This is a ICP result for the 5 Arabidopsis genotypes grown in plates supplemented with 0, 75, and 125 mM NaCl for two weeks. due to lack of tubes, here you will see the result for the salt stress only.
getwd()
## [1] "C:/Users/Julkowska Lab/Desktop/R codes by Maryam/20231010_ICP-MS_FW_DW_RSA_duf_wrky_2xko_Plate_Grown"
list.files(pattern = ".csv")
## [1] "Eric02142024NaK-analyzed for R.csv"
ICP_wd <- read.csv("Eric02142024NaK-analyzed for R.csv")
ICP_wd
ICP_wd$All.ID2<-paste(ICP_wd$Accession,ICP_wd$Condition, ICP_wd$Tissue, sep="_")
ICP_wd
library(ggplot2)
library(ggpubr)
library(multcompView)
## Warning: package 'multcompView' was built under R version 4.3.2
aov(Na.con.mg.mg.dry.weight ~ All.ID2, data = ICP_wd)
## Call:
## aov(formula = Na.con.mg.mg.dry.weight ~ All.ID2, data = ICP_wd)
##
## Terms:
## All.ID2 Residuals
## Sum of Squares 74158.9 362862.8
## Deg. of Freedom 19 113
##
## Residual standard error: 56.66723
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(Na.con.mg.mg.dry.weight ~ All.ID2, data = ICP_wd))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Na.con.mg.mg.dry.weight ~ All.ID2, data = ICP_wd)
##
## $All.ID2
## diff lwr upr p adj
## a_125_sh-a_125_ro 9.22544370 -136.212511 154.663398 1.0000000
## a_75_ro-a_125_ro -18.02988120 -146.946849 110.887087 1.0000000
## a_75_sh-a_125_ro -9.21319450 -129.304633 110.878244 1.0000000
## b_125_ro-a_125_ro 6.95759736 -138.480357 152.395552 1.0000000
## b_125_sh-a_125_ro 8.97444331 -136.463511 154.412398 1.0000000
## b_75_ro-a_125_ro -8.32713593 -131.925631 115.271359 1.0000000
## b_75_sh-a_125_ro -8.93145145 -129.022890 111.159987 1.0000000
## c_125_ro-a_125_ro 1.65504334 -155.435902 158.745988 1.0000000
## c_125_sh-a_125_ro 14.50192452 -123.472634 152.476483 1.0000000
## c_75_ro-a_125_ro -13.20252158 -142.119489 115.714446 1.0000000
## c_75_sh-a_125_ro 30.95017140 -90.731951 152.632294 0.9999930
## d_125_ro-a_125_ro 7.21061712 -149.880328 164.301562 1.0000000
## d_125_sh-a_125_ro 9.12771092 -147.963234 166.218656 1.0000000
## d_75_ro-a_125_ro -9.95161135 -135.904575 116.001352 1.0000000
## d_75_sh-a_125_ro -10.43157048 -132.113693 111.250552 1.0000000
## e_125_ro-a_125_ro 11.64099681 -133.796958 157.078951 1.0000000
## e_125_sh-a_125_ro 100.33742754 -37.637131 238.311986 0.4826809
## e_75_ro-a_125_ro -13.85774825 -135.539871 107.824375 1.0000000
## e_75_sh-a_125_ro -12.69329759 -132.784736 107.398141 1.0000000
## a_75_ro-a_125_sh -27.25532491 -156.172293 101.661643 0.9999997
## a_75_sh-a_125_sh -18.43863820 -138.530077 101.652800 1.0000000
## b_125_ro-a_125_sh -2.26784635 -147.705801 143.170108 1.0000000
## b_125_sh-a_125_sh -0.25100039 -145.688955 145.186954 1.0000000
## b_75_ro-a_125_sh -17.55257964 -141.151074 106.045915 1.0000000
## b_75_sh-a_125_sh -18.15689515 -138.248334 101.934543 1.0000000
## c_125_ro-a_125_sh -7.57040037 -164.661345 149.520545 1.0000000
## c_125_sh-a_125_sh 5.27648082 -132.698077 143.251039 1.0000000
## c_75_ro-a_125_sh -22.42796528 -151.344933 106.489003 1.0000000
## c_75_sh-a_125_sh 21.72472770 -99.957395 143.406851 1.0000000
## d_125_ro-a_125_sh -2.01482658 -159.105772 155.076118 1.0000000
## d_125_sh-a_125_sh -0.09773278 -157.188678 156.993212 1.0000000
## d_75_ro-a_125_sh -19.17705505 -145.130018 106.775908 1.0000000
## d_75_sh-a_125_sh -19.65701418 -141.339137 102.025109 1.0000000
## e_125_ro-a_125_sh 2.41555310 -143.022401 147.853508 1.0000000
## e_125_sh-a_125_sh 91.11198383 -46.862574 229.086542 0.6624204
## e_75_ro-a_125_sh -23.08319196 -144.765315 98.598931 0.9999999
## e_75_sh-a_125_sh -21.91874130 -142.010180 98.172697 1.0000000
## a_75_sh-a_75_ro 8.81668670 -90.628472 108.261845 1.0000000
## b_125_ro-a_75_ro 24.98747856 -103.929489 153.904446 0.9999999
## b_125_sh-a_75_ro 27.00432452 -101.912643 155.921292 0.9999997
## b_75_ro-a_75_ro 9.70274527 -93.950397 113.355887 1.0000000
## b_75_sh-a_75_ro 9.09842976 -90.346729 108.543589 1.0000000
## c_125_ro-a_75_ro 19.68492454 -122.247986 161.617835 1.0000000
## c_125_sh-a_75_ro 32.53180572 -87.902262 152.965874 0.9999822
## c_75_ro-a_75_ro 4.82735962 -105.113400 114.768119 1.0000000
## c_75_sh-a_75_ro 48.98005260 -52.380319 150.340425 0.9670607
## d_125_ro-a_75_ro 25.24049832 -116.692412 167.173409 1.0000000
## d_125_sh-a_75_ro 27.15759213 -114.775318 169.090502 0.9999999
## d_75_ro-a_75_ro 8.07826985 -98.371413 114.527953 1.0000000
## d_75_sh-a_75_ro 7.59831073 -93.762061 108.958683 1.0000000
## e_125_ro-a_75_ro 29.67087801 -99.246090 158.587846 0.9999986
## e_125_sh-a_75_ro 118.36730874 -2.066759 238.801377 0.0599908
## e_75_ro-a_75_ro 4.17213295 -97.188239 105.532505 1.0000000
## e_75_sh-a_75_ro 5.33658361 -94.108575 104.781742 1.0000000
## b_125_ro-a_75_sh 16.17079186 -103.920647 136.262230 1.0000000
## b_125_sh-a_75_sh 18.18763781 -101.903801 138.279076 1.0000000
## b_75_ro-a_75_sh 0.88605857 -91.560374 93.332491 1.0000000
## b_75_sh-a_75_sh 0.28174305 -87.420643 87.984129 1.0000000
## c_125_ro-a_75_sh 10.86823784 -123.099370 144.835846 1.0000000
## c_125_sh-a_75_sh 23.71511902 -87.220600 134.650838 0.9999996
## c_75_ro-a_75_sh -3.98932708 -103.434486 95.455832 1.0000000
## c_75_sh-a_75_sh 40.16336590 -49.704838 130.031569 0.9851695
## d_125_ro-a_75_sh 16.42381162 -117.543796 150.391420 1.0000000
## d_125_sh-a_75_sh 18.34090542 -115.626703 152.308514 1.0000000
## d_75_ro-a_75_sh -0.73841685 -96.309877 94.833043 1.0000000
## d_75_sh-a_75_sh -1.21837598 -91.086580 88.649828 1.0000000
## e_125_ro-a_75_sh 20.85419131 -99.237247 140.945630 1.0000000
## e_125_sh-a_75_sh 109.55062204 -1.385097 220.486341 0.0571118
## e_75_ro-a_75_sh -4.64455375 -94.512757 85.223650 1.0000000
## e_75_sh-a_75_sh -3.48010309 -91.182489 84.222283 1.0000000
## b_125_sh-b_125_ro 2.01684596 -143.421108 147.454800 1.0000000
## b_75_ro-b_125_ro -15.28473329 -138.883228 108.313761 1.0000000
## b_75_sh-b_125_ro -15.88904880 -135.980487 104.202390 1.0000000
## c_125_ro-b_125_ro -5.30255402 -162.393499 151.788391 1.0000000
## c_125_sh-b_125_ro 7.54432716 -130.430231 145.518885 1.0000000
## c_75_ro-b_125_ro -20.16011893 -149.077087 108.756849 1.0000000
## c_75_sh-b_125_ro 23.99257404 -97.689549 145.674697 0.9999999
## d_125_ro-b_125_ro 0.25301976 -156.837925 157.343965 1.0000000
