Goal: predict the prices of IKEA items Click here for the data

#Import Data

ikea <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-03/ikea.csv')
## New names:
## Rows: 3694 Columns: 14
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (7): name, category, old_price, link, other_colors, short_description, d... dbl
## (6): ...1, item_id, price, depth, height, width lgl (1): sellable_online
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
skimr::skim(ikea)
Data summary
Name ikea
Number of rows 3694
Number of columns 14
_______________________
Column type frequency:
character 7
logical 1
numeric 6
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
name 0 1 3 27 0 607 0
category 0 1 4 36 0 17 0
old_price 0 1 4 13 0 365 0
link 0 1 52 163 0 2962 0
other_colors 0 1 2 3 0 2 0
short_description 0 1 3 63 0 1706 0
designer 0 1 3 1261 0 381 0

Variable type: logical

skim_variable n_missing complete_rate mean count
sellable_online 0 1 0.99 TRU: 3666, FAL: 28

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
…1 0 1.00 1846.50 1066.51 0 923.25 1846.5 2769.75 3693 ▇▇▇▇▇
item_id 0 1.00 48632396.79 28887094.10 58487 20390574.00 49288078.0 70403572.75 99932615 ▇▇▇▇▇
price 0 1.00 1078.21 1374.65 3 180.90 544.7 1429.50 9585 ▇▁▁▁▁
depth 1463 0.60 54.38 29.96 1 38.00 47.0 60.00 257 ▇▃▁▁▁
height 988 0.73 101.68 61.10 1 67.00 83.0 124.00 700 ▇▂▁▁▁
width 589 0.84 104.47 71.13 1 60.00 80.0 140.00 420 ▇▅▂▁▁

Explore Data

skimr::skim(ikea)
Data summary
Name ikea
Number of rows 3694
Number of columns 14
_______________________
Column type frequency:
character 7
logical 1
numeric 6
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
name 0 1 3 27 0 607 0
category 0 1 4 36 0 17 0
old_price 0 1 4 13 0 365 0
link 0 1 52 163 0 2962 0
other_colors 0 1 2 3 0 2 0
short_description 0 1 3 63 0 1706 0
designer 0 1 3 1261 0 381 0

Variable type: logical

skim_variable n_missing complete_rate mean count
sellable_online 0 1 0.99 TRU: 3666, FAL: 28

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
…1 0 1.00 1846.50 1066.51 0 923.25 1846.5 2769.75 3693 ▇▇▇▇▇
item_id 0 1.00 48632396.79 28887094.10 58487 20390574.00 49288078.0 70403572.75 99932615 ▇▇▇▇▇
price 0 1.00 1078.21 1374.65 3 180.90 544.7 1429.50 9585 ▇▁▁▁▁
depth 1463 0.60 54.38 29.96 1 38.00 47.0 60.00 257 ▇▃▁▁▁
height 988 0.73 101.68 61.10 1 67.00 83.0 124.00 700 ▇▂▁▁▁
width 589 0.84 104.47 71.13 1 60.00 80.0 140.00 420 ▇▅▂▁▁
data <- ikea %>%
    
    # Including predictors excluded: designer, old_price
    select(-link, -depth) %>%
    na.omit() %>%

    # Log Transformation variables with positive skewed distribution
     mutate(price = log(price)) %>%
     mutate(width = log(width))

Identify good predictors:

category

data %>%
    ggplot(aes(price, as.factor(category))) +
    geom_boxplot()

