exam_score = data.frame(
ID = c(1, 2, 3, 4, 5),
Name = c("Alice", "Bob", "David", "John", "Jenny"),
Age = c(20, 25, 30, 22, 18),
Score = c(100, 78, 90, 55, 81)
)
exam_score
## ID Name Age Score
## 1 1 Alice 20 100
## 2 2 Bob 25 78
## 3 3 David 30 90
## 4 4 John 22 55
## 5 5 Jenny 18 81
row1 = c(6, "isa", 25, 10)
row2 = c(7, "asma", 20, 20)
exam_score = rbind(exam_score, row1,row2)
exam_score
## ID Name Age Score
## 1 1 Alice 20 100
## 2 2 Bob 25 78
## 3 3 David 30 90
## 4 4 John 22 55
## 5 5 Jenny 18 81
## 6 6 isa 25 10
## 7 7 asma 20 20
Income = c( 50000, 60000, 70000, 45000, 55000, 65000, 75000)
exam_score = cbind(exam_score, Income)
exam_score
## ID Name Age Score Income
## 1 1 Alice 20 100 50000
## 2 2 Bob 25 78 60000
## 3 3 David 30 90 70000
## 4 4 John 22 55 45000
## 5 5 Jenny 18 81 55000
## 6 6 isa 25 10 65000
## 7 7 asma 20 20 75000
a= exam_score$Age
b= exam_score$Score
c= exam_score$Income
a
## [1] "20" "25" "30" "22" "18" "25" "20"
Max = c(max(a), max(b), max(c))
Max
## [1] "30" "90" "75000"
Min = c(min(a), min(b), min(c))
Min
## [1] "18" "10" "45000"
Median =c(median(a), median(b), median(c))
Median
## [1] "22" "55" "60000"
a= as.numeric(a)
b= as.numeric(b)
c= as.numeric(c)
Sum = c(sum(a), sum(b), sum(c))
Sum
## [1] 160 434 420000
Mean = c(mean(a), mean(b), mean(c))
Mean
## [1] 22.85714 62.00000 60000.00000
sd= c(sd(a),sd(b),sd(c))
sd
## [1] 4.099942 35.028560 10801.234497
var= c(var(a),var(b),var(c))
var
## [1] 1.680952e+01 1.227000e+03 1.166667e+08
quan = c(quantile(a,0.5),quantile(b,0.5),quantile(c,0.5))
quan
## 50% 50% 50%
## 22 78 60000
table = data.frame(
Max = Max,
Min = Min,
Median = Median,
Sum = Sum,
Mean = Mean,
SD = sd,
Variance = var,
Quantile =quan
)
table
## Max Min Median Sum Mean SD Variance Quantile
## 1 30 18 22 160 22.85714 4.099942 1.680952e+01 22
## 2 90 10 55 434 62.00000 35.028560 1.227000e+03 78
## 3 75000 45000 60000 420000 60000.00000 10801.234497 1.166667e+08 60000
a= exam_score$Age
b= exam_score$Score
c= exam_score$Income
a= as.numeric(a)
b= as.numeric(b)
c= as.numeric(c)
age_score= cor(a, b)
age_score
## [1] 0.05570446
age_income= cor(a, c)
age_income
## [1] 0.3951727
score_income = cor(b, c)
age_income
## [1] 0.3951727
x= exam_score[ b >= 80, ]
x
## ID Name Age Score Income
## 1 1 Alice 20 100 50000
## 3 3 David 30 90 70000
## 5 5 Jenny 18 81 55000
x= exam_score[ b >= 80, ]
x
## ID Name Age Score Income
## 1 1 Alice 20 100 50000
## 3 3 David 30 90 70000
## 5 5 Jenny 18 81 55000
y= exam_score[a>= 20 & a<=30, ]
y
## ID Name Age Score Income
## 1 1 Alice 20 100 50000
## 2 2 Bob 25 78 60000
## 3 3 David 30 90 70000
## 4 4 John 22 55 45000
## 6 6 isa 25 10 65000
## 7 7 asma 20 20 75000
z= exam_score[ a == 22 | a == 25 | a == 35 , ]
z
## ID Name Age Score Income
## 2 2 Bob 25 78 60000
## 4 4 John 22 55 45000
## 6 6 isa 25 10 65000
x= exam_score[ b >= 80, ]
x
## ID Name Age Score Income
## 1 1 Alice 20 100 50000
## 3 3 David 30 90 70000
## 5 5 Jenny 18 81 55000
y= exam_score[a>= 20 & a<=30, ]
y
## ID Name Age Score Income
## 1 1 Alice 20 100 50000
## 2 2 Bob 25 78 60000
## 3 3 David 30 90 70000
## 4 4 John 22 55 45000
## 6 6 isa 25 10 65000
## 7 7 asma 20 20 75000
z= exam_score[ a == 22 | a == 25 | a == 35 , ]
z
## ID Name Age Score Income
## 2 2 Bob 25 78 60000
## 4 4 John 22 55 45000
## 6 6 isa 25 10 65000