R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

#install.packages(c("vroom", "readr"), dependencies = TRUE)
library(readr)
wisc_bc_data <- read_csv("/Users/bezatilahun/Desktop/Datamining /R folders/RPractice/wisc_bc_data.csv")
## Rows: 569 Columns: 32
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (1): diagnosis
## dbl (31): id, radius_mean, texture_mean, perimeter_mean, area_mean, smoothne...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#View(wisc_bc_data)
#Step-1 Import Data through readr
wd <- wisc_bc_data
str(wd)
## spc_tbl_ [569 × 32] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ id                     : num [1:569] 842302 842517 84300903 84348301 84358402 ...
##  $ diagnosis              : chr [1:569] "M" "M" "M" "M" ...
##  $ radius_mean            : num [1:569] 18 20.6 19.7 11.4 20.3 ...
##  $ texture_mean           : num [1:569] 10.4 17.8 21.2 20.4 14.3 ...
##  $ perimeter_mean         : num [1:569] 122.8 132.9 130 77.6 135.1 ...
##  $ area_mean              : num [1:569] 1001 1326 1203 386 1297 ...
##  $ smoothness_mean        : num [1:569] 0.1184 0.0847 0.1096 0.1425 0.1003 ...
##  $ compactness_mean       : num [1:569] 0.2776 0.0786 0.1599 0.2839 0.1328 ...
##  $ concavity_mean         : num [1:569] 0.3001 0.0869 0.1974 0.2414 0.198 ...
##  $ concave points_mean    : num [1:569] 0.1471 0.0702 0.1279 0.1052 0.1043 ...
##  $ symmetry_mean          : num [1:569] 0.242 0.181 0.207 0.26 0.181 ...
##  $ fractal_dimension_mean : num [1:569] 0.0787 0.0567 0.06 0.0974 0.0588 ...
##  $ radius_se              : num [1:569] 1.095 0.543 0.746 0.496 0.757 ...
##  $ texture_se             : num [1:569] 0.905 0.734 0.787 1.156 0.781 ...
##  $ perimeter_se           : num [1:569] 8.59 3.4 4.58 3.44 5.44 ...
##  $ area_se                : num [1:569] 153.4 74.1 94 27.2 94.4 ...
##  $ smoothness_se          : num [1:569] 0.0064 0.00522 0.00615 0.00911 0.01149 ...
##  $ compactness_se         : num [1:569] 0.049 0.0131 0.0401 0.0746 0.0246 ...
##  $ concavity_se           : num [1:569] 0.0537 0.0186 0.0383 0.0566 0.0569 ...
##  $ concave points_se      : num [1:569] 0.0159 0.0134 0.0206 0.0187 0.0188 ...
##  $ symmetry_se            : num [1:569] 0.03 0.0139 0.0225 0.0596 0.0176 ...
##  $ fractal_dimension_se   : num [1:569] 0.00619 0.00353 0.00457 0.00921 0.00511 ...
##  $ radius_worst           : num [1:569] 25.4 25 23.6 14.9 22.5 ...
##  $ texture_worst          : num [1:569] 17.3 23.4 25.5 26.5 16.7 ...
##  $ perimeter_worst        : num [1:569] 184.6 158.8 152.5 98.9 152.2 ...
##  $ area_worst             : num [1:569] 2019 1956 1709 568 1575 ...
##  $ smoothness_worst       : num [1:569] 0.162 0.124 0.144 0.21 0.137 ...
##  $ compactness_worst      : num [1:569] 0.666 0.187 0.424 0.866 0.205 ...
##  $ concavity_worst        : num [1:569] 0.712 0.242 0.45 0.687 0.4 ...
##  $ concave points_worst   : num [1:569] 0.265 0.186 0.243 0.258 0.163 ...