## d_125_sh-b_125_ro 2.17011357 -154.920831 159.261059 1.0000000
## d_75_ro-b_125_ro -16.90920870 -142.862172 109.043755 1.0000000
## d_75_sh-b_125_ro -17.38916783 -139.071291 104.292955 1.0000000
## e_125_ro-b_125_ro 4.68339945 -140.754555 150.121354 1.0000000
## e_125_sh-b_125_ro 93.37983018 -44.594728 231.354388 0.6187473
## e_75_ro-b_125_ro -20.81534561 -142.497468 100.866777 1.0000000
## e_75_sh-b_125_ro -19.65089495 -139.742333 100.440543 1.0000000
## b_75_ro-b_125_sh -17.30157925 -140.900074 106.296915 1.0000000
## b_75_sh-b_125_sh -17.90589476 -137.997333 102.185544 1.0000000
## c_125_ro-b_125_sh -7.31939998 -164.410345 149.771545 1.0000000
## c_125_sh-b_125_sh 5.52748121 -132.447077 143.502039 1.0000000
## c_75_ro-b_125_sh -22.17696489 -151.093933 106.740003 1.0000000
## c_75_sh-b_125_sh 21.97572809 -99.706395 143.657851 1.0000000
## d_125_ro-b_125_sh -1.76382619 -158.854771 155.327119 1.0000000
## d_125_sh-b_125_sh 0.15326761 -156.937677 157.244213 1.0000000
## d_75_ro-b_125_sh -18.92605466 -144.879018 107.026909 1.0000000
## d_75_sh-b_125_sh -19.40601379 -141.088137 102.276109 1.0000000
## e_125_ro-b_125_sh 2.66655349 -142.771401 148.104508 1.0000000
## e_125_sh-b_125_sh 91.36298422 -46.611574 229.337542 0.6576411
## e_75_ro-b_125_sh -22.83219157 -144.514314 98.849931 1.0000000
## e_75_sh-b_125_sh -21.66774091 -141.759179 98.423698 1.0000000
## b_75_sh-b_75_ro -0.60431551 -93.050748 91.842117 1.0000000
## c_125_ro-b_75_ro 9.98217927 -127.138039 147.102398 1.0000000
## c_125_sh-b_75_ro 22.82906045 -91.893945 137.552066 0.9999999
## c_75_ro-b_75_ro -4.87538565 -108.528528 98.777757 1.0000000
## c_75_sh-b_75_ro 39.27730733 -55.226281 133.780896 0.9934073
## d_125_ro-b_75_ro 15.53775305 -121.582465 152.657971 1.0000000
## d_125_sh-b_75_ro 17.45484686 -119.665372 154.575065 1.0000000
## d_75_ro-b_75_ro -1.62447542 -101.567150 98.318199 1.0000000
## d_75_sh-b_75_ro -2.10443454 -96.608023 92.399154 1.0000000
## e_125_ro-b_75_ro 19.96813274 -103.630362 143.566627 1.0000000
## e_125_sh-b_75_ro 108.66456347 -6.058442 223.387569 0.0862917
## e_75_ro-b_75_ro -5.53061232 -100.034201 88.972976 1.0000000
## e_75_sh-b_75_ro -4.36616166 -96.812594 88.080271 1.0000000
## c_125_ro-b_75_sh 10.58649478 -123.381113 144.554103 1.0000000
## c_125_sh-b_75_sh 23.43337597 -87.502343 134.369095 0.9999997
## c_75_ro-b_75_sh -4.27107013 -103.716229 95.174089 1.0000000
## c_75_sh-b_75_sh 39.88162285 -49.986581 129.749826 0.9862518
## d_125_ro-b_75_sh 16.14206857 -117.825540 150.109677 1.0000000
## d_125_sh-b_75_sh 18.05916237 -115.908446 152.026770 1.0000000
## d_75_ro-b_75_sh -1.02015990 -96.591620 94.551300 1.0000000
## d_75_sh-b_75_sh -1.50011903 -91.368323 88.368085 1.0000000
## e_125_ro-b_75_sh 20.57244826 -99.518990 140.663887 1.0000000
## e_125_sh-b_75_sh 109.26887898 -1.666840 220.204598 0.0586606
## e_75_ro-b_75_sh -4.92629681 -94.794500 84.941907 1.0000000
## e_75_sh-b_75_sh -3.76184615 -91.464233 83.940540 1.0000000
## c_125_sh-c_125_ro 12.84688118 -137.360792 163.054555 1.0000000
## c_75_ro-c_125_ro -14.85756491 -156.790475 127.075345 1.0000000
## c_75_sh-c_125_ro 29.29512806 -106.100239 164.690495 0.9999995
## d_125_ro-c_125_ro 5.55557378 -162.381710 173.492858 1.0000000
## d_125_sh-c_125_ro 7.47266759 -160.464617 175.409952 1.0000000
## d_75_ro-c_125_ro -11.60665468 -150.852895 127.639585 1.0000000
## d_75_sh-c_125_ro -12.08661381 -147.481981 123.308753 1.0000000
## e_125_ro-c_125_ro 9.98595347 -147.104992 167.076899 1.0000000
## e_125_sh-c_125_ro 98.68238420 -51.525289 248.890058 0.6712579
## e_75_ro-c_125_ro -15.51279159 -150.908159 119.882576 1.0000000
## e_75_sh-c_125_ro -14.34834093 -148.315949 119.619267 1.0000000
## c_75_ro-c_125_sh -27.70444610 -148.138514 92.729622 0.9999986
## c_75_sh-c_125_sh 16.44824688 -96.207508 129.104002 1.0000000
## d_125_ro-c_125_sh -7.29130740 -157.498981 142.916366 1.0000000
## d_125_sh-c_125_sh -5.37421360 -155.581887 144.833460 1.0000000
## d_75_ro-c_125_sh -24.45353587 -141.709363 92.802292 0.9999997
## d_75_sh-c_125_sh -24.93349500 -137.589250 87.722260 0.9999993
## e_125_ro-c_125_sh -2.86092771 -140.835486 135.113631 1.0000000
## e_125_sh-c_125_sh 85.83550302 -44.248158 215.919164 0.6637444
## e_75_ro-c_125_sh -28.35967277 -141.015428 84.296082 0.9999941
## e_75_sh-c_125_sh -27.19522211 -138.130941 83.740497 0.9999961
## c_75_sh-c_75_ro 44.15269298 -57.207679 145.513065 0.9887797
## d_125_ro-c_75_ro 20.41313870 -121.519772 162.346049 1.0000000
## d_125_sh-c_75_ro 22.33023250 -119.602678 164.263143 1.0000000
## d_75_ro-c_75_ro 3.25091023 -103.198773 109.700593 1.0000000
## d_75_sh-c_75_ro 2.77095110 -98.589421 104.131323 1.0000000
## e_125_ro-c_75_ro 24.84351839 -104.073449 153.760486 0.9999999
## e_125_sh-c_75_ro 113.53994912 -6.894119 233.974017 0.0901527
## e_75_ro-c_75_ro -0.65522667 -102.015599 100.705145 1.0000000
## e_75_sh-c_75_ro 0.50922398 -98.935935 99.954383 1.0000000
## d_125_ro-c_75_sh -23.73955428 -159.134921 111.655813 1.0000000
## d_125_sh-c_75_sh -21.82246048 -157.217828 113.572907 1.0000000
## d_75_ro-c_75_sh -40.90178275 -138.464529 56.660963 0.9927129
## d_75_sh-c_75_sh -41.38174188 -133.364781 50.601297 0.9840824
## e_125_ro-c_75_sh -19.30917459 -140.991297 102.372948 1.0000000
## e_125_sh-c_75_sh 69.38725614 -43.268499 182.043011 0.7722752
## e_75_ro-c_75_sh -44.80791965 -136.790958 47.175119 0.9644019
## e_75_sh-c_75_sh -43.64346899 -133.511673 46.224735 0.9654371
## d_125_sh-d_125_ro 1.91709380 -166.020190 169.854378 1.0000000
## d_75_ro-d_125_ro -17.16222847 -156.408469 122.084012 1.0000000
## d_75_sh-d_125_ro -17.64218760 -153.037555 117.753180 1.0000000
## e_125_ro-d_125_ro 4.43037969 -152.660565 161.521325 1.0000000
## e_125_sh-d_125_ro 93.12681042 -57.080863 243.334484 0.7629135
## e_75_ro-d_125_ro -21.06836537 -156.463733 114.327002 1.0000000
## e_75_sh-d_125_ro -19.90391471 -153.871523 114.063693 1.0000000
## d_75_ro-d_125_sh -19.07932227 -158.325562 120.166918 1.0000000
## d_75_sh-d_125_sh -19.55928140 -154.954649 115.836086 1.0000000
## e_125_ro-d_125_sh 2.51328589 -154.577659 159.604231 1.0000000
## e_125_sh-d_125_sh 91.20971662 -58.997957 241.417390 0.7917419
## e_75_ro-d_125_sh -22.98545918 -158.380826 112.409908 1.0000000
## e_75_sh-d_125_sh -21.82100852 -155.788617 112.146600 1.0000000
## d_75_sh-d_75_ro -0.47995913 -98.042705 97.082787 1.0000000
## e_125_ro-d_75_ro 21.59260816 -104.360355 147.545571 1.0000000
## e_125_sh-d_75_ro 110.28903889 -6.966789 227.544866 0.0920946
## e_75_ro-d_75_ro -3.90613690 -101.468883 93.656609 1.0000000
## e_75_sh-d_75_ro -2.74168625 -98.313146 92.829774 1.0000000
## e_125_ro-d_75_sh 22.07256729 -99.609556 143.754690 1.0000000
## e_125_sh-d_75_sh 110.76899801 -1.886757 223.424753 0.0597316
## e_75_ro-d_75_sh -3.42617778 -95.409217 88.556861 1.0000000
## e_75_sh-d_75_sh -2.26172712 -92.129931 87.606476 1.0000000
## e_125_sh-e_125_ro 88.69643073 -49.278128 226.670989 0.7074715
## e_75_ro-e_125_ro -25.49874506 -147.180868 96.183378 0.9999997
## e_75_sh-e_125_ro -24.33429440 -144.425733 95.757144 0.9999998
## e_75_ro-e_125_sh -114.19517579 -226.850931 -1.539421 0.0431106
## e_75_sh-e_125_sh -113.03072513 -223.966444 -2.095006 0.0407070
## e_75_sh-e_75_ro 1.16445066 -88.703753 91.032654 1.0000000
P8 = Output$All.ID2[,'p adj']
stat.test<- multcompLetters(P8)
stat.test
## a_125_sh a_75_ro a_75_sh b_125_ro b_125_sh b_75_ro b_75_sh c_125_ro
## "ab" "ab" "ab" "ab" "ab" "ab" "ab" "ab"
## c_125_sh c_75_ro c_75_sh d_125_ro d_125_sh d_75_ro d_75_sh e_125_ro
## "ab" "ab" "ab" "ab" "ab" "ab" "ab" "ab"
## e_125_sh e_75_ro e_75_sh a_125_ro
## "a" "b" "b" "ab"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
test$info <- strsplit(test$group1, "_")
test$info[[1]][2]
## [1] "125"
test$info[[1]][3]
## [1] "sh"
test$Accession <- "none"
test$Condition<- "none"
test$Tissue<- "none"
test
for(i in 1:nrow(test)){
test$Accession[i] <- test$info[[i]][1]
test$Condition[i] <- test$info[[i]][2]
test$Tissue[i] <- test$info[[i]][3]
}
test2 <- test[,c(5:7,1)]
test2$group1 <- test2$Accession
test2$group2 <- test2$Accession
ICP_wd
ICP_wd$Condition <- as.numeric(as.character(ICP_wd$Condition))
unique(ICP_wd$Condition)
## [1] 75 125
ICP_wd$Condition <- factor(ICP_wd$Condition, levels = c("75", "125"))
ICP_wd2 <- subset(ICP_wd, ICP_wd$Na.con.mg.mg.dry.weight < 100)
Na_content_wd <- ggplot(data = ICP_wd2, mapping = aes(x = Accession, y = Na.con.mg.mg.dry.weight, colour = Accession))
Na_content_wd <- Na_content_wd + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
Na_content_wd <- Na_content_wd + facet_grid(Tissue ~ Condition, scales = "free_y")
Na_content_wd <- Na_content_wd + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
Na_content_wd <- Na_content_wd + scale_color_manual(values = c("blue", "plum", "rosybrown1", "hotpink","red"))
Na_content_wd <- Na_content_wd + ylab("Na content, mg/mg dry weight") + xlab("")+stat_pvalue_manual(test2, label = "Tukey", y.position = 80)
Na_content_wd <- Na_content_wd + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
Na_content_wd <- Na_content_wd + rremove("legend")
Na_content_wd
aov(K.con..mg.mg.dry.weight ~ All.ID2, data = ICP_wd)
## Call:
## aov(formula = K.con..mg.mg.dry.weight ~ All.ID2, data = ICP_wd)
##
## Terms:
## All.ID2 Residuals
## Sum of Squares 30391.43 116043.18
## Deg. of Freedom 19 113
##
## Residual standard error: 32.04576
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(K.con..mg.mg.dry.weight ~ All.ID2, data = ICP_wd))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = K.con..mg.mg.dry.weight ~ All.ID2, data = ICP_wd)
##
## $All.ID2
## diff lwr upr p adj
## a_125_sh-a_125_ro -12.85556405 -95.101863 69.390735 1.0000000
## a_75_ro-a_125_ro -16.71661544 -89.620167 56.186936 0.9999987
## a_75_sh-a_125_ro 3.59302796 -64.319618 71.505674 1.0000000
## b_125_ro-a_125_ro 15.79651336 -66.449785 98.042812 0.9999999
## b_125_sh-a_125_ro -17.31953192 -99.565831 64.926767 0.9999997
## b_75_ro-a_125_ro -7.23983338 -77.135747 62.656080 1.0000000
## b_75_sh-a_125_ro -1.00789903 -68.920545 66.904747 1.0000000
## c_125_ro-a_125_ro 5.93912047 -82.897035 94.775276 1.0000000
## c_125_sh-a_125_ro -18.83004948 -96.855739 59.195640 0.9999970
## c_75_ro-a_125_ro 0.49733212 -72.406220 73.400884 1.0000000
## c_75_sh-a_125_ro 15.02902590 -53.783164 83.841216 0.9999994
## d_125_ro-a_125_ro 28.11727754 -60.718878 116.953433 0.9998107
## d_125_sh-a_125_ro -8.97904431 -97.815200 79.857111 1.0000000
## d_75_ro-a_125_ro -13.00696964 -84.234354 58.220414 1.0000000
## d_75_sh-a_125_ro 0.51326471 -68.298926 69.325455 1.0000000
## e_125_ro-a_125_ro 36.74550687 -45.500792 118.991805 0.9852193
## e_125_sh-a_125_ro 46.85920134 -31.166488 124.884891 0.8060958
## e_75_ro-a_125_ro -7.63927457 -76.451465 61.172916 1.0000000
## e_75_sh-a_125_ro -0.22375941 -68.136405 67.688887 1.0000000
## a_75_ro-a_125_sh -3.86105139 -76.764603 69.042500 1.0000000
## a_75_sh-a_125_sh 16.44859201 -51.464054 84.361238 0.9999968
## b_125_ro-a_125_sh 28.65207742 -53.594221 110.898376 0.9992825
## b_125_sh-a_125_sh -4.46396787 -86.710266 77.782331 1.0000000
## b_75_ro-a_125_sh 5.61573067 -64.280183 75.511644 1.0000000
## b_75_sh-a_125_sh 11.84766503 -56.064981 79.760311 1.0000000
## c_125_ro-a_125_sh 18.79468453 -70.041471 107.630840 0.9999997
## c_125_sh-a_125_sh -5.97448542 -84.000175 72.051204 1.0000000
## c_75_ro-a_125_sh 13.35289618 -59.550656 86.256448 1.0000000
## c_75_sh-a_125_sh 27.88458995 -40.927600 96.696780 0.9951035
## d_125_ro-a_125_sh 40.97284160 -47.863314 129.808997 0.9793423
## d_125_sh-a_125_sh 3.87651974 -84.959636 92.712675 1.0000000
## d_75_ro-a_125_sh -0.15140558 -71.378790 71.075978 1.0000000
## d_75_sh-a_125_sh 13.36882877 -55.443362 82.181019 0.9999999
## e_125_ro-a_125_sh 49.60107092 -32.645228 131.847370 0.8007289
## e_125_sh-a_125_sh 59.71476539 -18.310924 137.740455 0.3849221
## e_75_ro-a_125_sh 5.21628948 -63.595901 74.028480 1.0000000
## e_75_sh-a_125_sh 12.63180465 -55.280841 80.544451 1.0000000
## a_75_sh-a_75_ro 20.30964340 -35.927370 76.546657 0.9988421
## b_125_ro-a_75_ro 32.51312881 -40.390423 105.416681 0.9855007
## b_125_sh-a_75_ro -0.60291648 -73.506468 72.300635 1.0000000
## b_75_ro-a_75_ro 9.47678206 -49.139879 68.093443 1.0000000
## b_75_sh-a_75_ro 15.70871641 -40.528297 71.945730 0.9999702
## c_125_ro-a_75_ro 22.65573592 -57.608433 102.919905 0.9999650
## c_125_sh-a_75_ro -2.11343403 -70.219840 65.992972 1.0000000
## c_75_ro-a_75_ro 17.21394756 -44.958410 79.386305 0.9999739
## c_75_sh-a_75_ro 