library(dplyr)
## Warning: package 'dplyr' was built under R version 4.3.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(plotly)
## Warning: package 'plotly' was built under R version 4.3.2
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.3.2
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
library(randtests)
library(lmtest)
## Warning: package 'lmtest' was built under R version 4.3.2
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.3.2
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
data <- read.csv("C:/Users/Muhammad Rizqa Salas/Downloads/Anreg Individu.csv", sep = ";")
head(data)
## X Y
## 1 2 54
## 2 5 50
## 3 7 45
## 4 10 37
## 5 14 35
## 6 19 25
model.reg= lm(formula = Y~X, data=data)
summary(model.reg)
##
## Call:
## lm(formula = Y ~ X, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.1628 -4.7313 -0.9253 3.7386 9.0446
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.46041 2.76218 16.82 3.33e-10 ***
## X -0.75251 0.07502 -10.03 1.74e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.891 on 13 degrees of freedom
## Multiple R-squared: 0.8856, Adjusted R-squared: 0.8768
## F-statistic: 100.6 on 1 and 13 DF, p-value: 1.736e-07
Diperoleh model sebagai berikut Ŷ = 46.46041 − 0.7525X + e Hasil tersebut belum bisa dipastikan menjadi model terbaik karena belum melalui serangkaian uji asumsi, sehingga diperlukan eksplorasi kondisi dan pengujian asumsi Gaus Markov dan normalitas untuk menghasilkan model terbaik
plot(x = data$X,y = data$Y)
plot(model.reg,1)
## Plot Sisaan vs Urutan
plot(x = 1:dim(data)[1],
y = model.reg$residuals,
type = 'b',
ylab = "Residuals",
xlab = "Observation")
Sebaran membentuk pola kurva → sisaan tidak saling bebas, model tidak
pas
plot(model.reg,2)
p-value < 0.05 tolak H0 ## Kondisi Gaus Markov ### 1. Nilai Harpaan Sisaan sama dengan Nol H0: Nilai harapan sisaan sama dengan nol H1: Nilai harapan sisaan tidak sama dengan nol
t.test(model.reg$residuals,mu = 0,conf.level = 0.95)
##
## One Sample t-test
##
## data: model.reg$residuals
## t = -4.9493e-16, df = 14, p-value = 1
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -3.143811 3.143811
## sample estimates:
## mean of x
## -7.254614e-16
###2. Ragam Sisaan Homogen H0: Ragam sisaan homogen H1: Ragam sisaan tidak homogen
kehomogenan = lm(formula = abs(model.reg$residuals)~ X, # y : abs residual
data = data)
summary(kehomogenan)
##
## Call:
## lm(formula = abs(model.reg$residuals) ~ X, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2525 -1.7525 0.0235 2.0168 4.2681
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.45041 1.27241 4.284 0.00089 ***
## X -0.01948 0.03456 -0.564 0.58266
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.714 on 13 degrees of freedom
## Multiple R-squared: 0.02385, Adjusted R-squared: -0.05124
## F-statistic: 0.3176 on 1 and 13 DF, p-value: 0.5827
bptest(model.reg)
##
## studentized Breusch-Pagan test
##
## data: model.reg
## BP = 0.52819, df = 1, p-value = 0.4674
ncvTest(model.reg)
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 0.1962841, Df = 1, p = 0.65774
Karena p-value = 0.4674 > alpha = 0.05, maka tak tolak H0, ragam sisaan homogen
H0: Sisaan saling bebas H1: Sisaan tidak saling bebas
runs.test(model.reg$residuals)
##
## Runs Test
##
## data: model.reg$residuals
## statistic = -2.7817, runs = 3, n1 = 7, n2 = 7, n = 14, p-value =
## 0.005407
## alternative hypothesis: nonrandomness
dwtest(model.reg)
##
## Durbin-Watson test
##
## data: model.reg
## DW = 0.48462, p-value = 1.333e-05
## alternative hypothesis: true autocorrelation is greater than 0
Karena p-value = 1.333e-05 (pada DW test) < alpha = 0.05, maka tolak H0, sisaan tidak saling bebas, asumsi tidak terpenuhi
H0: Sisaan menyebar normal H1: Sisaan tidak menyebar normal
shapiro.test(model.reg$residuals)
##
## Shapiro-Wilk normality test
##
## data: model.reg$residuals
## W = 0.92457, p-value = 0.226
Karena p-value = 0.226 > alpha = 0.05, maka tak tolak H0, sisaan menyebar normal
Yubah = sqrt(data$Y)
Xubah = sqrt(data$X)
plot(x = data$X,y = Yubah)
plot(x = Xubah, y = data$Y)
plot(x = Xubah, y = Yubah)
Karena relasi antara X dan Y tampaknya menghasilkan bentuk parabola dan
nilai B1 < 0, transformasi data dapat dilakukan dengan mengecilkan
nilai X dan/atau Y dengan mengubahnya menjadi akar kuadrat dari data
awal. Ada perbedaan antara hasil plot hubungan Xubah dengan Y, X dengan
Yubah, dan Xubah dengan Yubah, yang memerlukan penelusuran lebih lanjut
untuk mendapatkan model terbaik melalui pemeriksaan asumsi pada data
dengan sisaan yang paling independen (saling bebas).