##  $ symmetry_worst         : num [1:569] 0.46 0.275 0.361 0.664 0.236 ...
##  $ fractal_dimension_worst: num [1:569] 0.1189 0.089 0.0876 0.173 0.0768 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   id = col_double(),
##   ..   diagnosis = col_character(),
##   ..   radius_mean = col_double(),
##   ..   texture_mean = col_double(),
##   ..   perimeter_mean = col_double(),
##   ..   area_mean = col_double(),
##   ..   smoothness_mean = col_double(),
##   ..   compactness_mean = col_double(),
##   ..   concavity_mean = col_double(),
##   ..   `concave points_mean` = col_double(),
##   ..   symmetry_mean = col_double(),
##   ..   fractal_dimension_mean = col_double(),
##   ..   radius_se = col_double(),
##   ..   texture_se = col_double(),
##   ..   perimeter_se = col_double(),
##   ..   area_se = col_double(),
##   ..   smoothness_se = col_double(),
##   ..   compactness_se = col_double(),
##   ..   concavity_se = col_double(),
##   ..   `concave points_se` = col_double(),
##   ..   symmetry_se = col_double(),
##   ..   fractal_dimension_se = col_double(),
##   ..   radius_worst = col_double(),
##   ..   texture_worst = col_double(),
##   ..   perimeter_worst = col_double(),
##   ..   area_worst = col_double(),
##   ..   smoothness_worst = col_double(),
##   ..   compactness_worst = col_double(),
##   ..   concavity_worst = col_double(),
##   ..   `concave points_worst` = col_double(),
##   ..   symmetry_worst = col_double(),
##   ..   fractal_dimension_worst = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
#Step 2- Remove the "id" feature from column 1 as it is unrelated to the data and does not contribute to the training.
wd1 <- wd[-1]
#View(wd1)
#display values of diagnosis
wd1$diagnosis
##   [1] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M"
##  [19] "M" "B" "B" "B" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M"
##  [37] "M" "B" "M" "M" "M" "M" "M" "M" "M" "M" "B" "M" "B" "B" "B" "B" "B" "M"
##  [55] "M" "B" "M" "M" "B" "B" "B" "B" "M" "B" "M" "M" "B" "B" "B" "B" "M" "B"
##  [73] "M" "M" "B" "M" "B" "M" "M" "B" "B" "B" "M" "M" "B" "M" "M" "M" "B" "B"
##  [91] "B" "M" "B" "B" "M" "M" "B" "B" "B" "M" "M" "B" "B" "B" "B" "M" "B" "B"
## [109] "M" "B" "B" "B" "B" "B" "B" "B" "B" "M" "M" "M" "B" "M" "M" "B" "B" "B"
## [127] "M" "M" "B" "M" "B" "M" "M" "B" "M" "M" "B" "B" "M" "B" "B" "M" "B" "B"
## [145] "B" "B" "M" "B" "B" "B" "B" "B" "B" "B" "B" "B" "M" "B" "B" "B" "B" "M"
## [163] "M" "B" "M" "B" "B" "M" "M" "B" "B" "M" "M" "B" "B" "B" "B" "M" "B" "B"
## [181] "M" "M" "M" "B" "M" "B" "M" "B" "B" "B" "M" "B" "B" "M" "M" "B" "M" "M"
## [199] "M" "M" "B" "M" "M" "M" "B" "M" "B" "M" "B" "B" "M" "B" "M" "M" "M" "M"
## [217] "B" "B" "M" "M" "B" "B" "B" "M" "B" "B" "B" "B" "B" "M" "M" "B" "B" "M"
## [235] "B" "B" "M" "M" "B" "M" "B" "B" "B" "B" "M" "B" "B" "B" "B" "B" "M" "B"
## [253] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "B" "B" "B" "B"
## [271] "B" "B" "M" "B" "M" "B" "B" "M" "B" "B" "M" "B" "M" "M" "B" "B" "B" "B"
