECCS -5.47 0.89 -7.22 – -3.73 -6.15 <0.001
EW -4.60 0.88 -6.34 – -2.87 -5.20 <0.001
BF -1.06 1.02 -3.07 – 0.94 -1.04 0.298
WE 13.96 1.01 11.99 – 15.94 13.88 <0.001
SE 15.00 1.03 12.98 – 17.02 14.59 <0.001
AFSCS 21.54 0.88 19.82 – 23.25 24.60 <0.001
Random Effects
σ2 256.42
τ00 id 65.98
ICC 0.20
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.310 / 0.451
Q.2: Ben Risk Predicting Nat
modA.74445511844 <- lmer(Naturalness ~ Benefit.c + Risk.c + DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.74445511844)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Benefit.c + Risk.c + DACCS + NE + OF + BECCS +  
##     EW + BF + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25485.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6109 -0.6052  0.0023  0.5947  3.3301 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  65.35    8.084  
##  Residual             218.92   14.796  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   40.18822    0.37272 1012.13803 107.825  < 2e-16 ***
## Benefit.c      0.06792    0.01307 2776.17288   5.195 2.19e-07 ***
## Risk.c        -0.24329    0.01373 2954.69711 -17.713  < 2e-16 ***
## DACCS        -12.15552    0.82072 2625.57996 -14.811  < 2e-16 ***
## NE            -9.61496    0.97914 2780.36473  -9.820  < 2e-16 ***
## OF            -4.86083    0.84997 2637.69991  -5.719 1.19e-08 ***
## BECCS         -3.83540    0.83108 2606.49319  -4.615 4.12e-06 ***
## EW            -2.80824    0.82681 2607.92643  -3.396 0.000693 ***
## BF            -2.01663    0.96100 2742.70699  -2.098 0.035954 *  
## WE             9.90647    0.95514 2772.21830  10.372  < 2e-16 ***
## SE             9.16407    0.99761 2763.71823   9.186  < 2e-16 ***
## AFSCS         16.83548    0.84328 2670.46414  19.964  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) Bnft.c Risk.c DACCS  NE     OF     BECCS  EW     BF     WE    
## Benefit.c -0.001                                                               
## Risk.c     0.020  0.312                                                        
## DACCS     -0.040 -0.007 -0.165                                                 
## NE         0.024 -0.112 -0.295 -0.045                                          
## OF        -0.026 -0.005 -0.200 -0.068 -0.024                                   
## BECCS     -0.026  0.018 -0.081 -0.088 -0.075 -0.090                            
## EW        -0.030  0.061 -0.068 -0.085 -0.072 -0.088 -0.095                     
## BF         0.042  0.121  0.113 -0.113 -0.184 -0.126 -0.107 -0.102              
## WE         0.035 -0.033  0.180 -0.122 -0.197 -0.138 -0.116 -0.120 -0.141       
## SE         0.049 -0.018  0.265 -0.150 -0.221 -0.161 -0.123 -0.126 -0.131 -0.091
## AFSCS     -0.027 -0.077  0.218 -0.142 -0.162 -0.152 -0.130 -0.129 -0.084 -0.037
##           SE    
## Benefit.c       
## Risk.c          
## DACCS           
## NE              
## OF              
## BECCS           
## EW              
## BF              
## WE              
## SE              
## AFSCS     -0.012
tab_model(modA.74445511844,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.19 0.37 39.46 – 40.92 107.83 <0.001
Benefit c 0.07 0.01 0.04 – 0.09 5.20 <0.001
Risk c -0.24 0.01 -0.27 – -0.22 -17.71 <0.001
DACCS -12.16 0.82 -13.76 – -10.55 -14.81 <0.001
NE -9.61 0.98 -11.53 – -7.70 -9.82 <0.001
OF -4.86 0.85 -6.53 – -3.19 -5.72 <0.001
BECCS -3.84 0.83 -5.46 – -2.21 -4.61 <0.001
EW -2.81 0.83 -4.43 – -1.19 -3.40 0.001
BF -2.02 0.96 -3.90 – -0.13 -2.10 0.036
WE 9.91 0.96 8.03 – 11.78 10.37 <0.001
SE 9.16 1.00 7.21 – 11.12 9.19 <0.001
AFSCS 16.84 0.84 15.18 – 18.49 19.96 <0.001
Random Effects
σ2 218.92
τ00 id 65.35
ICC 0.23
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.397 / 0.536
Q.3: Fam/Und Ben Risk Predicting Nat
modA.74445511355 <- lmer(Naturalness ~ Benefit.c + Risk.c + FR.c + DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.74445511355)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Benefit.c + Risk.c + FR.c + DACCS + NE + OF + BECCS +  
##     EW + BF + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25401.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6979 -0.5923  0.0151  0.5734  3.3383 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  70.72    8.41   
##  Residual             207.99   14.42   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   39.92212    0.37590 1004.38050 106.203  < 2e-16 ***
## Benefit.c      0.05278    0.01301 2818.54215   4.056 5.12e-05 ***
## Risk.c        -0.22193    0.01377 2963.77462 -16.116  < 2e-16 ***
## FR.c           0.13557    0.01399 2888.83466   9.691  < 2e-16 ***
## DACCS         -9.91189    0.83617 2659.73444 -11.854  < 2e-16 ***
## NE           -11.79404    0.98688 2797.98889 -11.951  < 2e-16 ***
## OF            -3.02541    0.85314 2644.66651  -3.546 0.000398 ***
## BECCS         -1.72916    0.84178 2630.68569  -2.054 0.040058 *  
## EW            -0.05623    0.85830 2706.19582  -0.066 0.947773    
## BF            -2.69218    0.94475 2711.19543  -2.850 0.004410 ** 
## WE             6.53910    0.99725 2807.70108   6.557 6.50e-11 ***
## SE             5.51549    1.04814 2821.99870   5.262 1.53e-07 ***
## AFSCS         15.62517    0.83530 2656.01787  18.706  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.74445511355,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 39.92 0.38 39.19 – 40.66 106.20 <0.001
Benefit c 0.05 0.01 0.03 – 0.08 4.06 <0.001
Risk c -0.22 0.01 -0.25 – -0.19 -16.12 <0.001
FR c 0.14 0.01 0.11 – 0.16 9.69 <0.001
DACCS -9.91 0.84 -11.55 – -8.27 -11.85 <0.001
NE -11.79 0.99 -13.73 – -9.86 -11.95 <0.001
OF -3.03 0.85 -4.70 – -1.35 -3.55 <0.001
BECCS -1.73 0.84 -3.38 – -0.08 -2.05 0.040
EW -0.06 0.86 -1.74 – 1.63 -0.07 0.948
BF -2.69 0.94 -4.54 – -0.84 -2.85 0.004
WE 6.54 1.00 4.58 – 8.49 6.56 <0.001
SE 5.52 1.05 3.46 – 7.57 5.26 <0.001
AFSCS 15.63 0.84 13.99 – 17.26 18.71 <0.001
Random Effects
σ2 207.99
τ00 id 70.72
ICC 0.25
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.413 / 0.562