short_description

data %>%
    
    # tokenize description
    unnest_tokens(output = word, input = short_description) %>%
    
    # calculate avg word per item
    group_by(word) %>%
    summarise(price = mean(price),
              n = n()) %>%
    
    ungroup() %>%
    
    filter(n > 10) %>%
    slice_max(order_by = price, n = 20) %>%

    # Plot
    ggplot(aes(price, fct_reorder(word, price))) +
        geom_point()

 # Step 1: Prepare data
data_binarized_tbl <- data %>%
    select(-item_id, -short_description) %>%
    binarize()
## New names:
## New names:
## • `...1__bin1` -> `...11`
## • `...1__bin2` -> `...12`
## • `...1__bin3` -> `...13`
## • `...1__bin4` -> `...14`
data_binarized_tbl %>% glimpse()
## Rows: 2,591
## Columns: 78
## $ ...11                                        <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ ...12                                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ ...13                                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ ...14                                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__ALGOT                                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__BEKANT                                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__BESTÅ                                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `name__BILLY_/_OXBERG`                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__BRIMNES                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__BROR                                   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__EKET                                   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__GRÖNLID                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__HAVSTA                                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__HEMNES                                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__IVAR                                   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__JONAXEL                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__KALLAX                                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__LIDHULT                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__LIXHULT                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__NORDLI                                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__PAX                                    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__PLATSA                                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `name__STUVA_/_FRITIDS`                      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__TROFAST                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__VALLENTUNA                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ name__VIMLE                                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `name__-OTHER`                               <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ category__Bar_furniture                      <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ category__Beds                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__Bookcases_&_shelving_units`       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__Cabinets_&_cupboards`             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ category__Chairs                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__Chests_of_drawers_&_drawer_units` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__Children's_furniture`             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ category__Nursery_furniture                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ category__Outdoor_furniture                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__Sofas_&_armchairs`                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__Tables_&_desks`                   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ category__Trolleys                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__TV_&_media_furniture`             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ category__Wardrobes                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `category__-OTHER`                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `price__-Inf_5.57972982598622`               <dbl> 1, 0, 1, 1, 0, 1, 1, 1, 0…
## $ price__5.57972982598622_6.45362499889269     <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 1…
## $ price__6.45362499889269_7.34277918933185     <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0…
## $ price__7.34277918933185_Inf                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ old_price__No_old_price                      <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ `old_price__-OTHER`                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ sellable_online__1                           <dbl> 1, 0, 1, 1, 1, 1, 1, 1, 1…
## $ `sellable_online__-OTHER`                    <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0…
## $ other_colors__No                             <dbl> 1, 1, 0, 1, 1, 1, 1, 1, 1…
## $ other_colors__Yes                            <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0…
## $ designer__Carina_Bengs                       <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 1…
## $ designer__Ebba_Strandmark                    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ designer__Ehlén_Johansson                    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `designer__Ehlén_Johansson/IKEA_of_Sweden`   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ designer__Francis_Cayouette                  <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0…
## $ designer__Henrik_Preutz                      <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0…
## $ designer__IKEA_of_Sweden                     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `designer__IKEA_of_Sweden/Ehlén_Johansson`   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `designer__IKEA_of_Sweden/Jon_Karlsson`      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ designer__Johan_Kroon                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ designer__Jon_Karlsson                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `designer__K_Hagberg/M_Hagberg`              <dbl> 0, 0, 0, 0, 0, 1, 1, 1, 0…
## $ designer__Marcus_Arvonen                     <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0…
## $ designer__Nike_Karlsson                      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ designer__Ola_Wihlborg                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ designer__Studio_Copenhagen                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ designer__Tord_Björklund                     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `designer__-OTHER`                           <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `height__-Inf_70`                            <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0…
## $ height__70_83                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ height__83_127                               <dbl> 1, 1, 1, 0, 1, 1, 1, 1, 1…
## $ height__127_Inf                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `width__-Inf_4.0943445622221`                <dbl> 1, 0, 1, 0, 1, 1, 1, 1, 1…
## $ width__4.0943445622221_4.38202663467388      <dbl> 0, 1, 0, 1, 0, 0, 0, 0, 0…
## $ width__4.38202663467388_5.01063529409626     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ width__5.01063529409626_Inf                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
 # Step 2: Correlate
data_corr_tbl <- data_binarized_tbl %>%
    correlate(price__5.57972982598622_6.45362499889269)
## Warning: Expected 2 pieces. Missing pieces filled with `NA` in 4 rows [1, 2, 3,
## 4].
data_corr_tbl
## # A tibble: 78 × 3
##    feature  bin                               correlation
##    <fct>    <chr>                                   <dbl>
##  1 price    5.57972982598622_6.45362499889269      1     
##  2 price    -Inf_5.57972982598622                 -0.334 
##  3 price    6.45362499889269_7.34277918933185     -0.333 
##  4 price    7.34277918933185_Inf                  -0.332 
##  5 width    5.01063529409626_Inf                  -0.245 
##  6 width    4.0943445622221_4.38202663467388       0.189 
##  7 category Sofas_&_armchairs                     -0.134 
##  8 name     PAX                                   -0.113 
##  9 category Wardrobes                             -0.109 
## 10 category Tables_&_desks                         0.0886
## # ℹ 68 more rows
 # Step 3: Plot
data_corr_tbl %>%
    plot_correlation_funnel()
## Warning: Removed 4 rows containing missing values (`geom_text_repel()`).
## Warning: ggrepel: 56 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

Build Models

Split data

 # Split into train and test dataset
set.seed(1234)
data_split <- rsample::initial_split(data)
data_training <- training(data_split)
data_test <- testing(data_split)
 