## [289] "B" "B" "B" "B" "B" "B" "B" "B" "B" "M" "B" "B" "M" "B" "M" "B" "B" "B"
## [307] "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "M" "B" "B" "B" "M" "B" "M"
## [325] "B" "B" "B" "B" "M" "M" "M" "B" "B" "B" "B" "M" "B" "M" "B" "M" "B" "B"
## [343] "B" "M" "B" "B" "B" "B" "B" "B" "B" "M" "M" "M" "B" "B" "B" "B" "B" "B"
## [361] "B" "B" "B" "B" "B" "M" "M" "B" "M" "M" "M" "B" "M" "M" "B" "B" "B" "B"
## [379] "B" "M" "B" "B" "B" "B" "B" "M" "B" "B" "B" "M" "B" "B" "M" "M" "B" "B"
## [397] "B" "B" "B" "B" "M" "B" "B" "B" "B" "B" "B" "B" "M" "B" "B" "B" "B" "B"
## [415] "M" "B" "B" "M" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "M" "B"
## [433] "M" "M" "B" "M" "B" "B" "B" "B" "B" "M" "B" "B" "M" "B" "M" "B" "B" "M"
## [451] "B" "M" "B" "B" "B" "B" "B" "B" "B" "B" "M" "M" "B" "B" "B" "B" "B" "B"
## [469] "M" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "M" "B" "B" "B" "B" "B" "B"
## [487] "B" "M" "B" "M" "B" "B" "M" "B" "B" "B" "B" "B" "M" "M" "B" "M" "B" "M"
## [505] "B" "B" "B" "B" "B" "M" "B" "B" "M" "B" "M" "B" "M" "M" "B" "B" "B" "M"
## [523] "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "M" "B" "M" "M" "B" "B" "B"
## [541] "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B"
## [559] "B" "B" "B" "B" "M" "M" "M" "M" "M" "M" "B"
#how many M and B in the data set?
table(wd1$diagnosis)
## 
##   B   M 
## 357 212
#the proportion of M and B? 
prop.table(table(wd1$diagnosis))
## 
##         B         M 
## 0.6274165 0.3725835
#Examining numeric features
summary(wd1)
##   diagnosis          radius_mean      texture_mean   perimeter_mean  
##  Length:569         Min.   : 6.981   Min.   : 9.71   Min.   : 43.79  
##  Class :character   1st Qu.:11.700   1st Qu.:16.17   1st Qu.: 75.17  
##  Mode  :character   Median :13.370   Median :18.84   Median : 86.24  
##                     Mean   :14.127   Mean   :19.29   Mean   : 91.97  
##                     3rd Qu.:15.780   3rd Qu.:21.80   3rd Qu.:104.10  
##                     Max.   :28.110   Max.   :39.28   Max.   :188.50  
##    area_mean      smoothness_mean   compactness_mean  concavity_mean   
##  Min.   : 143.5   Min.   :0.05263   Min.   :0.01938   Min.   :0.00000  
##  1st Qu.: 420.3   1st Qu.:0.08637   1st Qu.:0.06492   1st Qu.:0.02956  
##  Median : 551.1   Median :0.09587   Median :0.09263   Median :0.06154  
##  Mean   : 654.9   Mean   :0.09636   Mean   :0.10434   Mean   :0.08880  
##  3rd Qu.: 782.7   3rd Qu.:0.10530   3rd Qu.:0.13040   3rd Qu.:0.13070  
##  Max.   :2501.0   Max.   :0.16340   Max.   :0.34540   Max.   :0.42680  
##  concave points_mean symmetry_mean    fractal_dimension_mean   radius_se     
##  Min.   :0.00000     Min.   :0.1060   Min.   :0.04996        Min.   :0.1115  
##  1st Qu.:0.02031     1st Qu.:0.1619   1st Qu.:0.05770        1st Qu.:0.2324  
##  Median :0.03350     Median :0.1792   Median :0.06154        Median :0.3242  
##  Mean   :0.04892     Mean   :0.1812   Mean   :0.06280        Mean   :0.4052  
##  3rd Qu.:0.07400     3rd Qu.:0.1957   3rd Qu.:0.06612        3rd Qu.:0.4789  
##  Max.   :0.20120     Max.   :0.3040   Max.   :0.09744        Max.   :2.8730  
##    texture_se      perimeter_se       area_se        smoothness_se     
##  Min.   :0.3602   Min.   : 0.757   Min.   :  6.802   Min.   :0.001713  
##  1st Qu.:0.8339   1st Qu.: 1.606   1st Qu.: 17.850   1st Qu.:0.005169  
##  Median :1.1080   Median : 2.287   Median : 24.530   Median :0.006380  
##  Mean   :1.2169   Mean   : 2.866   Mean   : 40.337   Mean   :0.007041  
##  3rd Qu.:1.4740   3rd Qu.: 3.357   3rd Qu.: 45.190   3rd Qu.:0.008146  
##  Max.   :4.8850   Max.   :21.980   Max.   :542.200   Max.   :0.031130  
##  compactness_se      concavity_se     concave points_se   symmetry_se      
##  Min.   :0.002252   Min.   :0.00000   Min.   :0.000000   Min.   :0.007882  
##  1st Qu.:0.013080   1st Qu.:0.01509   1st Qu.:0.007638   1st Qu.:0.015160  
##  Median :0.020450   Median :0.02589   Median :0.010930   Median :0.018730  
##  Mean   :0.025478   Mean   :0.03189   Mean   :0.011796   Mean   :0.020542  
##  3rd Qu.:0.032450   3rd Qu.:0.04205   3rd Qu.:0.014710   3rd Qu.:0.023480  
##  Max.   :0.135400   Max.   :0.39600   Max.   :0.052790   Max.   :0.078950  
##  fractal_dimension_se  radius_worst   texture_worst   perimeter_worst 
##  Min.   :0.0008948    Min.   : 7.93   Min.   :12.02   Min.   : 50.41  
##  1st Qu.:0.0022480    1st Qu.:13.01   1st Qu.:21.08   1st Qu.: 84.11  
##  Median :0.0031870    Median :14.97   Median :25.41   Median : 97.66  
##  Mean   :0.0037949    Mean   :16.27   Mean   :25.68   Mean   :107.26  
##  3rd Qu.:0.0045580    3rd Qu.:18.79   3rd Qu.:29.72   3rd Qu.:125.40  
##  Max.   :0.0298400    Max.   :36.04   Max.   :49.54   Max.   :251.20  
##    area_worst     smoothness_worst  compactness_worst concavity_worst 
##  Min.   : 185.2   Min.   :0.07117   Min.   :0.02729   Min.   :0.0000  
##  1st Qu.: 515.3   1st Qu.:0.11660   1st Qu.:0.14720   1st Qu.:0.1145  
##  Median : 686.5   Median :0.13130   Median :0.21190   Median :0.2267  
##  Mean   : 880.6   Mean   :0.13237   Mean   :0.25427   Mean   :0.2722  
##  3rd Qu.:1084.0   3rd Qu.:0.14600   3rd Qu.:0.33910   3rd Qu.:0.3829  
##  Max.   :4254.0   Max.   :0.22260   Max.   :1.05800   Max.   :1.2520  
##  concave points_worst symmetry_worst   fractal_dimension_worst
##  Min.   :0.00000      Min.   :0.1565   Min.   :0.05504        
##  1st Qu.:0.06493      1st Qu.:0.2504   1st Qu.:0.07146        
##  Median :0.09993      Median :0.2822   Median :0.08004        
##  Mean   :0.11461      Mean   :0.2901   Mean   :0.08395        
##  3rd Qu.:0.16140      3rd Qu.:0.3179   3rd Qu.:0.09208        
##  Max.   :0.29100      Max.   :0.6638   Max.   :0.20750
#based on the code in line 14. We observed that the numbers are all over the place. 
#Consequently, we need to implement scaling to rectify this issue.