Set #2

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict naturalness?
modA.7144488812 <- lmer(Naturalness ~ DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.7144488812)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ DACCS + NE + OF + BECCS + EW + BIO + WE + SE +  
##     AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25882.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5623 -0.6131 -0.0219  0.6137  3.4124 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  65.98    8.123  
##  Residual             256.42   16.013  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   40.3544     0.3901 1027.4504 103.457  < 2e-16 ***
## DACCS        -14.9730     0.8706 2633.0772 -17.198  < 2e-16 ***
## NE           -14.4713     1.0060 2757.7982 -14.386  < 2e-16 ***
## OF            -8.4667     0.8948 2649.1062  -9.462  < 2e-16 ***
## BECCS         -5.4749     0.8910 2644.5116  -6.145 9.20e-10 ***
## EW            -4.6006     0.8848 2641.5512  -5.199 2.15e-07 ***
## BIO            1.0643     1.0226 2760.2000   1.041    0.298    
## WE            13.9641     1.0059 2756.7292  13.882  < 2e-16 ***
## SE            15.0008     1.0284 2761.1074  14.586  < 2e-16 ***
## AFSCS         21.5355     0.8753 2636.2795  24.604  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr) DACCS  NE     OF     BECCS  EW     BIO    WE     SE    
## DACCS -0.038                                                        
## NE     0.033 -0.100                                                 
## OF    -0.023 -0.107 -0.090                                          
## BECCS -0.025 -0.105 -0.104 -0.111                                   
## EW    -0.029 -0.102 -0.096 -0.109 -0.104                            
## BIO   -0.043  0.102  0.155  0.112  0.104  0.104                     
## WE     0.033 -0.093 -0.154 -0.102 -0.101 -0.103  0.155              
## SE     0.046 -0.108 -0.156 -0.109 -0.103 -0.105  0.157 -0.156       
## AFSCS -0.035 -0.103 -0.110 -0.104 -0.109 -0.105  0.101 -0.098 -0.095
tab_model(modA.7144488812,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.35 0.39 39.59 – 41.12 103.46 <0.001
DACCS -14.97 0.87 -16.68 – -13.27 -17.20 <0.001
NE -14.47 1.01 -16.44 – -12.50 -14.39 <0.001
OF -8.47 0.89 -10.22 – -6.71 -9.46 <0.001
BECCS -5.47 0.89 -7.22 – -3.73 -6.15 <0.001
EW -4.60 0.88 -6.34 – -2.87 -5.20 <0.001
BIO 1.06 1.02 -0.94 – 3.07 1.04 0.298
WE 13.96 1.01 11.99 – 15.94 13.88 <0.001
SE 15.00 1.03 12.98 – 17.02 14.59 <0.001
AFSCS 21.54 0.88 19.82 – 23.25 24.60 <0.001
Random Effects
σ2 256.42
τ00 id 65.98
ICC 0.20
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.310 / 0.451
Q.2: Ben Risk Predicting Nat
modA.7444551184412 <- lmer(Naturalness ~ Benefit.c + Risk.c + DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.7444551184412)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Benefit.c + Risk.c + DACCS + NE + OF + BECCS +  
##     EW + BIO + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25485.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6109 -0.6052  0.0023  0.5947  3.3301 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  65.35    8.084  
##  Residual             218.92   14.796  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   40.18822    0.37272 1012.13803 107.825  < 2e-16 ***
## Benefit.c      0.06792    0.01307 2776.17288   5.195 2.19e-07 ***
## Risk.c        -0.24329    0.01373 2954.69711 -17.713  < 2e-16 ***
## DACCS        -12.15552    0.82072 2625.57996 -14.811  < 2e-16 ***
## NE            -9.61496    0.97914 2780.36473  -9.820  < 2e-16 ***
## OF            -4.86083    0.84997 2637.69991  -5.719 1.19e-08 ***
## BECCS         -3.83540    0.83108 2606.49319  -4.615 4.12e-06 ***
## EW            -2.80824    0.82681 2607.92643  -3.396 0.000693 ***
## BIO            2.01663    0.96100 2742.70699   2.098 0.035954 *  
## WE             9.90647    0.95514 2772.21830  10.372  < 2e-16 ***
## SE             9.16407    0.99761 2763.71823   9.186  < 2e-16 ***
## AFSCS         16.83548    0.84328 2670.46414  19.964  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) Bnft.c Risk.c DACCS  NE     OF     BECCS  EW     BIO    WE    
## Benefit.c -0.001                                                               
## Risk.c     0.020  0.312                                                        
## DACCS     -0.040 -0.007 -0.165                                                 
## NE         0.024 -0.112 -0.295 -0.045                                          
## OF        -0.026 -0.005 -0.200 -0.068 -0.024                                   
## BECCS     -0.026  0.018 -0.081 -0.088 -0.075 -0.090                            
## EW        -0.030  0.061 -0.068 -0.085 -0.072 -0.088 -0.095                     
## BIO       -0.042 -0.121 -0.113  0.113  0.184  0.126  0.107  0.102              
## WE         0.035 -0.033  0.180 -0.122 -0.197 -0.138 -0.116 -0.120  0.141       
## SE         0.049 -0.018  0.265 -0.150 -0.221 -0.161 -0.123 -0.126  0.131 -0.091
## AFSCS     -0.027 -0.077  0.218 -0.142 -0.162 -0.152 -0.130 -0.129  0.084 -0.037
##           SE    
## Benefit.c       
## Risk.c          
## DACCS           
## NE              
## OF              
## BECCS           
## EW              
## BIO             
## WE              
## SE              
## AFSCS     -0.012
tab_model(modA.7444551184412,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.19 0.37 39.46 – 40.92 107.83 <0.001
Benefit c 0.07 0.01 0.04 – 0.09 5.20 <0.001
Risk c -0.24 0.01 -0.27 – -0.22 -17.71 <0.001
DACCS -12.16 0.82 -13.76 – -10.55 -14.81 <0.001
NE -9.61 0.98 -11.53 – -7.70 -9.82 <0.001
OF -4.86 0.85 -6.53 – -3.19 -5.72 <0.001
BECCS -3.84 0.83 -5.46 – -2.21 -4.61 <0.001
EW -2.81 0.83 -4.43 – -1.19 -3.40 0.001
BIO 2.02 0.96 0.13 – 3.90 2.10 0.036
WE 9.91 0.96 8.03 – 11.78 10.37 <0.001
SE 9.16 1.00 7.21 – 11.12 9.19 <0.001
AFSCS 16.84 0.84 15.18 – 18.49 19.96 <0.001
Random Effects
σ2 218.92
τ00 id 65.35
ICC 0.23
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.397 / 0.536
Q.3: Fam/Und Ben Risk Predicting Nat
modA.7444551135512 <- lmer(Naturalness ~ Benefit.c + Risk.c + FR.c + DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.7444551135512)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Benefit.c + Risk.c + FR.c + DACCS + NE + OF + BECCS +  
##     EW + BIO + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25401.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6979 -0.5923  0.0151  0.5734  3.3383 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  70.72    8.41   
##  Residual             207.99   14.42   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   39.92212    0.37590 1004.38050 106.203  < 2e-16 ***
## Benefit.c      0.05278    0.01301 2818.54215   4.056 5.12e-05 ***
## Risk.c        -0.22193    0.01377 2963.77462 -16.116  < 2e-16 ***
## FR.c           0.13557    0.01399 2888.83466   9.691  < 2e-16 ***
## DACCS         -9.91189    0.83617 2659.73444 -11.854  < 2e-16 ***
## NE           -11.79404    0.98688 2797.98889 -11.951  < 2e-16 ***
## OF            -3.02541    0.85314 2644.66651  -3.546 0.000398 ***
## BECCS         -1.72916    0.84178 2630.68569  -2.054 0.040058 *  
## EW            -0.05623    0.85830 2706.19582  -0.066 0.947773    
## BIO            2.69218    0.94475 2711.19543   2.850 0.004410 ** 
## WE             6.53910    0.99725 2807.70108   6.557 6.50e-11 ***
## SE             5.51549    1.04814 2821.99870   5.262 1.53e-07 ***
## AFSCS         15.62517    0.83530 2656.01787  18.706  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.7444551135512,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 39.92 0.38 39.19 – 40.66 106.20 <0.001
Benefit c 0.05 0.01 0.03 – 0.08 4.06 <0.001
Risk c -0.22 0.01 -0.25 – -0.19 -16.12 <0.001
FR c 0.14 0.01 0.11 – 0.16 9.69 <0.001
DACCS -9.91 0.84 -11.55 – -8.27 -11.85 <0.001
NE -11.79 0.99 -13.73 – -9.86 -11.95 <0.001
OF -3.03 0.85 -4.70 – -1.35 -3.55 <0.001
BECCS -1.73 0.84 -3.38 – -0.08 -2.05 0.040
EW -0.06 0.86 -1.74 – 1.63 -0.07 0.948
BIO 2.69 0.94 0.84 – 4.54 2.85 0.004
WE 6.54 1.00 4.58 – 8.49 6.56 <0.001
SE 5.52 1.05 3.46 – 7.57 5.26 <0.001
AFSCS 15.63 0.84 13.99 – 17.26 18.71 <0.001
Random Effects
σ2 207.99
τ00 id 70.72
ICC 0.25
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.413 / 0.562