31.74564134 -25.574440 89.065723 0.8914502
## d_125_ro-a_75_ro 44.83389299 -35.430276 125.098062 0.8840742
## d_125_sh-a_75_ro 7.73757113 -72.526598 88.001740 1.0000000
## d_75_ro-a_75_ro 3.70964580 -56.488481 63.907772 1.0000000
## d_75_sh-a_75_ro 17.22988015 -40.090202 74.549962 0.9999105
## e_125_ro-a_75_ro 53.46212231 -19.441429 126.365674 0.4665110
## e_125_sh-a_75_ro 63.57581678 -4.530589 131.682222 0.0986928
## e_75_ro-a_75_ro 9.07734087 -48.242741 66.397423 1.0000000
## e_75_sh-a_75_ro 16.49285603 -39.744158 72.729870 0.9999378
## b_125_ro-a_75_sh 12.20348541 -55.709161 80.116131 1.0000000
## b_125_sh-a_75_sh -20.91255988 -88.825206 47.000086 0.9998726
## b_75_ro-a_75_sh -10.83286134 -63.112041 41.446318 0.9999998
## b_75_sh-a_75_sh -4.60092698 -54.197311 44.995457 1.0000000
## c_125_ro-a_75_sh 2.34609252 -73.413636 78.105821 1.0000000
## c_125_sh-a_75_sh -22.42307743 -85.158092 40.311938 0.9989896
## c_75_ro-a_75_sh -3.09569584 -59.332709 53.141318 1.0000000
## c_75_sh-a_75_sh 11.43599794 -39.385173 62.257169 0.9999990
## d_125_ro-a_75_sh 24.52424959 -51.235479 100.283978 0.9997394
## d_125_sh-a_75_sh -12.57207227 -88.331800 63.187656 1.0000000
## d_75_ro-a_75_sh -16.59999759 -70.646404 37.446409 0.9998773
## d_75_sh-a_75_sh -3.07976325 -53.900934 47.741407 1.0000000
## e_125_ro-a_75_sh 33.15247891 -34.760167 101.065125 0.9636738
## e_125_sh-a_75_sh 43.26617338 -19.468842 106.001188 0.5839960
## e_75_ro-a_75_sh -11.23230253 -62.053473 39.588868 0.9999993
## e_75_sh-a_75_sh -3.81678737 -53.413172 45.779597 1.0000000
## b_125_sh-b_125_ro -33.11604529 -115.362344 49.130253 0.9954631
## b_75_ro-b_125_ro -23.03634675 -92.932260 46.859567 0.9996646
## b_75_sh-b_125_ro -16.80441239 -84.717058 51.108234 0.9999955
## c_125_ro-b_125_ro -9.85739289 -98.693549 78.978763 1.0000000
## c_125_sh-b_125_ro -34.62656284 -112.652253 43.399127 0.9862500
## c_75_ro-b_125_ro -15.29918124 -88.202733 57.604370 0.9999997
## c_75_sh-b_125_ro -0.76748747 -69.579678 68.044703 1.0000000
## d_125_ro-b_125_ro 12.32076418 -76.515392 101.156920 1.0000000
## d_125_sh-b_125_ro -24.77555767 -113.611713 64.060598 0.9999709
## d_75_ro-b_125_ro -28.80348300 -100.030867 42.423901 0.9952229
## d_75_sh-b_125_ro -15.28324865 -84.095439 53.528942 0.9999992
## e_125_ro-b_125_ro 20.94899350 -61.297305 103.195292 0.9999929
## e_125_sh-b_125_ro 31.06268797 -46.963002 109.088378 0.9960412
## e_75_ro-b_125_ro -23.43578793 -92.247978 45.376402 0.9994721
## e_75_sh-b_125_ro -16.02027277 -83.932919 51.892373 0.9999979
## b_75_ro-b_125_sh 10.07969854 -59.816215 79.975612 1.0000000
## b_75_sh-b_125_sh 16.31163290 -51.601013 84.224279 0.9999972
## c_125_ro-b_125_sh 23.25865240 -65.577503 112.094808 0.9999890
## c_125_sh-b_125_sh -1.51051755 -79.536207 76.515172 1.0000000
## c_75_ro-b_125_sh 17.81686405 -55.086688 90.720416 0.9999963
## c_75_sh-b_125_sh 32.34855782 -36.463633 101.160748 0.9749100
## d_125_ro-b_125_sh 45.43680947 -43.399346 134.272965 0.9441122
## d_125_sh-b_125_sh 8.34048761 -80.495668 97.176643 1.0000000
## d_75_ro-b_125_sh 4.31256229 -66.914822 75.539946 1.0000000
## d_75_sh-b_125_sh 17.83279664 -50.979394 86.644987 0.9999907
## e_125_ro-b_125_sh 54.06503879 -28.181260 136.311337 0.6702615
## e_125_sh-b_125_sh 64.17873326 -13.846957 142.204423 0.2581064
## e_75_ro-b_125_sh 9.68025735 -59.131933 78.492448 1.0000000
## e_75_sh-b_125_sh 17.09577252 -50.816873 85.008418 0.9999941
## b_75_sh-b_75_ro 6.23193436 -46.047245 58.511114 1.0000000
## c_125_ro-b_75_ro 13.17895386 -64.363600 90.721508 1.0000000
## c_125_sh-b_75_ro -11.59021609 -76.466971 53.286539 1.0000000
## c_75_ro-b_75_ro 7.73716551 -50.879496 66.353827 1.0000000
## c_75_sh-b_75_ro 22.26885928 -31.173658 75.711376 0.9932078
## d_125_ro-b_75_ro 35.35711093 -42.185443 112.899665 0.9816581
## d_125_sh-b_75_ro -1.73921093 -79.281765 75.803343 1.0000000
## d_75_ro-b_75_ro -5.76713625 -62.285499 50.751226 1.0000000
## d_75_sh-b_75_ro 7.75309809 -45.689419 61.195615 1.0000000
## e_125_ro-b_75_ro 43.98534025 -25.910573 113.881254 0.7408717
## e_125_sh-b_75_ro 54.09903472 -10.777721 118.975790 0.2365090
## e_75_ro-b_75_ro -0.39944119 -53.841958 53.043076 1.0000000
## e_75_sh-b_75_ro 7.01607397 -45.263105 59.295253 1.0000000
## c_125_ro-b_75_sh 6.94701950 -68.812709 82.706748 1.0000000
## c_125_sh-b_75_sh -17.82215045 -80.557165 44.912865 0.9999614
## c_75_ro-b_75_sh 1.50523115 -54.731782 57.742245 1.0000000
## c_75_sh-b_75_sh 16.03692492 -34.784246 66.858096 0.9998187
## d_125_ro-b_75_sh 29.12517657 -46.634552 104.884905 0.9974226
## d_125_sh-b_75_sh -7.97114528 -83.730873 67.788583 1.0000000
## d_75_ro-b_75_sh -11.99907061 -66.045477 42.047336 0.9999992
## d_75_sh-b_75_sh 1.52116374 -49.300007 52.342334 1.0000000
## e_125_ro-b_75_sh 37.75340589 -30.159240 105.666052 0.8882558
## e_125_sh-b_75_sh 47.86710036 -14.867915 110.602115 0.3906199
## e_75_ro-b_75_sh -6.63137554 -57.452546 44.189795 1.0000000
## e_75_sh-b_75_sh 0.78413962 -48.812245 50.380524 1.0000000
## c_125_sh-c_125_ro -24.76916995 -109.712782 60.174442 0.9999429
## c_75_ro-c_125_ro -5.44178835 -85.705957 74.822380 1.0000000
## c_75_sh-c_125_ro 9.08990542 -67.477232 85.657042 1.0000000
## d_125_ro-c_125_ro 22.17815707 -72.791688 117.148002 0.9999982
## d_125_sh-c_125_ro -14.91816478 -109.888010 80.051680 1.0000000
## d_75_ro-c_125_ro -18.94609011 -97.690926 59.798746 0.9999971
## d_75_sh-c_125_ro -5.42585576 -81.992993 71.141281 1.0000000
## e_125_ro-c_125_ro 30.80638639 -58.029769 119.642542 0.9993255
## e_125_sh-c_125_ro 40.92008086 -44.023531 125.863693 0.9680376
## e_75_ro-c_125_ro -13.57839504 -90.145532 62.988742 1.0000000
## e_75_sh-c_125_ro -6.16287988 -81.922608 69.596848 1.0000000
## c_75_ro-c_125_sh 19.32738160 -48.779024 87.433787 0.9999621
## c_75_sh-c_125_sh 33.85907537 -29.848634 97.566784 0.9221421
## d_125_ro-c_125_sh 46.94732702 -37.996285 131.890939 0.8931807
## d_125_sh-c_125_sh 9.85100517 -75.092607 94.794617 1.0000000
## d_75_ro-c_125_sh 5.82307984 -60.486006 72.132166 1.0000000
## d_75_sh-c_125_sh 19.34331419 -44.364395 83.051023 0.9998962
## e_125_ro-c_125_sh 55.57555634 -22.450133 133.601246 0.5227425
## e_125_sh-c_125_sh 65.68925081 -7.874075 139.252577 0.1439829
## e_75_ro-c_125_sh 