#create normalization function
normalize <- function(x){
  return((x - min(x))/ (max(x) - min(x)))
}
#Test 1 normalize(c(1,2,3,4,5))
#Test 2 normalize(c(10,20,30,40,50))
#Test 3 normalize(c(100,200,300,400,500))
#normalize all the columns except the diagnosis column
wd_n <- as.data.frame(lapply(wd1 [2:31], normalize))
summary(wd_n)
##   radius_mean      texture_mean    perimeter_mean     area_mean     
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.2233   1st Qu.:0.2185   1st Qu.:0.2168   1st Qu.:0.1174  
##  Median :0.3024   Median :0.3088   Median :0.2933   Median :0.1729  
##  Mean   :0.3382   Mean   :0.3240   Mean   :0.3329   Mean   :0.2169  
##  3rd Qu.:0.4164   3rd Qu.:0.4089   3rd Qu.:0.4168   3rd Qu.:0.2711  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  smoothness_mean  compactness_mean concavity_mean    concave.points_mean
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000     
##  1st Qu.:0.3046   1st Qu.:0.1397   1st Qu.:0.06926   1st Qu.:0.1009     
##  Median :0.3904   Median :0.2247   Median :0.14419   Median :0.1665     
##  Mean   :0.3948   Mean   :0.2606   Mean   :0.20806   Mean   :0.2431     
##  3rd Qu.:0.4755   3rd Qu.:0.3405   3rd Qu.:0.30623   3rd Qu.:0.3678     
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000     
##  symmetry_mean    fractal_dimension_mean   radius_se         texture_se    
##  Min.   :0.0000   Min.   :0.0000         Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.2823   1st Qu.:0.1630         1st Qu.:0.04378   1st Qu.:0.1047  
##  Median :0.3697   Median :0.2439         Median :0.07702   Median :0.1653  
##  Mean   :0.3796   Mean   :0.2704         Mean   :0.10635   Mean   :0.1893  
##  3rd Qu.:0.4530   3rd Qu.:0.3404         3rd Qu.:0.13304   3rd Qu.:0.2462  
##  Max.   :1.0000   Max.   :1.0000         Max.   :1.00000   Max.   :1.0000  
##   perimeter_se        area_se        smoothness_se    compactness_se   
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.04000   1st Qu.:0.02064   1st Qu.:0.1175   1st Qu.:0.08132  
##  Median :0.07209   Median :0.03311   Median :0.1586   Median :0.13667  
##  Mean   :0.09938   Mean   :0.06264   Mean   :0.1811   Mean   :0.17444  
##  3rd Qu.:0.12251   3rd Qu.:0.07170   3rd Qu.:0.2187   3rd Qu.:0.22680  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   Max.   :1.00000  
##   concavity_se     concave.points_se  symmetry_se     fractal_dimension_se
##  Min.   :0.00000   Min.   :0.0000    Min.   :0.0000   Min.   :0.00000     
##  1st Qu.:0.03811   1st Qu.:0.1447    1st Qu.:0.1024   1st Qu.:0.04675     
##  Median :0.06538   Median :0.2070    Median :0.1526   Median :0.07919     
##  Mean   :0.08054   Mean   :0.2235    Mean   :0.1781   Mean   :0.10019     
##  3rd Qu.:0.10619   3rd Qu.:0.2787    3rd Qu.:0.2195   3rd Qu.:0.12656     
##  Max.   :1.00000   Max.   :1.0000    Max.   :1.0000   Max.   :1.00000     
##   radius_worst    texture_worst    perimeter_worst    area_worst     
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.1807   1st Qu.:0.2415   1st Qu.:0.1678   1st Qu.:0.08113  
##  Median :0.2504   Median :0.3569   Median :0.2353   Median :0.12321  
##  Mean   :0.2967   Mean   :0.3640   Mean   :0.2831   Mean   :0.17091  
##  3rd Qu.:0.3863   3rd Qu.:0.4717   3rd Qu.:0.3735   3rd Qu.:0.22090  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
##  smoothness_worst compactness_worst concavity_worst   concave.points_worst
##  Min.   :0.0000   Min.   :0.0000    Min.   :0.00000   Min.   :0.0000      
##  1st Qu.:0.3000   1st Qu.:0.1163    1st Qu.:0.09145   1st Qu.:0.2231      
##  Median :0.3971   Median :0.1791    Median :0.18107   Median :0.3434      
##  Mean   :0.4041   Mean   :0.2202    Mean   :0.21740   Mean   :0.3938      
##  3rd Qu.:0.4942   3rd Qu.:0.3025    3rd Qu.:0.30583   3rd Qu.:0.5546      
##  Max.   :1.0000   Max.   :1.0000    Max.   :1.00000   Max.   :1.0000      
##  symmetry_worst   fractal_dimension_worst
##  Min.   :0.0000   Min.   :0.0000         
##  1st Qu.:0.1851   1st Qu.:0.1077         
##  Median :0.2478   Median :0.1640         
##  Mean   :0.2633   Mean   :0.1896         
##  3rd Qu.:0.3182   3rd Qu.:0.2429         
##  Max.   :1.0000   Max.   :1.0000
#making the target variable a factor
wd1$diagnosis <- factor(wd1$diagnosis, levels = c("B", "M"),labels = c("Benign", "Malignant"))
str(wd1$diagnosis)