Benefit

Set #1

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict benefits?
modA.714448881113 <- lmer(Ben ~ DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.714448881113)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1 |  
##     id)
##    Data: L
## 
## REML criterion at convergence: 27683.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4246 -0.5150  0.0654  0.5678  3.1565 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 283.4    16.84   
##  Residual             381.8    19.54   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   58.2205     0.6407 1017.4032  90.874  < 2e-16 ***
## DACCS         -3.1843     1.1019 2386.9763  -2.890 0.003888 ** 
## NE             1.4717     1.2849 2490.3918   1.145 0.252168    
## OF            -4.3571     1.1337 2399.1210  -3.843 0.000125 ***
## BECCS         -2.9518     1.1284 2394.8266  -2.616 0.008955 ** 
## EW            -5.5747     1.1205 2392.8913  -4.975 6.98e-07 ***
## BF            -7.3526     1.3064 2491.1763  -5.628 2.02e-08 ***
## WE             7.5302     1.2847 2488.4305   5.862 5.19e-09 ***
## SE             8.7549     1.3138 2491.7176   6.664 3.28e-11 ***
## AFSCS         10.4528     1.1080 2389.8849   9.434  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr) DACCS  NE     OF     BECCS  EW     BF     WE     SE    
## DACCS -0.028                                                        
## NE     0.023 -0.092                                                 
## OF    -0.016 -0.115 -0.073                                          
## BECCS -0.018 -0.111 -0.098 -0.118                                   
## EW    -0.021 -0.107 -0.085 -0.116 -0.109                            
## BF     0.031 -0.094 -0.171 -0.110 -0.096 -0.097                     
## WE     0.023 -0.080 -0.169 -0.094 -0.092 -0.097 -0.171              
## SE     0.033 -0.103 -0.172 -0.104 -0.093 -0.097 -0.172 -0.171       
## AFSCS -0.026 -0.110 -0.109 -0.110 -0.118 -0.111 -0.093 -0.088 -0.081
tab_model(modA.714448881113,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.22 0.64 56.96 – 59.48 90.87 <0.001
DACCS -3.18 1.10 -5.34 – -1.02 -2.89 0.004
NE 1.47 1.28 -1.05 – 3.99 1.15 0.252
OF -4.36 1.13 -6.58 – -2.13 -3.84 <0.001
BECCS -2.95 1.13 -5.16 – -0.74 -2.62 0.009
EW -5.57 1.12 -7.77 – -3.38 -4.98 <0.001
BF -7.35 1.31 -9.91 – -4.79 -5.63 <0.001
WE 7.53 1.28 5.01 – 10.05 5.86 <0.001
SE 8.75 1.31 6.18 – 11.33 6.66 <0.001
AFSCS 10.45 1.11 8.28 – 12.63 9.43 <0.001
Random Effects
σ2 381.81
τ00 id 283.44
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.054 / 0.457
Q.2: Risk Predicting Ben
modA.744455118441113 <- lmer(Ben ~ Risk.c + DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.744455118441113)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Risk.c + DACCS + NE + OF + BECCS + EW + BF + WE + SE +  
##     AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27367.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5767 -0.5166  0.0713  0.5419  3.2054 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 264.8    16.27   
##  Residual             339.2    18.42   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   58.01851    0.61451 1017.49951  94.414  < 2e-16 ***
## Risk.c        -0.32860    0.01781 2947.72272 -18.451  < 2e-16 ***
## DACCS          0.39429    1.05821 2403.22100   0.373 0.709480    
## NE             8.21888    1.26760 2526.86263   6.484 1.07e-10 ***
## OF             0.04484    1.09679 2412.11753   0.041 0.967392    
## BECCS         -1.12268    1.06990 2384.12634  -1.049 0.294131    
## EW            -3.70706    1.06259 2384.19348  -3.489 0.000494 ***
## BF            -9.19352    1.23778 2475.99282  -7.427 1.52e-13 ***
## WE             2.52342    1.24352 2525.84295   2.029 0.042538 *  
## SE             1.72404    1.29829 2514.77457   1.328 0.184322    
## AFSCS          5.00702    1.08694 2436.59516   4.607 4.30e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##        (Intr) Risk.c DACCS  NE     OF     BECCS  EW     BF     WE     SE    
## Risk.c  0.018                                                               
## DACCS  -0.030 -0.184                                                        
## NE      0.016 -0.289 -0.033                                                 
## OF     -0.019 -0.218 -0.070 -0.005                                          
## BECCS  -0.019 -0.092 -0.092 -0.066 -0.095                                   
## EW     -0.022 -0.095 -0.087 -0.053 -0.093 -0.100                            
## BF      0.031  0.080 -0.107 -0.187 -0.124 -0.103 -0.104                     
## WE      0.025  0.219 -0.116 -0.222 -0.137 -0.109 -0.115 -0.149              
## SE      0.037  0.294 -0.151 -0.243 -0.161 -0.115 -0.120 -0.141 -0.096       
## AFSCS  -0.019  0.272 -0.155 -0.179 -0.162 -0.138 -0.133 -0.067 -0.023  0.006
tab_model(modA.744455118441113,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.02 0.61 56.81 – 59.22 94.41 <0.001
Risk c -0.33 0.02 -0.36 – -0.29 -18.45 <0.001
DACCS 0.39 1.06 -1.68 – 2.47 0.37 0.709
NE 8.22 1.27 5.73 – 10.70 6.48 <0.001
OF 0.04 1.10 -2.11 – 2.20 0.04 0.967
BECCS -1.12 1.07 -3.22 – 0.98 -1.05 0.294
EW -3.71 1.06 -5.79 – -1.62 -3.49 <0.001
BF -9.19 1.24 -11.62 – -6.77 -7.43 <0.001
WE 2.52 1.24 0.09 – 4.96 2.03 0.043
SE 1.72 1.30 -0.82 – 4.27 1.33 0.184
AFSCS 5.01 1.09 2.88 – 7.14 4.61 <0.001
Random Effects
σ2 339.21
τ00 id 264.75
ICC 0.44
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.141 / 0.518
Q.3: Risk and Nat Predicting Ben
modA.744455113551113 <- lmer(Ben ~ Risk.c + Naturalness.c + DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.744455113551113)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Risk.c + Naturalness.c + DACCS + NE + OF + BECCS + EW +  
##     BF + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27354.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5827 -0.5132  0.0670  0.5443  3.3001 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 258.0    16.06   
##  Residual             339.3    18.42   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     57.99693    0.60905 1012.38721  95.225  < 2e-16 ***
## Risk.c          -0.29888    0.01904 2978.41274 -15.697  < 2e-16 ***
## Naturalness.c    0.10591    0.02442 2869.77305   4.337 1.49e-05 ***
## DACCS            1.66980    1.09741 2435.23479   1.522  0.12825    
## NE               9.16876    1.28488 2536.11022   7.136 1.25e-12 ***
## OF               0.54201    1.10170 2413.06294   0.492  0.62278    
## BECCS           -0.72811    1.07300 2385.32406  -0.679  0.49747    
## EW              -3.38484    1.06447 2388.48994  -3.180  0.00149 ** 
## BF              -8.91009    1.23825 2479.90081  -7.196 8.19e-13 ***
## WE               1.49863    1.26435 2523.79863   1.185  0.23601    
## SE               0.73745    1.31638 2528.12689   0.560  0.57539    
## AFSCS            3.21040    1.16223 2480.08350   2.762  0.00578 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Risk.c Ntrln. DACCS  NE     OF     BECCS  EW     BF    
## Risk.c       0.014                                                        
## Naturlnss.c -0.008  0.359                                                 
## DACCS       -0.032 -0.069  0.268                                          
## NE           0.015 -0.204  0.170  0.013                                   
## OF          -0.020 -0.165  0.102 -0.040  0.012                            
## BECCS       -0.020 -0.055  0.085 -0.066 -0.051 -0.086                     
## EW          -0.023 -0.063  0.071 -0.065 -0.041 -0.085 -0.093              
## BF           0.031  0.093  0.051 -0.089 -0.175 -0.118 -0.098 -0.100       
## WE           0.027  0.133 -0.186 -0.160 -0.246 -0.153 -0.123 -0.126 -0.156
## SE           0.038  0.209 -0.171 -0.189 -0.264 -0.175 -0.128 -0.130 -0.148
## AFSCS       -0.015  0.109 -0.356 -0.234 -0.225 -0.187 -0.159 -0.149 -0.081
##             WE     SE    
## Risk.c                   
## Naturlnss.c              
## DACCS                    
## NE                       
## OF                       
## BECCS                    
## EW                       
## BF                       
## WE                       
## SE          -0.061       
## AFSCS        0.045  0.066
tab_model(modA.744455113551113,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.00 0.61 56.80 – 59.19 95.22 <0.001
Risk c -0.30 0.02 -0.34 – -0.26 -15.70 <0.001
Naturalness c 0.11 0.02 0.06 – 0.15 4.34 <0.001
DACCS 1.67 1.10 -0.48 – 3.82 1.52 0.128
NE 9.17 1.28 6.65 – 11.69 7.14 <0.001
OF 0.54 1.10 -1.62 – 2.70 0.49 0.623
BECCS -0.73 1.07 -2.83 – 1.38 -0.68 0.497
EW -3.38 1.06 -5.47 – -1.30 -3.18 0.001
BF -8.91 1.24 -11.34 – -6.48 -7.20 <0.001
WE 1.50 1.26 -0.98 – 3.98 1.19 0.236
SE 0.74 1.32 -1.84 – 3.32 0.56 0.575
AFSCS 3.21 1.16 0.93 – 5.49 2.76 0.006
Random Effects
σ2 339.29
τ00 id 257.97
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.145 / 0.514
Q.4: Risk, Nat, and Fam/Und Predicting Ben
modA.744455113551113 <- lmer(Ben ~ Risk.c + Naturalness.c + FR.c + DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.744455113551113)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Risk.c + Naturalness.c + FR.c + DACCS + NE + OF + BECCS +  
##     EW + BF + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27330.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6121 -0.4980  0.0692  0.5470  3.3281 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 256.9    16.03   
##  Residual             335.6    18.32   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     57.79216    0.60827 1016.52016  95.011  < 2e-16 ***
## Risk.c          -0.28313    0.01917 2978.72943 -14.770  < 2e-16 ***
## Naturalness.c    0.07893    0.02479 2896.03309   3.184  0.00147 ** 
## FR.c             0.10753    0.01972 3007.14629   5.452 5.37e-08 ***
## DACCS            3.09707    1.12269 2464.89329   2.759  0.00585 ** 
## NE               7.06107    1.33519 2615.46207   5.288 1.34e-07 ***
## OF               1.83432    1.12134 2445.74170   1.636  0.10200    
## BECCS            0.82275    1.10459 2435.97833   0.745  0.45643    
## EW              -1.21656    1.13102 2512.02167  -1.076  0.28219    
## BF              -9.40672    1.23508 2480.43867  -7.616 3.69e-14 ***
## WE              -0.86640    1.33062 2580.74909  -0.651  0.51502    
## SE              -1.91176    1.39701 2604.22658  -1.368  0.17129    
## AFSCS            2.67142    1.16040 2478.46802   2.302  0.02141 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.744455113551113,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 57.79 0.61 56.60 – 58.98 95.01 <0.001
Risk c -0.28 0.02 -0.32 – -0.25 -14.77 <0.001
Naturalness c 0.08 0.02 0.03 – 0.13 3.18 0.001
FR c 0.11 0.02 0.07 – 0.15 5.45 <0.001
DACCS 3.10 1.12 0.90 – 5.30 2.76 0.006
NE 7.06 1.34 4.44 – 9.68 5.29 <0.001
OF 1.83 1.12 -0.36 – 4.03 1.64 0.102
BECCS 0.82 1.10 -1.34 – 2.99 0.74 0.456
EW -1.22 1.13 -3.43 – 1.00 -1.08 0.282
BF -9.41 1.24 -11.83 – -6.99 -7.62 <0.001
WE -0.87 1.33 -3.48 – 1.74 -0.65 0.515
SE -1.91 1.40 -4.65 – 0.83 -1.37 0.171
AFSCS 2.67 1.16 0.40 – 4.95 2.30 0.021
Random Effects
σ2 335.56
τ00 id 256.86
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.151 / 0.519