model1 = lm(formula = data$Y ~ Xubah)
summary(model1)
##
## Call:
## lm(formula = data$Y ~ Xubah)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4518 -2.8559 0.7657 2.0035 5.2422
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 63.2250 2.2712 27.84 5.67e-13 ***
## Xubah -7.7481 0.4097 -18.91 7.68e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.262 on 13 degrees of freedom
## Multiple R-squared: 0.9649, Adjusted R-squared: 0.9622
## F-statistic: 357.7 on 1 and 13 DF, p-value: 7.684e-11
Diperoleh model sebagai berikut Ŷ =63.2250−0.7.7481X +e
dwtest(model1)
##
## Durbin-Watson test
##
## data: model1
## DW = 1.1236, p-value = 0.01422
## alternative hypothesis: true autocorrelation is greater than 0
model2 = lm(formula = Yubah ~ data$X)
summary(model2)
##
## Call:
## lm(formula = Yubah ~ data$X)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.53998 -0.38316 -0.01727 0.36045 0.70199
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.015455 0.201677 34.79 3.24e-14 ***
## data$X -0.081045 0.005477 -14.80 1.63e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4301 on 13 degrees of freedom
## Multiple R-squared: 0.9439, Adjusted R-squared: 0.9396
## F-statistic: 218.9 on 1 and 13 DF, p-value: 1.634e-09
Diperoleh model sebagai berikut Ŷ =7.015455−0.081045X +e
dwtest(model2)
##
## Durbin-Watson test
##
## data: model2
## DW = 1.2206, p-value = 0.02493
## alternative hypothesis: true autocorrelation is greater than 0
model3 = lm(formula = Yubah ~ Xubah)
summary(model3)
##
## Call:
## lm(formula = Yubah ~ Xubah)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.42765 -0.17534 -0.05753 0.21223 0.46960
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.71245 0.19101 45.61 9.83e-16 ***
## Xubah -0.81339 0.03445 -23.61 4.64e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2743 on 13 degrees of freedom
## Multiple R-squared: 0.9772, Adjusted R-squared: 0.9755
## F-statistic: 557.3 on 1 and 13 DF, p-value: 4.643e-12
Diperoleh model sebagai berikut Ŷ =8.71245−0.81339X +e
dwtest(model3)
##
## Durbin-Watson test
##
## data: model3
## DW = 2.6803, p-value = 0.8629
## alternative hypothesis: true autocorrelation is greater than 0
Karena p-value = 0.8629 (pada DW test) > alpha = 0.05, maka tak tolak H0, sisaan independen (saling bebas)
Model terbaik tercapai ketika kedua variabel X dan Y ditransformasikan menjadi bentuk akar atau pangkat 1/2 dan mematuhi semua asumsi dalam analisis regresi linier sederhana. Oleh karena itu, model untuk data ini adalah sebagai berikut: Ŷ =8.71245−0.81339X +e