Import Data
# excel filer
games <- read_excel("../00_data/MyData_charts.xlsx")
games
## # A tibble: 988 × 15
## year country city stage home_team away_team home_score away_score outcome
## <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <chr>
## 1 1930 Uruguay Montev… Grou… France Mexico 4 1 H
## 2 1930 Uruguay Montev… Grou… Belgium United S… 0 3 A
## 3 1930 Uruguay Montev… Grou… Brazil Yugoslav… 1 2 A
## 4 1930 Uruguay Montev… Grou… Peru Romania 1 3 A
## 5 1930 Uruguay Montev… Grou… Argentina France 1 0 H
## 6 1930 Uruguay Montev… Grou… Chile Mexico 3 0 H
## 7 1930 Uruguay Montev… Grou… Bolivia Yugoslav… 0 4 A
## 8 1930 Uruguay Montev… Grou… Paraguay United S… 0 3 A
## 9 1930 Uruguay Montev… Grou… Uruguay Peru 1 0 H
## 10 1930 Uruguay Montev… Grou… Argentina Mexico 6 3 H
## # ℹ 978 more rows
## # ℹ 6 more variables: win_conditions <chr>, winning_team <chr>,
## # losing_team <chr>, date <dttm>, month <chr>, dayofweek <chr>
Introduction
Questions
Variation
Visualizing distributions
ggplot(data = games) +
geom_bar(mapping = aes(x = country)) +
labs(x = "Country", y = "Count") +
theme(axis.text.x = element_text(angle = 45, hjust= 1, size = 10))

ggplot(data = games) +
geom_histogram(mapping = aes(x = year),binwidth = 4)
## Warning: Removed 88 rows containing non-finite values (`stat_bin()`).

ggplot(data = games, mapping = aes(x = home_score + away_score, colour = country)) +
geom_freqpoly() +
labs(x = "Total score", y = "Count")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 62 rows containing non-finite values (`stat_bin()`).

Typical values
games %>%
# Filter out games > than 3
filter(year > 1950) %>%
# Plot
ggplot(aes(x = year)) +
geom_histogram(binwidth = 4)

games %>%
ggplot(aes(year)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 88 rows containing non-finite values (`stat_bin()`).

Unusual values
games %>%
ggplot(aes(away_score)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 62 rows containing non-finite values (`stat_bin()`).

games %>%
ggplot(aes(away_score)) +
geom_histogram() +
coord_cartesian(ylim = c(0, 50))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 62 rows containing non-finite values (`stat_bin()`).

Missing Values
games %>%
# filter(year < 1960 | year > 2000) %>%
mutate(year = ifelse(away_score > 3, NA, away_score)) %>%
#Plot
ggplot(aes(x = away_team, y = away_score)) +
geom_point() +
labs(x = "Away team", y = "Away score") +
theme(axis.text.x = element_text(angle = 90, hjust= 1, size = 4))
## Warning: Removed 62 rows containing missing values (`geom_point()`).

Covariation
A categorical and continuous variable
games %>%
ggplot(aes(x = dayofweek, y = home_score + away_score)) +
geom_boxplot() +
theme(axis.text.x = element_text(angle = 45, hjust= 1, size = 10))
## Warning: Removed 62 rows containing non-finite values (`stat_boxplot()`).

Two categorical variables
games %>%
count(winning_team, losing_team) %>%
ggplot(mapping= aes(x = winning_team, y = losing_team, fill = n)) +
geom_tile() +
theme(axis.text.x = element_text(angle = 90, hjust= 1, size = 4)) +
theme(axis.text.y = element_text(hjust= 1, size = 4))

Two continous variables
games %>%
ggplot() +
geom_point(mapping = aes(x = year, y = away_score), alpha = 1 / 1)
## Warning: Removed 88 rows containing missing values (`geom_point()`).

games %>%
ggplot() +
geom_bin2d(mapping = aes(x = year, y = home_score))
## Warning: Removed 88 rows containing non-finite values (`stat_bin2d()`).

games %>%
filter(year > 1950) %>%
ggplot(aes(x = year, y = home_score)) +
geom_boxplot(aes(group = cut_width(year, 0.1)))

Patterns and models