 # Further split training dataset for cross-validation
set.seed(1234)
data_cv <- rsample::vfold_cv(data_training)
data_cv
## #  10-fold cross-validation 
## # A tibble: 10 × 2
##    splits             id    
##    <list>             <chr> 
##  1 <split [1748/195]> Fold01
##  2 <split [1748/195]> Fold02
##  3 <split [1748/195]> Fold03
##  4 <split [1749/194]> Fold04
##  5 <split [1749/194]> Fold05
##  6 <split [1749/194]> Fold06
##  7 <split [1749/194]> Fold07
##  8 <split [1749/194]> Fold08
##  9 <split [1749/194]> Fold09
## 10 <split [1749/194]> Fold10
library(usemodels)
usemodels::use_ranger(price ~ ., data = data_training)
## ranger_recipe <- 
##   recipe(formula = price ~ ., data = data_training) 
## 
## ranger_spec <- 
##   rand_forest(mtry = tune(), min_n = tune(), trees = 1000) %>% 
##   set_mode("classification") %>% 
##   set_engine("ranger") 
## 
## ranger_workflow <- 
##   workflow() %>% 
##   add_recipe(ranger_recipe) %>% 
##   add_model(ranger_spec) 
## 
## set.seed(3821)
## ranger_tune <-
##   tune_grid(ranger_workflow, resamples = stop("add your rsample object"), grid = stop("add number of candidate points"))
 # Specify recipe
ranger_recipe <- 
  recipe(formula = price ~ ., data = data_training) %>%
    recipes::update_role(item_id, new_role = "id variable") %>%
    step_tokenize(short_description) %>%
    step_tokenfilter(short_description, max_tokens = 140) %>%
    step_tfidf(short_description) %>%
    step_other(designer, old_price, name) %>%
    step_dummy(designer, old_price, name, one_hot = TRUE) %>%
    step_YeoJohnson(width)
   
    
ranger_recipe %>% prep() %>% juice() %>% glimpse()
## Rows: 1,943
## Columns: 154
## $ ...1                                 <dbl> 1368, 817, 1247, 528, 3074, 2242,…
## $ item_id                              <dbl> 39251926, 59248867, 30346986, 402…
## $ category                             <fct> "Chairs", "Cabinets & cupboards",…
## $ sellable_online                      <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRU…
## $ other_colors                         <fct> No, Yes, No, Yes, No, Yes, Yes, N…
## $ height                               <dbl> 90, 60, 40, 64, 75, 85, 64, 77, 2…
## $ width                                <dbl> 10.067191, 11.233319, 5.731771, 1…
## $ price                                <dbl> 7.106606, 6.363028, 3.912023, 6.1…
## $ tfidf_short_description_1            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_120          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_120x60       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_125          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_140x200      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_140x78       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_140x85       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_147x147      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_150x44x236   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_150x60x236   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_150x66x236   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_150x75       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_155          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_156x90       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_160          <dbl> 0.000000, 0.000000, 0.000000, 0.0…
## $ tfidf_short_description_160x200      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_2            <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_200x66x236   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_220x100      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_235x100      <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_25x51x70     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_3            <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_4            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_41x101       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_41x61        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_42x30x23     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_5            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_50x51x70     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_6            <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_60x120       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_60x26        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_60x38        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_60x50x128    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_60x64        <dbl> 0.000000, 0.000000, 0.000000, 0.0…
## $ tfidf_short_description_63           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_7            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_74           <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_74x74        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_75           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_77x147       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_8            <dbl> 0.000000, 0.000000, 0.000000, 0.0…
## $ tfidf_short_description_80x139       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_80x200       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_80x30x202    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_90x200       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_add          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_and          <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_armchair     <dbl> 0.9758717, 0.0000000, 0.0000000, …
## $ tfidf_short_description_armrest      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_armrests     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_backrest     <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_bar          <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_baskets      <dbl> 0.000000, 0.000000, 0.000000, 0.0…
## $ tfidf_short_description_bed          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_bench        <dbl> 0.000000, 0.000000, 0.000000, 1.1…
## $ tfidf_short_description_bookcase     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_box          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_cabinet      <dbl> 0.000000, 0.000000, 0.000000, 0.0…
## $ tfidf_short_description_cabinets     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_castors      <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_chair        <dbl> 0.000000, 0.000000, 0.000000, 0.0…
## $ tfidf_short_description_chairs       <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_chaise       <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0…
## $ tfidf_short_description_changing     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_chest        <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ `tfidf_short_description_children's` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_cm           <dbl> 0.2100031, 0.2800041, 0.0000000, …
## $ tfidf_short_description_coffee       <dbl> 0.000000, 0.000000, 0.000000, 0.0…
## $ tfidf_short_description_combination  <dbl> 0.0000000, 0.7772729, 0.0000000, …
## $ tfidf_short_description_corner       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_cot          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_cover        <dbl> 0.000000, 0.000000, 1.134554, 0.0…
## $ tfidf_short_description_day          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_desk         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_door         <dbl> 0.000000, 0.000000, 0.000000, 0.0…
## $ tfidf_short_description_doors        <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_drawer       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_drawers      <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_drop         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_extendable   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_feet         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_foldable     <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_folding      <dbl> 0.000000, 0.000000, 0.000000, 0.0…
## $ tfidf_short_description_footstool    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_for          <dbl> 0.000000, 0.000000, 1.008623, 0.0…
## $ tfidf_short_description_frame        <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_front        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_glass        <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_headboard    <dbl> 0.00000, 0.00000, 0.00000, 0.0000…
## $ tfidf_short_description_highchair    <dbl> 0.000000, 0.000000, 1.253427, 0.0…
## $ tfidf_short_description_in           <dbl> 1.081796, 0.000000, 0.000000, 0.0…
## $ tfidf_short_description_inserts      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_junior       <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0…
## $ tfidf_short_description_kitchen      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_leg          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_legs         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_lock         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_longue       <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0…
## $ tfidf_short_description_mattresses   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_mesh         <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_modular      <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_module       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_mounted      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_of           <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_on           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_outdoor      <dbl> 0.7495451, 0.0000000, 0.0000000, …
## $ tfidf_short_description_plinth       <dbl> 0.000000, 0.000000, 0.000000, 0.0…
## $ tfidf_short_description_rail         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_rails        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_rocking      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_seat         <dbl> 0.0000000, 0.0000000, 0.5895387, …
## $ tfidf_short_description_section      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_sections     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_shelf        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_shelves      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_shelving     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_side         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_sliding      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_smart        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_sofa         <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_step         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_stool        <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_stools       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_storage      <dbl> 0.0000000, 0.7409298, 0.0000000, …
## $ tfidf_short_description_table        <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_three        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_top          <dbl> 0.000000, 0.000000, 0.000000, 0.0…
## $ tfidf_short_description_tray         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_trolley      <dbl> 0.000000, 0.000000, 0.000000, 0.0…
## $ tfidf_short_description_tv           <dbl> 0.000000, 0.000000, 0.000000, 1.0…
## $ tfidf_short_description_two          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_underframe   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_unit         <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_upright      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_ut           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_w            <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_short_description_wall         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_wardrobe     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_wire         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_short_description_with         <dbl> 0.0000000, 0.0000000, 0.0000000, …
## $ designer_IKEA.of.Sweden              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ designer_other                       <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ old_price_No.old.price               <dbl> 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, …
## $ old_price_other                      <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …
## $ name_BESTÅ                           <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ name_other                           <dbl> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
 # Specify model

