print(matches)
[1] FALSE
genes = 'gene1,gene2,gene3'
gene_split = strsplit(genes, ',')
print (gene_split)
[[1]]
[1] "gene1" "gene2" "gene3"
library(stringi)
s1 = 'abvhfsnjg'
rev_string = stri_reverse(s1)
print (rev_string)
[1] "gjnsfhvba"
DNA = 'ATGCATGCGCATGTTCG'
pattern = 'ATG'
locations = gregexpr(pattern, DNA)
locations = unlist(locations)
print (locations)
[1] 1 5 11
num_OF_occ = sum (locations != -1)
print (num_OF_occ)
[1] 3
ages = c(10, 25, 30, 40, 45)
print(ages)
[1] 10 25 30 40 45
Third bracket means location + value means oi location
ages[3]
[1] 30
ages[-3]
[1] 10 25 40 45
new info ager tay add korte chaile
ages_extended = c(ages, 100, 200)
ages_extended
[1] 10 25 30 40 45 100 200
ages_extended = c(ages, c(15, 25, 20, 30))
ages_extended
[1] 10 25 30 40 45 15 25 20 30
(:) this means location from
print(ages)
[1] 10 25 30 40 45
print(ages[2:3])
[1] 25 30
print(length(ages))
[1] 5
print(ages)
[1] 10 25 30 40 45
print(ages[1:2])
[1] 10 25
print(ages[3:5])
[1] 30 40 45
ages_extended = c(ages[1:2], 99, ages[3:5])
ages_extended
[1] 10 25 99 30 40 45
ages
[1] 10 25 30 40 45
eligible_participant = ages[ages < 40]
eligible_participant
[1] 10 25 30
eligible_participant = ages[ages <= 40]
eligible_participant
[1] 10 25 30 40
#If we want to take 20 to 40
ages_20 = ages[ages >= 20]
ages_20
[1] 25 30 40 45
ages20_40 = ages_20[ages_20 <= 40]
ages20_40
[1] 25 30 40
# same like before
## or conditional
ages[ages >= 20 & ages <= 40]
[1] 25 30 40
# bu default increasing order
sort(ages)
[1] 10 25 30 40 45
# for decrasing order
sort(ages, TRUE)
[1] 45 40 30 25 10
print(ages)
[1] 10 25 30 40 45
print(max(ages))
[1] 45
print(min(ages))
[1] 10
print(mean(ages))
[1] 30
# median
print(median(ages))
[1] 30
#sum
print(sum(ages))
[1] 150
# standard deviation
print(sd(ages))
[1] 13.69306
# variance
print(var(ages))
[1] 187.5
# percentile
print(quantile(ages))
0% 25% 50% 75% 100%
10 25 30 40 45
ages
[1] 10 25 30 40 45
score = c(10, 20, 30, 40, 50)
length(score)
[1] 5
cor(ages, score)
[1] 0.9814955
ages
[1] 10 25 30 40 45
max(ages[2:5])
[1] 45
Exam_score = data.frame(
ID = c(1, 2, 3, 4, 5),
Name = c("Era", "Ema", "Ali", "Jon", "Jia"),
Age = c(22, 23, 24, 25, 26),
Score = c(15, 20, 25, 35, 40)
)
print(Exam_score)
#comma need after every column
#c er under er gulo row
# vector [location]
# data set [row,colm]
Exam_score[2:4, ]
Exam_score[2, ]
Exam_score[ ,3:4]
Exam_score[c(2,3,4), c(2,4)]
#HERE $ means colum selector
Exam_score$Name
[1] "Era" "Ema" "Ali" "Jon" "Jia"
Exam_score$Score
[1] 15 20 25 35 40
Selected_column = data.frame(
Name = Exam_score$Name,
Score = Exam_score$Score
)
Selected_column
Exam_score[Exam_score$Score > 20, ]
Exam_score[Exam_score$Score > 20 & Exam_score$Score < 40, ]
selected_ID = c(1, 3)
Exam_score[Exam_score$ID %in% selected_ID, ]
Exam_score
New_row = c(5, "Zen", 55, 89)
Exam_score2 = rbind(Exam_score, New_row)
Exam_score2
New_col = c("dhk", "Ctg","dhk", "Ctg","dhk")
cbind(Exam_score,New_col)