11.19077491 -52.516934 74.898484 1.0000000
## e_75_sh-c_125_sh 18.60629007 -44.128725 81.341305 0.9999266
## c_75_sh-c_75_ro 14.53169377 -42.788388 71.851775 0.9999934
## d_125_ro-c_75_ro 27.61994542 -52.644223 107.884114 0.9993924
## d_125_sh-c_75_ro -9.47637643 -89.740545 70.787792 1.0000000
## d_75_ro-c_75_ro -13.50430176 -73.702428 46.693825 0.9999991
## d_75_sh-c_75_ro 0.01593259 -57.304149 57.336014 1.0000000
## e_125_ro-c_75_ro 36.24817474 -36.655377 109.151726 0.9568054
## e_125_sh-c_75_ro 46.36186921 -21.744536 114.468275 0.6081562
## e_75_ro-c_75_ro -8.13660669 -65.456688 49.183475 1.0000000
## e_75_sh-c_75_ro -0.72109153 -56.958105 55.515922 1.0000000
## d_125_ro-c_75_sh 13.08825165 -63.478885 89.655389 1.0000000
## d_125_sh-c_75_sh -24.00807020 -100.575207 52.559067 0.9998345
## d_75_ro-c_75_sh -28.03599553 -83.208490 27.136499 0.9472756
## d_75_sh-c_75_sh -14.51576118 -66.532888 37.501365 0.9999706
## e_125_ro-c_75_sh 21.71648097 -47.095709 90.528671 0.9998184
## e_125_sh-c_75_sh 31.83017544 -31.877533 95.537884 0.9548150
## e_75_ro-c_75_sh -22.66830046 -74.685427 29.348826 0.9887272
## e_75_sh-c_75_sh -15.25278530 -66.073956 35.568385 0.9999125
## d_125_sh-d_125_ro -37.09632185 -132.066167 57.873523 0.9968606
## d_75_ro-d_125_ro -41.12424718 -119.869083 37.620589 0.9329020
## d_75_sh-d_125_ro -27.60401283 -104.171150 48.963124 0.9988680
## e_125_ro-d_125_ro 8.62822932 -80.207926 97.464385 1.0000000
## e_125_sh-d_125_ro 18.74192379 -66.201688 103.685536 0.9999993
## e_75_ro-d_125_ro -35.75655211 -112.323689 40.810585 0.9765350
## e_75_sh-d_125_ro -28.34103695 -104.100765 47.418691 0.9981735
## d_75_ro-d_125_sh -4.02792533 -82.772761 74.716910 1.0000000
## d_75_sh-d_125_sh 9.49230902 -67.074828 86.059446 1.0000000
## e_125_ro-d_125_sh 45.72455118 -43.111605 134.560707 0.9408941
## e_125_sh-d_125_sh 55.83824565 -29.105366 140.781858 0.6702580
## e_75_ro-d_125_sh 1.33976974 -75.227367 77.906907 1.0000000
## e_75_sh-d_125_sh 8.75528490 -67.004443 84.515013 1.0000000
## d_75_sh-d_75_ro 13.52023435 -41.652260 68.692729 0.9999962
## e_125_ro-d_75_ro 49.75247650 -21.474907 120.979860 0.5600320
## e_125_sh-d_75_ro 59.86617097 -6.442915 126.175257 0.1316769
## e_75_ro-d_75_ro 5.36769507 -49.804799 60.540189 1.0000000
## e_75_sh-d_75_ro 12.78321023 -41.263196 66.829617 0.9999978
## e_125_ro-d_75_sh 36.23224215 -32.579948 105.044433 0.9280345
## e_125_sh-d_75_sh 46.34593662 -17.361772 110.053646 0.4819878
## e_75_ro-d_75_sh -8.15253928 -60.169666 43.864587 1.0000000
## e_75_sh-d_75_sh -0.73702412 -51.558195 50.084147 1.0000000
## e_125_sh-e_125_ro 10.11369447 -67.911995 88.139384 1.0000000
## e_75_ro-e_125_ro -44.38478143 -113.196972 24.427409 0.7019999
## e_75_sh-e_125_ro -36.96926627 -104.881912 30.943380 0.9052562
## e_75_ro-e_125_sh -54.49847590 -118.206185 9.209233 0.1988661
## e_75_sh-e_125_sh -47.08296074 -109.817976 15.652054 0.4219675
## e_75_sh-e_75_ro 7.41551516 -43.405655 58.236686 1.0000000
P7 = Output$All.ID2[,'p adj']
stat.test<- multcompLetters(P7)
stat.test
## $Letters
## a_125_sh a_75_ro a_75_sh b_125_ro b_125_sh b_75_ro b_75_sh c_125_ro
## "a" "a" "a" "a" "a" "a" "a" "a"
## c_125_sh c_75_ro c_75_sh d_125_ro d_125_sh d_75_ro d_75_sh e_125_ro
## "a" "a" "a" "a" "a" "a" "a" "a"
## e_125_sh e_75_ro e_75_sh a_125_ro
## "a" "a" "a" "a"
##
## $LetterMatrix
## a
## a_125_sh TRUE
## a_75_ro TRUE
## a_75_sh TRUE
## b_125_ro TRUE
## b_125_sh TRUE
## b_75_ro TRUE
## b_75_sh TRUE
## c_125_ro TRUE
## c_125_sh TRUE
## c_75_ro TRUE
## c_75_sh TRUE
## d_125_ro TRUE
## d_125_sh TRUE
## d_75_ro TRUE
## d_75_sh TRUE
## e_125_ro TRUE
## e_125_sh TRUE
## e_75_ro TRUE
## e_75_sh TRUE
## a_125_ro TRUE
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
test$info <- strsplit(test$group1, "_")
test$info[[1]][2]
## [1] "125"
test$info[[1]][3]
## [1] "sh"
test$Accession <- "none"
test$Condition<- "none"
test$Tissue<- "none"
test
for(i in 1:nrow(test)){
test$Accession[i] <- test$info[[i]][1]
test$Condition[i] <- test$info[[i]][2]
test$Tissue[i] <- test$info[[i]][3]
}
test2 <- test[,c(5:7,1)]
test2$group1 <- test2$Accession
test2$group2 <- test2$Accession
ICP_wd
ICP_wd3 <- subset(ICP_wd, ICP_wd$K.con..mg.mg.dry.weight < 100)
k_content_wd <- ggplot(data = ICP_wd3, mapping = aes(x = Accession, y = K.con..mg.mg.dry.weight, colour = Accession))
k_content_wd <- k_content_wd + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
k_content_wd <- k_content_wd + facet_grid(Tissue ~ Condition, scales = "free_y")
k_content_wd <- k_content_wd + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
k_content_wd <- k_content_wd + scale_color_manual(values = c("blue", "plum", "rosybrown1", "hotpink","red"))
k_content_wd <- k_content_wd + ylab("K content, mg/mg dry weight") + xlab("")+stat_pvalue_manual(test2, label = "Tukey", y.position = 70)
k_content_wd <- k_content_wd + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
k_content_wd <- k_content_wd + rremove("legend")
k_content_wd
aov(Na.K.ratio ~ All.ID2, data = ICP_wd)
## Call:
## aov(formula = Na.K.ratio ~ All.ID2, data = ICP_wd)
##
## Terms:
## All.ID2 Residuals
## Sum of Squares 14.30638 22.58079
## Deg. of Freedom 19 113
##
## Residual standard error: 0.4470235
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(Na.K.ratio ~ All.ID2, data = ICP_wd))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Na.K.ratio ~ All.ID2, data = ICP_wd)