ranger_spec <- 
  rand_forest(trees = tune()) %>% 
  set_mode("regression") %>% 
  set_engine("ranger")

 # Combine recipe and model using workflow
ranger_workflow <- 
  workflow() %>% 
  add_recipe(ranger_recipe) %>% 
  add_model(ranger_spec) 

# Tune hyperparameters
set.seed(1434)
ranger_tune <-
  tune_grid(ranger_workflow, 
            resamples = data_cv,
            grid = 5)

Evaluate Models

tune::show_best(ranger_tune, metric = "rmse")
## # A tibble: 5 × 7
##   trees .metric .estimator  mean     n std_err .config             
##   <int> <chr>   <chr>      <dbl> <int>   <dbl> <chr>               
## 1  1552 rmse    standard   0.486    10  0.0126 Preprocessor1_Model2
## 2  1858 rmse    standard   0.486    10  0.0126 Preprocessor1_Model3
## 3  1117 rmse    standard   0.486    10  0.0126 Preprocessor1_Model1
## 4   154 rmse    standard   0.486    10  0.0119 Preprocessor1_Model4
## 5   577 rmse    standard   0.486    10  0.0128 Preprocessor1_Model5
# Update the model by selecting the best hyper parameters.
ranger_fw <- tune::finalize_workflow(ranger_workflow,
                        tune::select_best(ranger_tune, metric = "rmse"))

# Fit the model on the entire training data and test it on test data.
data_fit <- tune::last_fit(ranger_fw, data_split)
tune::collect_metrics(data_fit)
## # A tibble: 2 × 4
##   .metric .estimator .estimate .config             
##   <chr>   <chr>          <dbl> <chr>               
## 1 rmse    standard       0.495 Preprocessor1_Model1
## 2 rsq     standard       0.863 Preprocessor1_Model1
tune::collect_predictions(data_fit) %>%
    ggplot(aes(price, .pred)) +
    geom_point(alpha = 0.3, fill = "midnightblue") +
    geom_abline(lty = 2, color = "gray50") +
    coord_fixed()