# Load package
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
diamonds %>%
ggplot(aes(x = cut)) +
geom_bar(mapping = aes(x = cut))
diamonds %>%
ggplot(mapping = aes(x = carat)) +
geom_histogram(binwidth = 0.5)
diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.5)
diamonds %>%
ggplot(aes(x = carat, color = cut)) +
geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
diamonds %>%
#filter out bigger diamonds
filter(carat < 3) %>%
# plot
ggplot(aes(carat)) +
geom_histogram(binwidth = 0.1)
faithful %>%
ggplot(aes(x = eruptions)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
diamonds %>%
ggplot(aes(x = y)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
diamonds %>%
ggplot(aes(x = y)) +
geom_histogram() +
coord_cartesian(ylim = c(0,50))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
diamonds %>%
# filter(y < 3 | y > 20) %>%
mutate(y = ifelse(y < 3 | y >20, NA, y)) %>%
# plot
ggplot(aes(x = x, y = y)) +
geom_point()
## Warning: Removed 9 rows containing missing values (`geom_point()`).
## Covariation
diamonds %>%
ggplot(aes(x = cut, y = price)) +
geom_boxplot()
diamonds %>%
count(color, cut) %>%
ggplot(aes(x = color, y = cut, fill = n)) +
geom_tile()
library(hexbin)
diamonds %>%
ggplot(aes(x = carat, y = price)) +
geom_hex()
diamonds %>%
ggplot(aes(x = carat, y = price)) +
geom_boxplot(aes(group = cut_width(carat, 0.1)))
library(modelr)
mod <- lm(log(price) ~ log(carat), data = diamonds)
diamonds2 <- diamonds %>%
modelr::add_residuals(mod) %>%
mutate(resid = exp(resid))
diamonds2 %>%
ggplot(aes(carat,resid)) +
geom_point()