| variable | mean | variance |
|---|---|---|
| Sepal.Length | 5.84 | 0.69 |
| Sepal.Width | 3.06 | 0.19 |
| Petal.Length | 3.76 | 3.12 |
| Petal.Width | 1.20 | 0.58 |
OSU College of Social Work
Compare the flower size of different iris species.
Dimensions of flower size:
We operationalize flower size as the average of four variables.
\[ Size = \frac{Sepal\ Length + Sepal\ Width + Petal\ Width + Petal\ Length}{4} \]
We travel to a forest with three species of irises.
Using our rulers, we measure 150 irises (50 per species).
Overall Results
| variable | mean | variance |
|---|---|---|
| Sepal.Length | 5.84 | 0.69 |
| Sepal.Width | 3.06 | 0.19 |
| Petal.Length | 3.76 | 3.12 |
| Petal.Width | 1.20 | 0.58 |
How are the items related to one another?
Correlation Table (standardized variance)
| Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | |
|---|---|---|---|---|
| Sepal.Length | 1.00 | -0.12 | 0.87 | 0.82 |
| Sepal.Width | -0.12 | 1.00 | -0.43 | -0.37 |
| Petal.Length | 0.87 | -0.43 | 1.00 | 0.96 |
| Petal.Width | 0.82 | -0.37 | 0.96 | 1.00 |
A formal measure of variable relationships. Reflects the scale’s internal consistency.
A reliability coefficient ranging from 0 (no consistency) to 1 (perfect consistency)
Cronbach’s alpha of our 4 variables = 0.708
Let’s drop Sepal Width, since it was negatively related to other variables.
Cronbach’s alpha of our 3 variables = 0.88
\[ Size = \frac{Sepal\ Length + Petal\ Width + Petal\ Length}{3} \]
| variable | mean | variance |
|---|---|---|
| size | 3.6 | 1.17 |
Traver| SWK 3402 | 2024