Set #2

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict benefits?
modA.7144488811134 <- lmer(Ben ~ DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.7144488811134)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS +  
##     (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27683.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4246 -0.5150  0.0654  0.5678  3.1565 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 283.4    16.84   
##  Residual             381.8    19.54   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   58.2205     0.6407 1017.4032  90.874  < 2e-16 ***
## DACCS         -3.1843     1.1019 2386.9763  -2.890 0.003888 ** 
## NE             1.4717     1.2849 2490.3918   1.145 0.252168    
## OF            -4.3571     1.1337 2399.1210  -3.843 0.000125 ***
## BECCS         -2.9518     1.1284 2394.8266  -2.616 0.008955 ** 
## EW            -5.5747     1.1205 2392.8913  -4.975 6.98e-07 ***
## BIO            7.3526     1.3064 2491.1763   5.628 2.02e-08 ***
## WE             7.5302     1.2847 2488.4305   5.862 5.19e-09 ***
## SE             8.7549     1.3138 2491.7176   6.664 3.28e-11 ***
## AFSCS         10.4528     1.1080 2389.8849   9.434  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr) DACCS  NE     OF     BECCS  EW     BIO    WE     SE    
## DACCS -0.028                                                        
## NE     0.023 -0.092                                                 
## OF    -0.016 -0.115 -0.073                                          
## BECCS -0.018 -0.111 -0.098 -0.118                                   
## EW    -0.021 -0.107 -0.085 -0.116 -0.109                            
## BIO   -0.031  0.094  0.171  0.110  0.096  0.097                     
## WE     0.023 -0.080 -0.169 -0.094 -0.092 -0.097  0.171              
## SE     0.033 -0.103 -0.172 -0.104 -0.093 -0.097  0.172 -0.171       
## AFSCS -0.026 -0.110 -0.109 -0.110 -0.118 -0.111  0.093 -0.088 -0.081
tab_model(modA.7144488811134,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.22 0.64 56.96 – 59.48 90.87 <0.001
DACCS -3.18 1.10 -5.34 – -1.02 -2.89 0.004
NE 1.47 1.28 -1.05 – 3.99 1.15 0.252
OF -4.36 1.13 -6.58 – -2.13 -3.84 <0.001
BECCS -2.95 1.13 -5.16 – -0.74 -2.62 0.009
EW -5.57 1.12 -7.77 – -3.38 -4.98 <0.001
BIO 7.35 1.31 4.79 – 9.91 5.63 <0.001
WE 7.53 1.28 5.01 – 10.05 5.86 <0.001
SE 8.75 1.31 6.18 – 11.33 6.66 <0.001
AFSCS 10.45 1.11 8.28 – 12.63 9.43 <0.001
Random Effects
σ2 381.81
τ00 id 283.44
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.054 / 0.457
Q.2: Risk Predicting Ben
modA.74445511844111345 <- lmer(Ben ~ Risk.c + DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.74445511844111345)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Risk.c + DACCS + NE + OF + BECCS + EW + BIO + WE + SE +  
##     AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27367.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5767 -0.5166  0.0713  0.5419  3.2054 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 264.8    16.27   
##  Residual             339.2    18.42   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   58.01851    0.61451 1017.49951  94.414  < 2e-16 ***
## Risk.c        -0.32860    0.01781 2947.72272 -18.451  < 2e-16 ***
## DACCS          0.39429    1.05821 2403.22100   0.373 0.709480    
## NE             8.21888    1.26760 2526.86263   6.484 1.07e-10 ***
## OF             0.04484    1.09679 2412.11753   0.041 0.967392    
## BECCS         -1.12268    1.06990 2384.12634  -1.049 0.294131    
## EW            -3.70706    1.06259 2384.19348  -3.489 0.000494 ***
## BIO            9.19352    1.23778 2475.99282   7.427 1.52e-13 ***
## WE             2.52342    1.24352 2525.84295   2.029 0.042538 *  
## SE             1.72404    1.29829 2514.77457   1.328 0.184322    
## AFSCS          5.00702    1.08694 2436.59516   4.607 4.30e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##        (Intr) Risk.c DACCS  NE     OF     BECCS  EW     BIO    WE     SE    
## Risk.c  0.018                                                               
## DACCS  -0.030 -0.184                                                        
## NE      0.016 -0.289 -0.033                                                 
## OF     -0.019 -0.218 -0.070 -0.005                                          
## BECCS  -0.019 -0.092 -0.092 -0.066 -0.095                                   
## EW     -0.022 -0.095 -0.087 -0.053 -0.093 -0.100                            
## BIO    -0.031 -0.080  0.107  0.187  0.124  0.103  0.104                     
## WE      0.025  0.219 -0.116 -0.222 -0.137 -0.109 -0.115  0.149              
## SE      0.037  0.294 -0.151 -0.243 -0.161 -0.115 -0.120  0.141 -0.096       
## AFSCS  -0.019  0.272 -0.155 -0.179 -0.162 -0.138 -0.133  0.067 -0.023  0.006
tab_model(modA.74445511844111345,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.02 0.61 56.81 – 59.22 94.41 <0.001
Risk c -0.33 0.02 -0.36 – -0.29 -18.45 <0.001
DACCS 0.39 1.06 -1.68 – 2.47 0.37 0.709
NE 8.22 1.27 5.73 – 10.70 6.48 <0.001
OF 0.04 1.10 -2.11 – 2.20 0.04 0.967
BECCS -1.12 1.07 -3.22 – 0.98 -1.05 0.294
EW -3.71 1.06 -5.79 – -1.62 -3.49 <0.001
BIO 9.19 1.24 6.77 – 11.62 7.43 <0.001
WE 2.52 1.24 0.09 – 4.96 2.03 0.043
SE 1.72 1.30 -0.82 – 4.27 1.33 0.184
AFSCS 5.01 1.09 2.88 – 7.14 4.61 <0.001
Random Effects
σ2 339.21
τ00 id 264.75
ICC 0.44
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.141 / 0.518
Q.3: Risk and Nat Predicting Ben
modA.7444551135511134 <- lmer(Ben ~ Risk.c + Naturalness.c + DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.7444551135511134)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Risk.c + Naturalness.c + DACCS + NE + OF + BECCS + EW +  
##     BIO + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27354.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5827 -0.5132  0.0670  0.5443  3.3001 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 258.0    16.06   
##  Residual             339.3    18.42   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     57.99693    0.60905 1012.38721  95.225  < 2e-16 ***
## Risk.c          -0.29888    0.01904 2978.41274 -15.697  < 2e-16 ***
## Naturalness.c    0.10591    0.02442 2869.77305   4.337 1.49e-05 ***
## DACCS            1.66980    1.09741 2435.23479   1.522  0.12825    
## NE               9.16876    1.28488 2536.11022   7.136 1.25e-12 ***
## OF               0.54201    1.10170 2413.06294   0.492  0.62278    
## BECCS           -0.72811    1.07300 2385.32406  -0.679  0.49747    
## EW              -3.38484    1.06447 2388.48994  -3.180  0.00149 ** 
## BIO              8.91009    1.23825 2479.90081   7.196 8.19e-13 ***
## WE               1.49863    1.26435 2523.79863   1.185  0.23601    
## SE               0.73745    1.31638 2528.12689   0.560  0.57539    
## AFSCS            3.21040    1.16223 2480.08350   2.762  0.00578 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Risk.c Ntrln. DACCS  NE     OF     BECCS  EW     BIO   
## Risk.c       0.014                                                        
## Naturlnss.c -0.008  0.359                                                 
## DACCS       -0.032 -0.069  0.268                                          
## NE           0.015 -0.204  0.170  0.013                                   
## OF          -0.020 -0.165  0.102 -0.040  0.012                            
## BECCS       -0.020 -0.055  0.085 -0.066 -0.051 -0.086                     
## EW          -0.023 -0.063  0.071 -0.065 -0.041 -0.085 -0.093              
## BIO         -0.031 -0.093 -0.051  0.089  0.175  0.118  0.098  0.100       
## WE           0.027  0.133 -0.186 -0.160 -0.246 -0.153 -0.123 -0.126  0.156
## SE           0.038  0.209 -0.171 -0.189 -0.264 -0.175 -0.128 -0.130  0.148
## AFSCS       -0.015  0.109 -0.356 -0.234 -0.225 -0.187 -0.159 -0.149  0.081
##             WE     SE    
## Risk.c                   
## Naturlnss.c              
## DACCS                    
## NE                       
## OF                       
## BECCS                    
## EW                       
## BIO                      
## WE                       
## SE          -0.061       
## AFSCS        0.045  0.066
tab_model(modA.7444551135511134,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.00 0.61 56.80 – 59.19 95.22 <0.001
Risk c -0.30 0.02 -0.34 – -0.26 -15.70 <0.001
Naturalness c 0.11 0.02 0.06 – 0.15 4.34 <0.001
DACCS 1.67 1.10 -0.48 – 3.82 1.52 0.128
NE 9.17 1.28 6.65 – 11.69 7.14 <0.001
OF 0.54 1.10 -1.62 – 2.70 0.49 0.623
BECCS -0.73 1.07 -2.83 – 1.38 -0.68 0.497
EW -3.38 1.06 -5.47 – -1.30 -3.18 0.001
BIO 8.91 1.24 6.48 – 11.34 7.20 <0.001
WE 1.50 1.26 -0.98 – 3.98 1.19 0.236
SE 0.74 1.32 -1.84 – 3.32 0.56 0.575
AFSCS 3.21 1.16 0.93 – 5.49 2.76 0.006
Random Effects
σ2 339.29
τ00 id 257.97
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.145 / 0.514
Q.4: Risk, Nat, and Fam/Und Predicting Ben
modA.7444551135511134 <- lmer(Ben ~ Risk.c + Naturalness.c + FR.c + DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.7444551135511134)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Risk.c + Naturalness.c + FR.c + DACCS + NE + OF + BECCS +  
##     EW + BIO + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27330.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6121 -0.4980  0.0692  0.5470  3.3281 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 256.9    16.03   
##  Residual             335.6    18.32   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     57.79216    0.60827 1016.52016  95.011  < 2e-16 ***
## Risk.c          -0.28313    0.01917 2978.72943 -14.770  < 2e-16 ***
## Naturalness.c    0.07893    0.02479 2896.03309   3.184  0.00147 ** 
## FR.c             0.10753    0.01972 3007.14629   5.452 5.37e-08 ***
## DACCS            3.09707    1.12269 2464.89329   2.759  0.00585 ** 
## NE               7.06107    1.33519 2615.46207   5.288 1.34e-07 ***
## OF               1.83432    1.12134 2445.74170   1.636  0.10200    
## BECCS            0.82275    1.10459 2435.97833   0.745  0.45643    
## EW              -1.21656    1.13102 2512.02167  -1.076  0.28219    
## BIO              9.40672    1.23508 2480.43867   7.616 3.69e-14 ***
## WE              -0.86640    1.33062 2580.74909  -0.651  0.51502    
## SE              -1.91176    1.39701 2604.22658  -1.368  0.17129    
## AFSCS            2.67142    1.16040 2478.46802   2.302  0.02141 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.7444551135511134,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 57.79 0.61 56.60 – 58.98 95.01 <0.001
Risk c -0.28 0.02 -0.32 – -0.25 -14.77 <0.001
Naturalness c 0.08 0.02 0.03 – 0.13 3.18 0.001
FR c 0.11 0.02 0.07 – 0.15 5.45 <0.001
DACCS 3.10 1.12 0.90 – 5.30 2.76 0.006
NE 7.06 1.34 4.44 – 9.68 5.29 <0.001
OF 1.83 1.12 -0.36 – 4.03 1.64 0.102
BECCS 0.82 1.10 -1.34 – 2.99 0.74 0.456
EW -1.22 1.13 -3.43 – 1.00 -1.08 0.282
BIO 9.41 1.24 6.99 – 11.83 7.62 <0.001
WE -0.87 1.33 -3.48 – 1.74 -0.65 0.515
SE -1.91 1.40 -4.65 – 0.83 -1.37 0.171
AFSCS 2.67 1.16 0.40 – 4.95 2.30 0.021
Random Effects
σ2 335.56
τ00 id 256.86
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.151 / 0.519