##
## $All.ID2
## diff lwr upr p adj
## a_125_sh-a_125_ro 0.658073608 -0.489224076 1.80537129 0.8587919
## a_75_ro-a_125_ro -0.167855892 -1.184826595 0.84911481 1.0000000
## a_75_sh-a_125_ro -0.209308774 -1.156658657 0.73804111 0.9999993
## b_125_ro-a_125_ro -0.052234227 -1.199531911 1.09506346 1.0000000
## b_125_sh-a_125_ro 0.813163361 -0.334134323 1.96046104 0.5322225
## b_75_ro-a_125_ro -0.047149071 -1.022164617 0.92786648 1.0000000
## b_75_sh-a_125_ro -0.013654212 -0.961004095 0.93369567 1.0000000
## c_125_ro-a_125_ro -0.021223839 -1.260446972 1.21799929 1.0000000
## c_125_sh-a_125_ro 1.090069993 0.001647842 2.17849214 0.0491922
## c_75_ro-a_125_ro -0.257045353 -1.274016055 0.75992535 0.9999937
## c_75_sh-a_125_ro -0.032165396 -0.992063507 0.92773271 1.0000000
## d_125_ro-a_125_ro -0.110655843 -1.349878975 1.12856729 1.0000000
## d_125_sh-a_125_ro 0.513038831 -0.726184301 1.75226196 0.9936994
## d_75_ro-a_125_ro -0.065456535 -1.059045475 0.92813241 1.0000000
## d_75_sh-a_125_ro -0.127768998 -1.087667108 0.83212911 1.0000000
## e_125_ro-a_125_ro -0.163576080 -1.310873764 0.98372160 1.0000000
## e_125_sh-a_125_ro 0.443556793 -0.644865357 1.53197894 0.9947642
## e_75_ro-a_125_ro -0.123105420 -1.083003531 0.83679269 1.0000000
## e_75_sh-a_125_ro -0.227517224 -1.174867107 0.71983266 0.9999972
## a_75_ro-a_125_sh -0.825929501 -1.842900203 0.19104120 0.2789658
## a_75_sh-a_125_sh -0.867382382 -1.814732265 0.07996750 0.1170209
## b_125_ro-a_125_sh -0.710307835 -1.857605519 0.43698985 0.7649387
## b_125_sh-a_125_sh 0.155089752 -0.992207931 1.30238744 1.0000000
## b_75_ro-a_125_sh -0.705222679 -1.680238226 0.26979287 0.4931355
## b_75_sh-a_125_sh -0.671727820 -1.619077703 0.27562206 0.5314223
## c_125_ro-a_125_sh -0.679297448 -1.918520580 0.55992568 0.8998593
## c_125_sh-a_125_sh 0.431996385 -0.656425766 1.52041854 0.9961841
## c_75_ro-a_125_sh -0.915118961 -1.932089663 0.10185174 0.1353101
## c_75_sh-a_125_sh -0.690239004 -1.650137115 0.26965911 0.5044312
## d_125_ro-a_125_sh -0.768729451 -2.007952583 0.47049368 0.7621119
## d_125_sh-a_125_sh -0.145034777 -1.384257909 1.09418836 1.0000000
## d_75_ro-a_125_sh -0.723530143 -1.717119083 0.27005880 0.4800729
## d_75_sh-a_125_sh -0.785842606 -1.745740717 0.17405550 0.2657399
## e_125_ro-a_125_sh -0.821649688 -1.968947372 0.32564800 0.5122632
## e_125_sh-a_125_sh -0.214516815 -1.302938966 0.87390534 0.9999999
## e_75_ro-a_125_sh -0.781179028 -1.741077139 0.17871908 0.2755478
## e_75_sh-a_125_sh -0.885590832 -1.832940716 0.06175905 0.0974286
## a_75_sh-a_75_ro -0.041452881 -0.825933114 0.74302735 1.0000000
## b_125_ro-a_75_ro 0.115621666 -0.901349037 1.13259237 1.0000000
## b_125_sh-a_75_ro 0.981019253 -0.035951449 1.99798996 0.0724040
## b_75_ro-a_75_ro 0.120706821 -0.696968389 0.93838203 1.0000000
## b_75_sh-a_75_ro 0.154201681 -0.630278552 0.93868191 0.9999999
## c_125_ro-a_75_ro 0.146632053 -0.973015841 1.26627995 1.0000000
## c_125_sh-a_75_ro 1.257925885 0.307873143 2.20797863 0.0007903
## c_75_ro-a_75_ro -0.089189461 -0.956464990 0.77808607 1.0000000
## c_75_sh-a_75_ro 0.135690496 -0.663898033 0.93527903 1.0000000
## d_125_ro-a_75_ro 0.057200050 -1.062447844 1.17684794 1.0000000
## d_125_sh-a_75_ro 0.680894724 -0.438753170 1.80054262 0.7897458
## d_75_ro-a_75_ro 0.102399357 -0.737336563 0.94213528 1.0000000
## d_75_sh-a_75_ro 0.040086895 -0.759501635 0.83967542 1.0000000
## e_125_ro-a_75_ro 0.004279812 -1.012690890 1.02125051 1.0000000
## e_125_sh-a_75_ro 0.611412686 -0.338640056 1.56146543 0.7056817
## e_75_ro-a_75_ro 0.044750472 -0.754838057 0.84433900 1.0000000
## e_75_sh-a_75_ro -0.059661332 -0.844141564 0.72481890 1.0000000
## b_125_ro-a_75_sh 0.157074547 -0.790275337 1.10442443 1.0000000
## b_125_sh-a_75_sh 1.022472134 0.075122251 1.96982202 0.0203762
## b_75_ro-a_75_sh 0.162159703 -0.567110578 0.89142998 0.9999992
## b_75_sh-a_75_sh 0.195654562 -0.496191973 0.88750110 0.9999640
## c_125_ro-a_75_sh 0.188084934 -0.868728104 1.24489797 1.0000000
## c_125_sh-a_75_sh 1.299378766 0.424254430 2.17450310 0.0000691
## c_75_ro-a_75_sh -0.047736579 -0.832216812 0.73674365 1.0000000
## c_75_sh-a_75_sh 0.177143377 -0.531788360 0.88607512 0.9999947
## d_125_ro-a_75_sh 0.098652931 -0.958160107 1.15546597 1.0000000
## d_125_sh-a_75_sh 0.722347605 -0.334465433 1.77916064 0.6006345
## d_75_ro-a_75_sh 0.143852239 -0.610070044 0.89777452 0.9999999
## d_75_sh-a_75_sh 0.081539776 -0.627391962 0.79047151 1.0000000
## e_125_ro-a_75_sh 0.045732694 -0.901617190 0.99308258 1.0000000
## e_125_sh-a_75_sh 0.652865567 -0.222258769 1.52798990 0.4334335
## e_75_ro-a_75_sh 0.086203354 -0.622728384 0.79513509 1.0000000
## e_75_sh-a_75_sh -0.018208450 -0.710054985 0.67363808 1.0000000
## b_125_sh-b_125_ro 0.865397587 -0.281900096 2.01269527 0.4123656
## b_75_ro-b_125_ro 0.005085156 -0.969930391 0.98010070 1.0000000
## b_75_sh-b_125_ro 0.038580015 -0.908769868 0.98592990 1.0000000
## c_125_ro-b_125_ro 0.031010387 -1.208212745 1.27023352 1.0000000
## c_125_sh-b_125_ro 1.142304220 0.053882069 2.23072637 0.0288462
## c_75_ro-b_125_ro -0.204811126 -1.221781828 0.81215958 0.9999998
## c_75_sh-b_125_ro 0.020068831 -0.939829280 0.97996694 1.0000000
## d_125_ro-b_125_ro -0.058421616 -1.297644748 1.18080152 1.0000000
## d_125_sh-b_125_ro 0.565273058 -0.673950074 1.80449619 0.9815819
## d_75_ro-b_125_ro -0.013222308 -1.006811248 0.98036663 1.0000000
## d_75_sh-b_125_ro -0.075534771 -1.035432882 0.88436334 1.0000000
## e_125_ro-b_125_ro -0.111341853 -1.258639537 1.03595583 1.0000000
## e_125_sh-b_125_ro 0.495791020 -0.592631131 1.58421317 0.9818496
## e_75_ro-b_125_ro -0.070871193 -1.030769304 0.88902692 1.0000000
## e_75_sh-b_125_ro -0.175282997 -1.122632881 0.77206689 1.0000000
## b_75_ro-b_125_sh -0.860312432 -1.835327978 0.11470311 0.1581688
## b_75_sh-b_125_sh -0.826817572 -1.774167456 0.12053231 0.1718851
## c_125_ro-b_125_sh -0.834387200 -2.073610332 0.40483593 0.6280628
## c_125_sh-b_125_sh 0.276906632 -0.811515519 1.36532878 0.9999930
## c_75_ro-b_125_sh -1.070208714 -2.087179416 -0.05323801 0.0279190
## c_75_sh-b_125_sh -0.845328757 -1.805226868 0.11456935 0.1605572
## d_125_ro-b_125_sh -0.923819203 -2.163042336 0.31540393 0.4348325
## d_125_sh-b_125_sh -0.300124529 -1.539347662 0.93909860 0.9999968
## d_75_ro-b_125_sh -0.878619896 -1.872208836 0.11496904 0.1555089
## d_75_sh-b_125_sh -0.940932358 -1.900830469 0.01896575 0.0616432
## e_125_ro-b_125_sh -0.976739441 -2.124037125 0.17055824 0.2056841
## e_125_sh-b_125_sh -0.369606567 -1.458028718 0.71881558 0.9994929
## e_75_ro-b_125_sh -0.936268781 -1.896166891 0.02362933 0.0648391
## e_75_sh-b_125_sh -1.040680585 -1.988030468 -0.09333070 0.0161815
## b_75_sh-b_75_ro 0.033494859 -0.695775421 0.76276514 1.0000000
## c_125_ro-b_75_ro 0.025925232 -1.055757398 1.10760786 1.0000000
## c_125_sh-b_75_ro 1.137219064 0.232218446 2.04221968 0.0020602
## c_75_ro-b_75_ro -0.209896282 -1.027571492 0.60777893 0.9999920
## c_75_sh-b_75_ro 0.014983675 -0.730514630 0.76048198 1.0000000
## d_125_ro-b_75_ro -0.063506772 -1.145189402 1.01817586 1.0000000
## d_125_sh-b_75_ro 0.560187902 -0.521494728 1.64187053 0.9376108
## d_75_ro-b_75_ro -0.018307464 -0.806712387 0.77009746 1.0000000
## d_75_sh-b_75_ro -0.080619927 -0.826118232 0.66487838 1.0000000
## e_125_ro-b_75_ro -0.116427009 -1.091442556 0.85858854 1.0000000
## e_125_sh-b_75_ro 0.490705864 -0.414294753 1.39570648 0.9082239
## e_75_ro-b_75_ro -0.075956349 -0.821454654 0.66954196 1.0000000
## e_75_sh-b_75_ro -0.180368153 -0.909638433 0.54890213 0.9999955
## c_125_ro-b_75_sh -0.007569628 -1.064382666 1.04924341 1.0000000
## c_125_sh-b_75_sh 1.103724204 0.228599868 1.97884854 0.0019319
## c_75_ro-b_75_sh -0.243391141 -1.027871374 0.54108909 0.9998579
## c_75_sh-b_75_sh -0.018511185 -0.727442922 0.69042055 1.0000000
## d_125_ro-b_75_sh -0.097001631 -1.153814669 0.95981141 1.0000000
## d_125_sh-b_75_sh 0.526693043 -0.530119995 1.58350608 0.9558506
## d_75_ro-b_75_sh -0.051802323 -0.805724606 0.70211996 1.0000000
## d_75_sh-b_75_sh -0.114114786 -0.823046524 0.59481695 1.0000000
## e_125_ro-b_75_sh -0.149921868 -1.097271752 0.79742801 1.0000000
## e_125_sh-b_75_sh 0.457211005 -0.417913331 1.33233534 0.9326740
## e_75_ro-b_75_sh -0.109451208 -0.818382946 0.59948053 1.0000000
## e_75_sh-b_75_sh -0.213863012 -0.905709547 0.47798352 0.9998653
## c_125_sh-c_125_ro 1.111293832 -0.073630121 2.29621778 0.0945792
## c_75_ro-c_125_ro -0.235821514 -1.355469407 0.88382638 0.9999997
## c_75_sh-c_125_ro -0.010941557 -1.079017574 1.05713446 1.0000000
## d_125_ro-c_125_ro -0.089432003 -1.414217257 1.23535325 1.0000000
## d_125_sh-c_125_ro 0.534262671 -0.790522583 1.85904792 0.9953764
## d_75_ro-c_125_ro -0.044232696 -1.142686599 1.05422121 1.0000000
## d_75_sh-c_125_ro -0.106545158 -1.174621176 0.96153086 1.0000000
## e_125_ro-c_125_ro -0.142352241 -1.381575373 1.09687089 1.0000000
## e_125_sh-c_125_ro 0.464780633 -0.720143320 1.64970459 0.9966955
## e_75_ro-c_125_ro -0.101881580 -1.169957598 0.96619444 1.0000000
## e_75_sh-c_125_ro -0.206293385 -1.263106423 0.85051965 0.9999999
## c_75_ro-c_125_sh -1.347115346 -2.297168087 -0.39706260 0.0001951
## c_75_sh-c_125_sh -1.122235389 -2.010928354 -0.23354242 0.0018900
## d_125_ro-c_125_sh -1.200725835 -2.385649788 -0.01580188 0.0432661
## d_125_sh-c_125_sh -0.577031161 -1.761955114 0.60789279 0.9645104
## d_75_ro-c_125_sh -1.155526528 -2.080507492 -0.23054556 0.0022810
## d_75_sh-c_125_sh -1.217838990 -2.106531955 -0.32914603 0.0003999
## e_125_ro-c_125_sh -1.253646073 -2.342068223 -0.16522392 0.0083373
## e_125_sh-c_125_sh -0.646513199 -1.672687444 0.37966105 0.7391223
## e_75_ro-c_125_sh -1.213175413 -2.101868377 -0.32448245 0.0004324
## e_75_sh-c_125_sh -1.317587217 -2.192711553 -0.44246288 0.0000497
## c_75_sh-c_75_ro 0.224879957 -0.574708573 1.02446849 0.9999669
## d_125_ro-c_75_ro 0.146389510 -0.973258383 1.26603740 1.0000000
## d_125_sh-c_75_ro 0.770084184 -0.349563709 1.88973208 0.5890713
## d_75_ro-c_75_ro 0.191588818 -0.648147102 1.03132474 0.9999988
## d_75_sh-c_75_ro 0.129276355 -0.670312174 0.92886488 1.0000000
## e_125_ro-c_75_ro 0.093469273 -0.923501429 1.11043998 1.0000000
## e_125_sh-c_75_ro 0.700602146 -0.249450595 1.65065489 0.4557257
## e_75_ro-c_75_ro 0.133939933 -0.665648597 0.93352846 1.0000000
## e_75_sh-c_75_ro 0.029528129 -0.754952104 0.81400836 1.0000000
## d_125_ro-c_75_sh -0.078490447 -1.146566464 0.98958557 1.0000000
## d_125_sh-c_75_sh 0.545204227 -0.522871790 1.61328024 0.9450926
## d_75_ro-c_75_sh -0.033291139 -0.802921822 0.73633954 1.0000000
## d_75_sh-c_75_sh -0.095603602 -0.821218369 0.63001117 1.0000000
## e_125_ro-c_75_sh -0.131410684 -1.091308795 0.82848743 1.0000000
## e_125_sh-c_75_sh 0.475722189 -0.412970775 1.36441515 0.9173528
## e_75_ro-c_75_sh -0.090940024 -0.816554791 0.63467474 1.0000000
## e_75_sh-c_75_sh -0.195351828 -0.904283566 0.51357991 0.9999758
## d_125_sh-d_125_ro 0.623694674 -0.701090579 1.94847993 0.9745372
## d_75_ro-d_125_ro 0.045199308 -1.053254596 1.14365321 1.0000000
## d_75_sh-d_125_ro -0.017113155 -1.085189172 1.05096286 1.0000000
## e_125_ro-d_125_ro -0.052920237 -1.292143370 1.18630289 1.0000000
## e_125_sh-d_125_ro 0.554212636 -0.630711317 1.73913659 0.9761634
## e_75_ro-d_125_ro -0.012449577 -1.080525595 1.05562644 1.0000000
## e_75_sh-d_125_ro -0.116861381 -1.173674419 0.93995166 1.0000000
## d_75_ro-d_125_sh -0.578495366 -1.676949270 0.51995854 0.9279101
## d_75_sh-d_125_sh -0.640807829 -1.708883846 0.42726819 0.8073565
## e_125_ro-d_125_sh -0.676614911 -1.915838044 0.56260822 0.9029581
## e_125_sh-d_125_sh -0.069482038 -1.254405991 1.11544191 1.0000000
## e_75_ro-d_125_sh -0.636144251 -1.704220269 0.43193177 0.8164573
## e_75_sh-d_125_sh -0.740556055 -1.797369093 0.31625698 0.5539487
## d_75_sh-d_75_ro -0.062312463 -0.831943146 0.70731822 1.0000000
## e_125_ro-d_75_ro -0.098119545 -1.091708485 0.89546940 1.0000000
## e_125_sh-d_75_ro 0.509013328 -0.415967636 1.43399429 0.8967461
## e_75_ro-d_75_ro -0.057648885 -0.827279568 0.71198180 1.0000000
## e_75_sh-d_75_ro -0.162060689 -0.915982971 0.59186159 0.9999995
## e_125_ro-d_75_sh -0.035807082 -0.995705193 0.92409103 1.0000000
## e_125_sh-d_75_sh 0.571325791 -0.317367174 1.46001876 0.7073785
## e_75_ro-d_75_sh 0.004663578 -0.720951189 0.73027834 1.0000000
## e_75_sh-d_75_sh -0.099748226 -0.808679964 0.60918351 1.0000000
## e_125_sh-e_125_ro 0.607132873 -0.481289277 1.69555502 0.8852893
## e_75_ro-e_125_ro 0.040470660 -0.919427451 1.00036877 1.0000000
## e_75_sh-e_125_ro -0.063941144 -1.011291027 0.88340874 1.0000000
## e_75_ro-e_125_sh -0.566662213 -1.455355178 0.32203075 0.7204885
## e_75_sh-e_125_sh -0.671074017 -1.546198354 0.20405032 0.3812275
## e_75_sh-e_75_ro -0.104411804 -0.813343542 0.60451993 1.0000000
P9 = Output$All.ID2[,'p adj']
stat.test<- multcompLetters(P9)
stat.test
## a_125_sh a_75_ro a_75_sh b_125_ro b_125_sh b_75_ro b_75_sh c_125_ro
## "abc" "ab" "a" "ab" "bc" "ab" "ab" "abc"
## c_125_sh c_75_ro c_75_sh d_125_ro d_125_sh d_75_ro d_75_sh e_125_ro
## "c" "a" "ab" "ab" "abc" "ab" "ab" "ab"
## e_125_sh e_75_ro e_75_sh a_125_ro
## "abc" "ab" "a" "ab"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
test$info <- strsplit(test$group1, "_")
test$info[[1]][2]
## [1] "125"
test$info[[1]][3]
## [1] "sh"
test$Accession <- "none"
test$Condition<- "none"
test$Tissue<- "none"
test