##  Factor w/ 2 levels "Benign","Malignant": 2 2 2 2 2 2 2 2 2 2 ...
#divide the alogrithim in to the training and test datasets.
wd1_train <-wd_n[1:469, ]
wd1_test <- wd_n[470:569, ]
#saving the diagnosis column that was left out to a  to a new train and test vector since it is needed for the KNN model
wd1_train_labels <- wd1[1:469,1]
wd1_test_labels <- wd1[470:569,1]
head(wd1_test_labels)
## # A tibble: 6 × 1
##   diagnosis
##   <fct>    
## 1 Benign   
## 2 Benign   
## 3 Benign   
## 4 Benign   
## 5 Benign   
## 6 Benign
head(wd1_train_labels)
## # A tibble: 6 × 1
##   diagnosis
##   <fct>    
## 1 Malignant
## 2 Malignant
## 3 Malignant
## 4 Malignant
## 5 Malignant
## 6 Malignant
#KNN, training the classifier
library(class)
wd1_test_pred <- knn(train = wd1_train, test = wd1_test, cl= wd1_train_labels$diagnosis, k= 21)
wd1_test_pred
##   [1] Benign    Benign    Benign    Benign    Benign    Benign    Benign   
##   [8] Benign    Benign    Benign    Malignant Benign    Benign    Benign   
##  [15] Benign    Benign    Benign    Benign    Malignant Benign    Benign   
##  [22] Benign    Benign    Malignant Benign    Benign    Benign    Benign   
##  [29] Benign    Malignant Malignant Benign    Malignant Benign    Malignant
##  [36] Benign    Benign    Benign    Benign    Benign    Malignant Benign   
##  [43] Benign    Malignant Benign    Benign    Benign    Malignant Malignant
##  [50] Benign    Benign    Benign    Malignant Benign    Benign    Benign   
##  [57] Benign    Benign    Benign    Benign    Benign    Benign    Benign   
##  [64] Benign    Malignant Benign    Malignant Malignant Benign    Benign   
##  [71] Benign    Benign    Benign    Benign    Benign    Benign    Benign   
##  [78] Benign    Benign    Benign    Benign    Benign    Benign    Benign   
##  [85] Benign    Benign    Benign    Benign    Benign    Benign    Benign   
##  [92] Benign    Benign    Malignant Malignant Malignant Malignant Malignant
##  [99] Malignant Benign   
## Levels: Benign Malignant
library(gmodels)
#Evaluating model performance
CrossTable(x= wd1_test_labels$diagnosis, y = wd1_test_pred, prop.chisq = FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |           N / Col Total |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  100 
## 
##  
##                           | wd1_test_pred 
## wd1_test_labels$diagnosis |    Benign | Malignant | Row Total | 
## --------------------------|-----------|-----------|-----------|
##                    Benign |        77 |         0 |        77 | 
##                           |     1.000 |     0.000 |     0.770 | 
##                           |     0.975 |     0.000 |           | 
##                           |     0.770 |     0.000 |           | 
## --------------------------|-----------|-----------|-----------|
##                 Malignant |         2 |        21 |        23 | 
##                           |     0.087 |     0.913 |     0.230 | 
##                           |     0.025 |     1.000 |           | 
##                           |     0.020 |     0.210 |           | 
## --------------------------|-----------|-----------|-----------|
##              Column Total |        79 |        21 |       100 | 
##                           |     0.790 |     0.210 |           | 
## --------------------------|-----------|-----------|-----------|
## 
##