Risk

Set #1

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict risks?
modA.71444888111366 <- lmer(Risk ~ DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.71444888111366)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS +  
##     (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27466.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5812 -0.6117 -0.0694  0.5565  3.6749 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 183.5    13.55   
##  Residual             391.9    19.80   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   32.4243     0.5609 1018.7068  57.808  < 2e-16 ***
## DACCS         10.8426     1.0990 2495.8856   9.866  < 2e-16 ***
## NE            20.5519     1.2763 2615.0096  16.103  < 2e-16 ***
## OF            13.5376     1.1303 2510.3315  11.977  < 2e-16 ***
## BECCS          5.6756     1.1252 2505.6400   5.044 4.88e-07 ***
## EW             5.7300     1.1173 2503.1806   5.128 3.15e-07 ***
## BF            -5.7162     1.2976 2616.5136  -4.405 1.10e-05 ***
## WE           -14.9462     1.2762 2613.2863 -11.711  < 2e-16 ***
## SE           -21.6013     1.3050 2617.2425 -16.553  < 2e-16 ***
## AFSCS        -16.5218     1.1050 2499.0970 -14.952  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr) DACCS  NE     OF     BECCS  EW     BF     WE     SE    
## DACCS -0.033                                                        
## NE     0.027 -0.095                                                 
## OF    -0.019 -0.111 -0.081                                          
## BECCS -0.021 -0.108 -0.100 -0.115                                   
## EW    -0.025 -0.105 -0.090 -0.113 -0.107                            
## BF     0.036 -0.097 -0.164 -0.111 -0.100 -0.100                     
## WE     0.027 -0.085 -0.163 -0.097 -0.096 -0.100 -0.164              
## SE     0.039 -0.105 -0.165 -0.106 -0.097 -0.100 -0.166 -0.165       
## AFSCS -0.030 -0.107 -0.109 -0.107 -0.114 -0.109 -0.096 -0.092 -0.087
tab_model(modA.71444888111366,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.42 0.56 31.32 – 33.52 57.81 <0.001
DACCS 10.84 1.10 8.69 – 13.00 9.87 <0.001
NE 20.55 1.28 18.05 – 23.05 16.10 <0.001
OF 13.54 1.13 11.32 – 15.75 11.98 <0.001
BECCS 5.68 1.13 3.47 – 7.88 5.04 <0.001
EW 5.73 1.12 3.54 – 7.92 5.13 <0.001
BF -5.72 1.30 -8.26 – -3.17 -4.41 <0.001
WE -14.95 1.28 -17.45 – -12.44 -11.71 <0.001
SE -21.60 1.30 -24.16 – -19.04 -16.55 <0.001
AFSCS -16.52 1.11 -18.69 – -14.36 -14.95 <0.001
Random Effects
σ2 391.88
τ00 id 183.49
ICC 0.32
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.225 / 0.472
Q.2: Ben Predicting Risk
modA.74445511844111366 <- lmer(Risk ~ Benefit.c + DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.74445511844111366)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Benefit.c + DACCS + NE + OF + BECCS + EW + BF + WE + SE +  
##     AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27157.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4711 -0.6153 -0.0514  0.5895  3.5733 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 174.1    13.19   
##  Residual             348.6    18.67   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   32.49743    0.53913 1014.83213  60.278  < 2e-16 ***
## Benefit.c     -0.30315    0.01662 2963.05117 -18.237  < 2e-16 ***
## DACCS          9.90027    1.04021 2481.76069   9.518  < 2e-16 ***
## NE            21.02454    1.20745 2595.07549  17.412  < 2e-16 ***
## OF            12.23551    1.07085 2500.31944  11.426  < 2e-16 ***
## BECCS          4.75139    1.06481 2488.48710   4.462 8.47e-06 ***
## EW             4.00716    1.06039 2489.75535   3.779 0.000161 ***
## BF            -7.87076    1.23312 2612.78201  -6.383 2.05e-10 ***
## WE           -12.75032    1.21330 2609.62119 -10.509  < 2e-16 ***
## SE           -18.96017    1.24263 2615.52667 -15.258  < 2e-16 ***
## AFSCS        -13.37406    1.05882 2513.88731 -12.631  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) Bnft.c DACCS  NE     OF     BECCS  EW     BF     WE     SE    
## Benefit.c -0.007                                                               
## DACCS     -0.032  0.050                                                        
## NE         0.027 -0.021 -0.096                                                 
## OF        -0.019  0.066 -0.108 -0.081                                          
## BECCS     -0.021  0.047 -0.106 -0.101 -0.112                                   
## EW        -0.025  0.089 -0.100 -0.091 -0.107 -0.103                            
## BF         0.034  0.097 -0.092 -0.167 -0.103 -0.094 -0.090                     
## WE         0.027 -0.101 -0.089 -0.161 -0.103 -0.099 -0.107 -0.173              
## SE         0.039 -0.116 -0.110 -0.162 -0.113 -0.101 -0.109 -0.176 -0.152       
## AFSCS     -0.028 -0.163 -0.114 -0.104 -0.117 -0.120 -0.122 -0.110 -0.073 -0.066
tab_model(modA.74445511844111366,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.50 0.54 31.44 – 33.55 60.28 <0.001
Benefit c -0.30 0.02 -0.34 – -0.27 -18.24 <0.001
DACCS 9.90 1.04 7.86 – 11.94 9.52 <0.001
NE 21.02 1.21 18.66 – 23.39 17.41 <0.001
OF 12.24 1.07 10.14 – 14.34 11.43 <0.001
BECCS 4.75 1.06 2.66 – 6.84 4.46 <0.001
EW 4.01 1.06 1.93 – 6.09 3.78 <0.001
BF -7.87 1.23 -10.29 – -5.45 -6.38 <0.001
WE -12.75 1.21 -15.13 – -10.37 -10.51 <0.001
SE -18.96 1.24 -21.40 – -16.52 -15.26 <0.001
AFSCS -13.37 1.06 -15.45 – -11.30 -12.63 <0.001
Random Effects
σ2 348.59
τ00 id 174.09
ICC 0.33
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.302 / 0.535
Q.3: Benefit and Nat Predicting Ben
modA.74445511355111366 <- lmer(Risk ~ Benefit.c + Naturalness.c + DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.74445511355111366)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Benefit.c + Naturalness.c + DACCS + NE + OF + BECCS +  
##     EW + BF + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26845
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1133 -0.5867 -0.0161  0.5774  3.7285 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 175.8    13.26   
##  Residual             304.5    17.45   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     32.63364    0.52678 1011.73074  61.950  < 2e-16 ***
## Benefit.c       -0.24981    0.01609 2994.53357 -15.529  < 2e-16 ***
## Naturalness.c   -0.39588    0.02151 2892.93622 -18.400  < 2e-16 ***
## DACCS            4.12154    1.02646 2501.49390   4.015 6.11e-05 ***
## NE              15.14426    1.17969 2593.51167  12.837  < 2e-16 ***
## OF               9.09503    1.02001 2471.38800   8.917  < 2e-16 ***
## BECCS            2.76589    1.00587 2451.91888   2.750  0.00601 ** 
## EW               2.45397    0.99960 2457.63302   2.455  0.01416 *  
## BF              -7.86802    1.16000 2571.01255  -6.783 1.46e-11 ***
## WE              -7.71224    1.17457 2585.57224  -6.566 6.22e-11 ***
## SE             -13.35513    1.20699 2607.60143 -11.065  < 2e-16 ***
## AFSCS           -5.39958    1.08511 2560.07989  -4.976 6.92e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Bnft.c Ntrln. DACCS  NE     OF     BECCS  EW     BF    
## Benefit.c   -0.004                                                        
## Naturlnss.c -0.014 -0.187                                                 
## DACCS       -0.034 -0.009  0.306                                          
## NE           0.021 -0.071  0.271 -0.004                                   
## OF          -0.020  0.035  0.165 -0.052 -0.030                            
## BECCS       -0.021  0.026  0.105 -0.069 -0.067 -0.094                     
## EW          -0.025  0.072  0.083 -0.070 -0.063 -0.092 -0.094              
## BF           0.033  0.097  0.001 -0.086 -0.162 -0.101 -0.092 -0.089       
## WE           0.028 -0.054 -0.236 -0.153 -0.216 -0.137 -0.120 -0.123 -0.171
## SE           0.039 -0.065 -0.249 -0.177 -0.221 -0.148 -0.123 -0.125 -0.173
## AFSCS       -0.019 -0.075 -0.399 -0.223 -0.200 -0.172 -0.153 -0.145 -0.100
##             WE     SE    
## Benefit.c                
## Naturlnss.c              
## DACCS                    
## NE                       
## OF                       
## BECCS                    
## EW                       
## BF                       
## WE                       
## SE          -0.086       
## AFSCS        0.031  0.043
tab_model(modA.74445511355111366,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.63 0.53 31.60 – 33.67 61.95 <0.001
Benefit c -0.25 0.02 -0.28 – -0.22 -15.53 <0.001
Naturalness c -0.40 0.02 -0.44 – -0.35 -18.40 <0.001
DACCS 4.12 1.03 2.11 – 6.13 4.02 <0.001
NE 15.14 1.18 12.83 – 17.46 12.84 <0.001
OF 9.10 1.02 7.10 – 11.10 8.92 <0.001
BECCS 2.77 1.01 0.79 – 4.74 2.75 0.006
EW 2.45 1.00 0.49 – 4.41 2.45 0.014
BF -7.87 1.16 -10.14 – -5.59 -6.78 <0.001
WE -7.71 1.17 -10.02 – -5.41 -6.57 <0.001
SE -13.36 1.21 -15.72 – -10.99 -11.06 <0.001
AFSCS -5.40 1.09 -7.53 – -3.27 -4.98 <0.001
Random Effects
σ2 304.49
τ00 id 175.78
ICC 0.37
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.364 / 0.597
Q.4: Ben, Nat, and Fam/Und Predicting Risk
modA.74445511355111366 <- lmer(Risk ~ Benefit.c + Naturalness.c + FR.c + DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.74445511355111366)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Benefit.c + Naturalness.c + FR.c + DACCS + NE + OF + BECCS +  
##     EW + BF + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26808.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5539 -0.6058 -0.0052  0.5672  3.9418 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 174.2    13.20   
##  Residual             299.9    17.32   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     32.86499    0.52497 1018.31284  62.603  < 2e-16 ***
## Benefit.c       -0.23569    0.01612 2992.23158 -14.620  < 2e-16 ***
## Naturalness.c   -0.36268    0.02195 2934.01779 -16.520  < 2e-16 ***
## FR.c            -0.11835    0.01802 2992.51333  -6.569 5.96e-11 ***
## DACCS            2.45813    1.04989 2536.25081   2.341   0.0193 *  
## NE              17.13221    1.20962 2663.12734  14.163  < 2e-16 ***
## OF               7.52683    1.04019 2512.50253   7.236 6.11e-13 ***
## BECCS            1.01914    1.03321 2506.20951   0.986   0.3240    
## EW               0.07287    1.05631 2584.33815   0.069   0.9450    
## BF              -7.11631    1.15719 2577.56329  -6.150 8.97e-10 ***
## WE              -4.99995    1.23706 2653.33980  -4.042 5.45e-05 ***
## SE             -10.23919    1.28841 2690.85251  -7.947 2.78e-15 ***
## AFSCS           -4.74780    1.08171 2559.01865  -4.389 1.18e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.74445511355111366,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.86 0.52 31.84 – 33.89 62.60 <0.001
Benefit c -0.24 0.02 -0.27 – -0.20 -14.62 <0.001
Naturalness c -0.36 0.02 -0.41 – -0.32 -16.52 <0.001
FR c -0.12 0.02 -0.15 – -0.08 -6.57 <0.001
DACCS 2.46 1.05 0.40 – 4.52 2.34 0.019
NE 17.13 1.21 14.76 – 19.50 14.16 <0.001
OF 7.53 1.04 5.49 – 9.57 7.24 <0.001
BECCS 1.02 1.03 -1.01 – 3.05 0.99 0.324
EW 0.07 1.06 -2.00 – 2.14 0.07 0.945
BF -7.12 1.16 -9.39 – -4.85 -6.15 <0.001
WE -5.00 1.24 -7.43 – -2.57 -4.04 <0.001
SE -10.24 1.29 -12.77 – -7.71 -7.95 <0.001
AFSCS -4.75 1.08 -6.87 – -2.63 -4.39 <0.001
Random Effects
σ2 299.90
τ00 id 174.19
ICC 0.37
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.371 / 0.602

Set #2

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict risks?
modA.714448881113664 <- lmer(Risk ~ DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.714448881113664)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS +  
##     (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27466.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5812 -0.6117 -0.0694  0.5565  3.6749 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 183.5    13.55   
##  Residual             391.9    19.80   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   32.4243     0.5609 1018.7068  57.808  < 2e-16 ***
## DACCS         10.8426     1.0990 2495.8856   9.866  < 2e-16 ***
## NE            20.5519     1.2763 2615.0096  16.103  < 2e-16 ***
## OF            13.5376     1.1303 2510.3315  11.977  < 2e-16 ***
## BECCS          5.6756     1.1252 2505.6400   5.044 4.88e-07 ***
## EW             5.7300     1.1173 2503.1806   5.128 3.15e-07 ***
## BIO            5.7162     1.2976 2616.5136   4.405 1.10e-05 ***
## WE           -14.9462     1.2762 2613.2863 -11.711  < 2e-16 ***
## SE           -21.6013     1.3050 2617.2425 -16.553  < 2e-16 ***
## AFSCS        -16.5218     1.1050 2499.0970 -14.952  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr) DACCS  NE     OF     BECCS  EW     BIO    WE     SE    
## DACCS -0.033                                                        
## NE     0.027 -0.095                                                 
## OF    -0.019 -0.111 -0.081                                          
## BECCS -0.021 -0.108 -0.100 -0.115                                   
## EW    -0.025 -0.105 -0.090 -0.113 -0.107                            
## BIO   -0.036  0.097  0.164  0.111  0.100  0.100                     
## WE     0.027 -0.085 -0.163 -0.097 -0.096 -0.100  0.164              
## SE     0.039 -0.105 -0.165 -0.106 -0.097 -0.100  0.166 -0.165       
## AFSCS -0.030 -0.107 -0.109 -0.107 -0.114 -0.109  0.096 -0.092 -0.087
tab_model(modA.714448881113664,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.42 0.56 31.32 – 33.52 57.81 <0.001
DACCS 10.84 1.10 8.69 – 13.00 9.87 <0.001
NE 20.55 1.28 18.05 – 23.05 16.10 <0.001
OF 13.54 1.13 11.32 – 15.75 11.98 <0.001
BECCS 5.68 1.13 3.47 – 7.88 5.04 <0.001
EW 5.73 1.12 3.54 – 7.92 5.13 <0.001
BIO 5.72 1.30 3.17 – 8.26 4.41 <0.001
WE -14.95 1.28 -17.45 – -12.44 -11.71 <0.001
SE -21.60 1.30 -24.16 – -19.04 -16.55 <0.001
AFSCS -16.52 1.11 -18.69 – -14.36 -14.95 <0.001
Random Effects
σ2 391.88
τ00 id 183.49
ICC 0.32
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.225 / 0.472
Q.2: Ben Predicting Risk
modA.744455118441113664 <- lmer(Risk ~ Benefit.c + DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.744455118441113664)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Benefit.c + DACCS + NE + OF + BECCS + EW + BIO + WE +  
##     SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27157.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4711 -0.6153 -0.0514  0.5895  3.5733 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 174.1    13.19   
##  Residual             348.6    18.67   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   32.49743    0.53913 1014.83213  60.278  < 2e-16 ***
## Benefit.c     -0.30315    0.01662 2963.05117 -18.237  < 2e-16 ***
## DACCS          9.90027    1.04021 2481.76069   9.518  < 2e-16 ***
## NE            21.02454    1.20745 2595.07549  17.412  < 2e-16 ***
## OF            12.23551    1.07085 2500.31944  11.426  < 2e-16 ***
## BECCS          4.75139    1.06481 2488.48710   4.462 8.47e-06 ***
## EW             4.00716    1.06039 2489.75535   3.779 0.000161 ***
## BIO            7.87076    1.23312 2612.78201   6.383 2.05e-10 ***
## WE           -12.75032    1.21330 2609.62119 -10.509  < 2e-16 ***
## SE           -18.96017    1.24263 2615.52667 -15.258  < 2e-16 ***
## AFSCS        -13.37406    1.05882 2513.88731 -12.631  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) Bnft.c DACCS  NE     OF     BECCS  EW     BIO    WE     SE    
## Benefit.c -0.007                                                               
## DACCS     -0.032  0.050                                                        
## NE         0.027 -0.021 -0.096                                                 
## OF        -0.019  0.066 -0.108 -0.081                                          
## BECCS     -0.021  0.047 -0.106 -0.101 -0.112                                   
## EW        -0.025  0.089 -0.100 -0.091 -0.107 -0.103                            
## BIO       -0.034 -0.097  0.092  0.167  0.103  0.094  0.090                     
## WE         0.027 -0.101 -0.089 -0.161 -0.103 -0.099 -0.107  0.173              
## SE         0.039 -0.116 -0.110 -0.162 -0.113 -0.101 -0.109  0.176 -0.152       
## AFSCS     -0.028 -0.163 -0.114 -0.104 -0.117 -0.120 -0.122  0.110 -0.073 -0.066
tab_model(modA.744455118441113664,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.50 0.54 31.44 – 33.55 60.28 <0.001
Benefit c -0.30 0.02 -0.34 – -0.27 -18.24 <0.001
DACCS 9.90 1.04 7.86 – 11.94 9.52 <0.001
NE 21.02 1.21 18.66 – 23.39 17.41 <0.001
OF 12.24 1.07 10.14 – 14.34 11.43 <0.001
BECCS 4.75 1.06 2.66 – 6.84 4.46 <0.001
EW 4.01 1.06 1.93 – 6.09 3.78 <0.001
BIO 7.87 1.23 5.45 – 10.29 6.38 <0.001
WE -12.75 1.21 -15.13 – -10.37 -10.51 <0.001
SE -18.96 1.24 -21.40 – -16.52 -15.26 <0.001
AFSCS -13.37 1.06 -15.45 – -11.30 -12.63 <0.001
Random Effects
σ2 348.59
τ00 id 174.09
ICC 0.33
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.302 / 0.535
Q.3: Benefit and Nat Predicting Ben
modA.744455113551113664 <- lmer(Risk ~  Benefit.c  + Naturalness.c + DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.744455113551113664)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Benefit.c + Naturalness.c + DACCS + NE + OF + BECCS +  
##     EW + BIO + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26845
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1133 -0.5867 -0.0161  0.5774  3.7285 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 175.8    13.26   
##  Residual             304.5    17.45   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     32.63364    0.52678 1011.73074  61.950  < 2e-16 ***
## Benefit.c       -0.24981    0.01609 2994.53357 -15.529  < 2e-16 ***
## Naturalness.c   -0.39588    0.02151 2892.93622 -18.400  < 2e-16 ***
## DACCS            4.12154    1.02646 2501.49390   4.015 6.11e-05 ***
## NE              15.14426    1.17969 2593.51167  12.837  < 2e-16 ***
## OF               9.09503    1.02001 2471.38800   8.917  < 2e-16 ***
## BECCS            2.76589    1.00587 2451.91888   2.750  0.00601 ** 
## EW               2.45397    0.99960 2457.63302   2.455  0.01416 *  
## BIO              7.86802    1.16000 2571.01255   6.783 1.46e-11 ***
## WE              -7.71224    1.17457 2585.57224  -6.566 6.22e-11 ***
## SE             -13.35513    1.20699 2607.60143 -11.065  < 2e-16 ***
## AFSCS           -5.39958    1.08511 2560.07989  -4.976 6.92e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Bnft.c Ntrln. DACCS  NE     OF     BECCS  EW     BIO   
## Benefit.c   -0.004                                                        
## Naturlnss.c -0.014 -0.187                                                 
## DACCS       -0.034 -0.009  0.306                                          
## NE           0.021 -0.071  0.271 -0.004                                   
## OF          -0.020  0.035  0.165 -0.052 -0.030                            
## BECCS       -0.021  0.026  0.105 -0.069 -0.067 -0.094                     
## EW          -0.025  0.072  0.083 -0.070 -0.063 -0.092 -0.094              
## BIO         -0.033 -0.097 -0.001  0.086  0.162  0.101  0.092  0.089       
## WE           0.028 -0.054 -0.236 -0.153 -0.216 -0.137 -0.120 -0.123  0.171
## SE           0.039 -0.065 -0.249 -0.177 -0.221 -0.148 -0.123 -0.125  0.173
## AFSCS       -0.019 -0.075 -0.399 -0.223 -0.200 -0.172 -0.153 -0.145  0.100
##             WE     SE    
## Benefit.c                
## Naturlnss.c              
## DACCS                    
## NE                       
## OF                       
## BECCS                    
## EW                       
## BIO                      
## WE                       
## SE          -0.086       
## AFSCS        0.031  0.043
tab_model(modA.744455113551113664,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.63 0.53 31.60 – 33.67 61.95 <0.001
Benefit c -0.25 0.02 -0.28 – -0.22 -15.53 <0.001
Naturalness c -0.40 0.02 -0.44 – -0.35 -18.40 <0.001
DACCS 4.12 1.03 2.11 – 6.13 4.02 <0.001
NE 15.14 1.18 12.83 – 17.46 12.84 <0.001
OF 9.10 1.02 7.10 – 11.10 8.92 <0.001
BECCS 2.77 1.01 0.79 – 4.74 2.75 0.006
EW 2.45 1.00 0.49 – 4.41 2.45 0.014
BIO 7.87 1.16 5.59 – 10.14 6.78 <0.001
WE -7.71 1.17 -10.02 – -5.41 -6.57 <0.001
SE -13.36 1.21 -15.72 – -10.99 -11.06 <0.001
AFSCS -5.40 1.09 -7.53 – -3.27 -4.98 <0.001
Random Effects
σ2 304.49
τ00 id 175.78
ICC 0.37
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.364 / 0.597
Q.4: Ben, Nat, and Fam/Und Predicting Risk
modA.744455113551113664 <- lmer(Risk ~ Benefit.c + Naturalness.c + FR.c + DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.744455113551113664)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Benefit.c + Naturalness.c + FR.c + DACCS + NE + OF + BECCS +  
##     EW + BIO + WE + SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26808.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5539 -0.6058 -0.0052  0.5672  3.9418 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 174.2    13.20   
##  Residual             299.9    17.32   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     32.86499    0.52497 1018.31284  62.603  < 2e-16 ***
## Benefit.c       -0.23569    0.01612 2992.23158 -14.620  < 2e-16 ***
## Naturalness.c   -0.36268    0.02195 2934.01779 -16.520  < 2e-16 ***
## FR.c            -0.11835    0.01802 2992.51333  -6.569 5.96e-11 ***
## DACCS            2.45813    1.04989 2536.25081   2.341   0.0193 *  
## NE              17.13221    1.20962 2663.12734  14.163  < 2e-16 ***
## OF               7.52683    1.04019 2512.50253   7.236 6.11e-13 ***
## BECCS            1.01914    1.03321 2506.20951   0.986   0.3240    
## EW               0.07287    1.05631 2584.33815   0.069   0.9450    
## BIO              7.11631    1.15719 2577.56329   6.150 8.97e-10 ***
## WE              -4.99995    1.23706 2653.33980  -4.042 5.45e-05 ***
## SE             -10.23919    1.28841 2690.85251  -7.947 2.78e-15 ***
## AFSCS           -4.74780    1.08171 2559.01865  -4.389 1.18e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.744455113551113664,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.86 0.52 31.84 – 33.89 62.60 <0.001
Benefit c -0.24 0.02 -0.27 – -0.20 -14.62 <0.001
Naturalness c -0.36 0.02 -0.41 – -0.32 -16.52 <0.001
FR c -0.12 0.02 -0.15 – -0.08 -6.57 <0.001
DACCS 2.46 1.05 0.40 – 4.52 2.34 0.019
NE 17.13 1.21 14.76 – 19.50 14.16 <0.001
OF 7.53 1.04 5.49 – 9.57 7.24 <0.001
BECCS 1.02 1.03 -1.01 – 3.05 0.99 0.324
EW 0.07 1.06 -2.00 – 2.14 0.07 0.945
BIO 7.12 1.16 4.85 – 9.39 6.15 <0.001
WE -5.00 1.24 -7.43 – -2.57 -4.04 <0.001
SE -10.24 1.29 -12.77 – -7.71 -7.95 <0.001
AFSCS -4.75 1.08 -6.87 – -2.63 -4.39 <0.001
Random Effects
σ2 299.90
τ00 id 174.19
ICC 0.37
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.371 / 0.602

Familiarity/Understanding

Set #1

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict familiarity and understanding of technology?
modA.7144488811136622 <- lmer(FR ~ DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.7144488811136622)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1 |  
##     id)
##    Data: L
## 
## REML criterion at convergence: 27119.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0412 -0.5869 -0.0111  0.5966  3.1013 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 204.7    14.31   
##  Residual             329.5    18.15   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   54.4788     0.5608 1019.6835  97.137  < 2e-16 ***
## DACCS        -18.6588     1.0176 2429.9000 -18.337  < 2e-16 ***
## NE            12.8814     1.1847 2540.1072  10.873  < 2e-16 ***
## OF           -16.1090     1.0468 2442.9867 -15.389  < 2e-16 ***
## BECCS        -16.5934     1.0420 2438.5014 -15.925  < 2e-16 ***
## EW           -22.1040     1.0346 2436.3623 -21.364  < 2e-16 ***
## BF             5.1720     1.2045 2541.1519   4.294 1.82e-05 ***
## WE            27.7437     1.1846 2538.2041  23.421  < 2e-16 ***
## SE            31.6044     1.2114 2541.7653  26.090  < 2e-16 ***
## AFSCS         12.8248     1.0232 2432.9494  12.534  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr) DACCS  NE     OF     BECCS  EW     BF     WE     SE    
## DACCS -0.030                                                        
## NE     0.024 -0.093                                                 
## OF    -0.017 -0.113 -0.076                                          
## BECCS -0.019 -0.110 -0.099 -0.117                                   
## EW    -0.022 -0.106 -0.087 -0.115 -0.108                            
## BF     0.033 -0.095 -0.169 -0.110 -0.098 -0.098                     
## WE     0.024 -0.082 -0.167 -0.095 -0.093 -0.098 -0.168              
## SE     0.036 -0.104 -0.169 -0.105 -0.095 -0.098 -0.170 -0.169       
## AFSCS -0.027 -0.109 -0.109 -0.109 -0.116 -0.110 -0.094 -0.090 -0.083
tab_model(modA.7144488811136622,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.48 0.56 53.38 – 55.58 97.14 <0.001
DACCS -18.66 1.02 -20.65 – -16.66 -18.34 <0.001
NE 12.88 1.18 10.56 – 15.20 10.87 <0.001
OF -16.11 1.05 -18.16 – -14.06 -15.39 <0.001
BECCS -16.59 1.04 -18.64 – -14.55 -15.93 <0.001
EW -22.10 1.03 -24.13 – -20.08 -21.36 <0.001
BF 5.17 1.20 2.81 – 7.53 4.29 <0.001
WE 27.74 1.18 25.42 – 30.07 23.42 <0.001
SE 31.60 1.21 29.23 – 33.98 26.09 <0.001
AFSCS 12.82 1.02 10.82 – 14.83 12.53 <0.001
Random Effects
σ2 329.45
τ00 id 204.67
ICC 0.38
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.403 / 0.632
Q.2: Nat predicting fam/und
modA.7444551184411136622 <- lmer(FR ~ Naturalness.c + DACCS + NE + OF + BECCS + EW + BF + WE + SE + AFSCS + (1|id), data = L)

summary(modA.7444551184411136622)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Naturalness.c + DACCS + NE + OF + BECCS + EW + BF + WE +  
##     SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26915.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9409 -0.5696  0.0042  0.5983  3.1937 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 213.5    14.61   
##  Residual             297.7    17.25   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     54.36006    0.55913 1014.67378  97.223  < 2e-16 ***
## Naturalness.c    0.31552    0.02125 2843.02165  14.848  < 2e-16 ***
## DACCS          -13.90200    1.02337 2449.90959 -13.585  < 2e-16 ***
## NE              17.52007    1.17515 2535.98030  14.909  < 2e-16 ***
## OF             -13.46299    1.01576 2416.65135 -13.254  < 2e-16 ***
## BECCS          -14.89955    1.00166 2401.66368 -14.875  < 2e-16 ***
## EW             -20.66833    0.99325 2404.53197 -20.809  < 2e-16 ***
## BF               5.48603    1.15217 2497.99616   4.761 2.03e-06 ***
## WE              23.34344    1.17088 2518.74575  19.937  < 2e-16 ***
## SE              26.81364    1.20286 2538.95709  22.292  < 2e-16 ***
## AFSCS            6.03803    1.07972 2492.29200   5.592 2.49e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. DACCS  NE     OF     BECCS  EW     BF     WE    
## Naturlnss.c -0.014                                                        
## DACCS       -0.032  0.313                                                 
## NE           0.019  0.265 -0.001                                          
## OF          -0.019  0.176 -0.052 -0.024                                   
## BECCS       -0.019  0.112 -0.069 -0.064 -0.096                            
## EW          -0.022  0.100 -0.069 -0.055 -0.096 -0.096                     
## BF           0.031  0.019 -0.084 -0.159 -0.105 -0.094 -0.095              
## WE           0.026 -0.253 -0.153 -0.225 -0.134 -0.117 -0.119 -0.170       
## SE           0.036 -0.269 -0.179 -0.230 -0.146 -0.120 -0.120 -0.171 -0.091
## AFSCS       -0.017 -0.425 -0.228 -0.208 -0.172 -0.153 -0.143 -0.092  0.030
##             SE    
## Naturlnss.c       
## DACCS             
## NE                
## OF                
## BECCS             
## EW                
## BF                
## WE                
## SE                
## AFSCS        0.043
tab_model(modA.7444551184411136622,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.36 0.56 53.26 – 55.46 97.22 <0.001
Naturalness c 0.32 0.02 0.27 – 0.36 14.85 <0.001
DACCS -13.90 1.02 -15.91 – -11.90 -13.58 <0.001
NE 17.52 1.18 15.22 – 19.82 14.91 <0.001
OF -13.46 1.02 -15.45 – -11.47 -13.25 <0.001
BECCS -14.90 1.00 -16.86 – -12.94 -14.87 <0.001
EW -20.67 0.99 -22.62 – -18.72 -20.81 <0.001
BF 5.49 1.15 3.23 – 7.75 4.76 <0.001
WE 23.34 1.17 21.05 – 25.64 19.94 <0.001
SE 26.81 1.20 24.46 – 29.17 22.29 <0.001
AFSCS 6.04 1.08 3.92 – 8.16 5.59 <0.001
Random Effects
σ2 297.73
τ00 id 213.46
ICC 0.42
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.434 / 0.670

Set #2

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict familiarity and understanding of technology?
modA.71444888111366223 <- lmer(FR ~ DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.71444888111366223)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1 |  
##     id)
##    Data: L
## 
## REML criterion at convergence: 27119.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0412 -0.5869 -0.0111  0.5966  3.1013 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 204.7    14.31   
##  Residual             329.5    18.15   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   54.4788     0.5608 1019.6835  97.137  < 2e-16 ***
## DACCS        -18.6588     1.0176 2429.9000 -18.337  < 2e-16 ***
## NE            12.8814     1.1847 2540.1072  10.873  < 2e-16 ***
## OF           -16.1090     1.0468 2442.9867 -15.389  < 2e-16 ***
## BECCS        -16.5934     1.0420 2438.5014 -15.925  < 2e-16 ***
## EW           -22.1040     1.0346 2436.3623 -21.364  < 2e-16 ***
## BIO           -5.1720     1.2045 2541.1519  -4.294 1.82e-05 ***
## WE            27.7437     1.1846 2538.2041  23.421  < 2e-16 ***
## SE            31.6044     1.2114 2541.7653  26.090  < 2e-16 ***
## AFSCS         12.8248     1.0232 2432.9494  12.534  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr) DACCS  NE     OF     BECCS  EW     BIO    WE     SE    
## DACCS -0.030                                                        
## NE     0.024 -0.093                                                 
## OF    -0.017 -0.113 -0.076                                          
## BECCS -0.019 -0.110 -0.099 -0.117                                   
## EW    -0.022 -0.106 -0.087 -0.115 -0.108                            
## BIO   -0.033  0.095  0.169  0.110  0.098  0.098                     
## WE     0.024 -0.082 -0.167 -0.095 -0.093 -0.098  0.168              
## SE     0.036 -0.104 -0.169 -0.105 -0.095 -0.098  0.170 -0.169       
## AFSCS -0.027 -0.109 -0.109 -0.109 -0.116 -0.110  0.094 -0.090 -0.083
tab_model(modA.71444888111366223,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.48 0.56 53.38 – 55.58 97.14 <0.001
DACCS -18.66 1.02 -20.65 – -16.66 -18.34 <0.001
NE 12.88 1.18 10.56 – 15.20 10.87 <0.001
OF -16.11 1.05 -18.16 – -14.06 -15.39 <0.001
BECCS -16.59 1.04 -18.64 – -14.55 -15.93 <0.001
EW -22.10 1.03 -24.13 – -20.08 -21.36 <0.001
BIO -5.17 1.20 -7.53 – -2.81 -4.29 <0.001
WE 27.74 1.18 25.42 – 30.07 23.42 <0.001
SE 31.60 1.21 29.23 – 33.98 26.09 <0.001
AFSCS 12.82 1.02 10.82 – 14.83 12.53 <0.001
Random Effects
σ2 329.45
τ00 id 204.67
ICC 0.38
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.403 / 0.632
Q.2: Nat predicting fam/und
modA.74445511844111366223 <- lmer(FR ~ Naturalness.c + DACCS + NE + OF + BECCS + EW + BIO + WE + SE + AFSCS + (1|id), data = L)

summary(modA.74445511844111366223)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Naturalness.c + DACCS + NE + OF + BECCS + EW + BIO + WE +  
##     SE + AFSCS + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26915.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9409 -0.5696  0.0042  0.5983  3.1937 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 213.5    14.61   
##  Residual             297.7    17.25   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     54.36006    0.55913 1014.67378  97.223  < 2e-16 ***
## Naturalness.c    0.31552    0.02125 2843.02165  14.848  < 2e-16 ***
## DACCS          -13.90200    1.02337 2449.90959 -13.585  < 2e-16 ***
## NE              17.52007    1.17515 2535.98030  14.909  < 2e-16 ***
## OF             -13.46299    1.01576 2416.65135 -13.254  < 2e-16 ***
## BECCS          -14.89955    1.00166 2401.66368 -14.875  < 2e-16 ***
## EW             -20.66833    0.99325 2404.53197 -20.809  < 2e-16 ***
## BIO             -5.48603    1.15217 2497.99616  -4.761 2.03e-06 ***
## WE              23.34344    1.17088 2518.74575  19.937  < 2e-16 ***
## SE              26.81364    1.20286 2538.95709  22.292  < 2e-16 ***
## AFSCS            6.03803    1.07972 2492.29200   5.592 2.49e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. DACCS  NE     OF     BECCS  EW     BIO    WE    
## Naturlnss.c -0.014                                                        
## DACCS       -0.032  0.313                                                 
## NE           0.019  0.265 -0.001                                          
## OF          -0.019  0.176 -0.052 -0.024                                   
## BECCS       -0.019  0.112 -0.069 -0.064 -0.096                            
## EW          -0.022  0.100 -0.069 -0.055 -0.096 -0.096                     
## BIO         -0.031 -0.019  0.084  0.159  0.105  0.094  0.095              
## WE           0.026 -0.253 -0.153 -0.225 -0.134 -0.117 -0.119  0.170       
## SE           0.036 -0.269 -0.179 -0.230 -0.146 -0.120 -0.120  0.171 -0.091
## AFSCS       -0.017 -0.425 -0.228 -0.208 -0.172 -0.153 -0.143  0.092  0.030
##             SE    
## Naturlnss.c       
## DACCS             
## NE                
## OF                
## BECCS             
## EW                
## BIO               
## WE                
## SE                
## AFSCS        0.043
tab_model(modA.74445511844111366223,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.36 0.56 53.26 – 55.46 97.22 <0.001
Naturalness c 0.32 0.02 0.27 – 0.36 14.85 <0.001
DACCS -13.90 1.02 -15.91 – -11.90 -13.58 <0.001
NE 17.52 1.18 15.22 – 19.82 14.91 <0.001
OF -13.46 1.02 -15.45 – -11.47 -13.25 <0.001
BECCS -14.90 1.00 -16.86 – -12.94 -14.87 <0.001
EW -20.67 0.99 -22.62 – -18.72 -20.81 <0.001
BIO -5.49 1.15 -7.75 – -3.23 -4.76 <0.001
WE 23.34 1.17 21.05 – 25.64 19.94 <0.001
SE 26.81 1.20 24.46 – 29.17 22.29 <0.001
AFSCS 6.04 1.08 3.92 – 8.16 5.59 <0.001
Random Effects
σ2 297.73
τ00 id 213.46
ICC 0.42
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.434 / 0.670