for(i in 1:nrow(test)){
test$Accession[i] <- test$info[[i]][1]
test$Condition[i] <- test$info[[i]][2]
test$Tissue[i] <- test$info[[i]][3]
}
test2 <- test[,c(5:7,1)]
test2$group1 <- test2$Accession
test2$group2 <- test2$Accession
ICP_wd
Nak_ratio_wd <- ggplot(data = ICP_wd, mapping = aes(x = Accession, y = Na.K.ratio, colour = Accession))
Nak_ratio_wd <- Nak_ratio_wd + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
Nak_ratio_wd <- Nak_ratio_wd + facet_grid(Tissue ~ Condition, scales = "free_y")
Nak_ratio_wd <- Nak_ratio_wd + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
Nak_ratio_wd <- Nak_ratio_wd + scale_color_manual(values = c("blue", "plum", "rosybrown1", "hotpink","red"))
Nak_ratio_wd <- Nak_ratio_wd + ylab("Na+/K+ ratio") + xlab("")+stat_pvalue_manual(test2, label = "Tukey", y.position = 2)
Nak_ratio_wd <- Nak_ratio_wd + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
Nak_ratio_wd <- Nak_ratio_wd + rremove("legend")
Nak_ratio_wd
colnames(ICP_wd)
## [1] "All.ID" "Accession"
## [3] "Condition" "Tissue"
## [5] "DW.g" "DW.mg"
## [7] "K.con..mg.mg.dry.weight" "Na.con.mg.mg.dry.weight"
## [9] "Na.K.ratio" "All.ID2"
aov(DW.mg ~ All.ID2, data = ICP_wd)
## Call:
## aov(formula = DW.mg ~ All.ID2, data = ICP_wd)
##
## Terms:
## All.ID2 Residuals
## Sum of Squares 192.6765 120.9255
## Deg. of Freedom 19 113
##
## Residual standard error: 1.034474
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(DW.mg ~ All.ID2, data = ICP_wd))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = DW.mg ~ All.ID2, data = ICP_wd)
##
## $All.ID2
## diff lwr upr p adj
## a_125_sh-a_125_ro 1.975000000 -0.68000583 4.630005834 0.4389722
## a_75_ro-a_125_ro 0.667857143 -1.68555400 3.021268281 0.9999621
## a_75_sh-a_125_ro 2.597727273 0.40542836 4.790026188 0.0054280
## b_125_ro-a_125_ro 0.150000000 -2.50500583 2.805005834 1.0000000
## b_125_sh-a_125_ro 2.125000000 -0.53000583 4.780005834 0.3038242
## b_75_ro-a_125_ro 0.258333333 -1.99798776 2.514654426 1.0000000
## b_75_sh-a_125_ro 2.288636364 0.09633745 4.480935278 0.0307386
## c_125_ro-a_125_ro -0.041666667 -2.90940073 2.826067394 1.0000000
## c_125_sh-a_125_ro 2.025000000 -0.49375969 4.543759691 0.2961040
## c_75_ro-a_125_ro 0.353571429 -1.99983971 2.706982567 1.0000000
## c_75_sh-a_125_ro 2.395000000 0.17366275 4.616337252 0.0206481
## d_125_ro-a_125_ro 0.091666667 -2.77606739 2.959400728 1.0000000
## d_125_sh-a_125_ro 2.458333333 -0.40940073 5.326067394 0.1959396
## d_75_ro-a_125_ro 0.437500000 -1.86180250 2.736802500 0.9999999
## d_75_sh-a_125_ro 3.265000000 1.04366275 5.486337252 0.0000874
## e_125_ro-a_125_ro 0.100000000 -2.55500583 2.755005834 1.0000000
## e_125_sh-a_125_ro 1.673000000 -0.84575969 4.191759691 0.6522552
## e_75_ro-a_125_ro 0.455000000 -1.76633725 2.676337252 0.9999998
## e_75_sh-a_125_ro 3.461363636 1.26906472 5.653662551 0.0000152
## a_75_ro-a_125_sh -1.307142857 -3.66055400 1.046268281 0.8890080
## a_75_sh-a_125_sh 0.622727273 -1.56957164 2.815026188 0.9999615
## b_125_ro-a_125_sh -1.825000000 -4.48000583 0.830005834 0.5901827
## b_125_sh-a_125_sh 0.150000000 -2.50500583 2.805005834 1.0000000
## b_75_ro-a_125_sh -1.716666667 -3.97298776 0.539654426 0.3960114
## b_75_sh-a_125_sh 0.313636364 -1.87866255 2.505935278 1.0000000
## c_125_ro-a_125_sh -2.016666667 -4.88440073 0.851067394 0.5472188
## c_125_sh-a_125_sh 0.050000000 -2.46875969 2.568759691 1.0000000
## c_75_ro-a_125_sh -1.621428571 -3.97483971 0.731982567 0.5858812
## c_75_sh-a_125_sh 0.420000000 -1.80133725 2.641337252 0.9999999
## d_125_ro-a_125_sh -1.883333333 -4.75106739 0.984400728 0.6718851
## d_125_sh-a_125_sh 0.483333333 -2.38440073 3.351067394 1.0000000
## d_75_ro-a_125_sh -1.537500000 -3.83680250 0.761802500 0.6404221
## d_75_sh-a_125_sh 1.290000000 -0.93133725 3.511337252 0.8457181
## e_125_ro-a_125_sh -1.875000000 -4.53000583 0.780005834 0.5391265
## e_125_sh-a_125_sh -0.302000000 -2.82075969 2.216759691 1.0000000
## e_75_ro-a_125_sh -1.520000000 -3.74133725 0.701337252 0.5985885
## e_75_sh-a_125_sh 1.486363636 -0.70593528 3.678662551 0.6155152
## a_75_sh-a_75_ro 1.929870130 0.11447416 3.745266102 0.0246638
## b_125_ro-a_75_ro -0.517857143 -2.87126828 1.835553995 0.9999993
## b_125_sh-a_75_ro 1.457142857 -0.89626828 3.810553995 0.7648270
## b_75_ro-a_75_ro -0.409523810 -2.30173756 1.482689941 0.9999995
## b_75_sh-a_75_ro 1.620779221 -0.19461675 3.436175193 0.1441964
## c_125_ro-a_75_ro -0.709523810 -3.30054420 1.881496578 0.9999780
## c_125_sh-a_75_ro 1.357142857 -0.84141085 3.555696560 0.7691469
## c_75_ro-a_75_ro -0.314285714 -2.32128148 1.692710048 1.0000000
## c_75_sh-a_75_ro 1.727142857 -0.12321581 3.577501522 0.0987578
## d_125_ro-a_75_ro -0.576190476 -3.16721086 2.014829911 0.9999992
## d_125_sh-a_75_ro 1.790476190 -0.80054420 4.381496578 0.5802948
## d_75_ro-a_75_ro -0.230357143 -2.17362243 1.712908148 1.0000000
## d_75_sh-a_75_ro 2.597142857 0.74678419 4.447501522 0.0002427
## e_125_ro-a_75_ro -0.567857143 -2.92126828 1.785553995 0.9999970
## e_125_sh-a_75_ro 1.005142857 -1.19341085 3.203696560 0.9811418
## e_75_ro-a_75_ro -0.212857143 -2.06321581 1.637501522 1.0000000
## e_75_sh-a_75_ro 2.793506494 0.97811052 4.608902466 0.0000292
## b_125_ro-a_75_sh -2.447727273 -4.64002619 -0.255428358 0.0129852
## b_125_sh-a_75_sh -0.472727273 -2.66502619 1.719571642 0.9999995
## b_75_ro-a_75_sh -2.339393939 -4.02702643 -0.651761448 0.0003156
## b_75_sh-a_75_sh -0.309090909 -1.91011967 1.291937849 0.9999999
## c_125_ro-a_75_sh -2.639393939 -5.08500576 -0.193782115 0.0203909
## c_125_sh-a_75_sh -0.572727273 -2.59788626 1.452431717 0.9999640
## c_75_ro-a_75_sh -2.244155844 -4.05955182 -0.428759872 0.0027296
## c_75_sh-a_75_sh -0.202727273 -1.84329356 1.437839013 1.0000000
## d_125_ro-a_75_sh -2.506060606 -4.95167243 -0.060448782 0.0381617
## d_125_sh-a_75_sh -0.139393939 -2.58500576 2.306217885 1.0000000
## d_75_ro-a_75_sh -2.160227273 -3.90490791 -0.415546632 0.0026559
## d_75_sh-a_75_sh 0.667272727 -0.97329356 2.307839013 0.9948830
## e_125_ro-a_75_sh -2.497727273 -4.69002619 -0.305428358 0.0097685
## e_125_sh-a_75_sh -0.924727273 -2.94988626 1.100431717 0.9813832
## e_75_ro-a_75_sh -2.142727273 -3.78329356 -0.502160987 0.0010243
## e_75_sh-a_75_sh 0.863636364 -0.73739239 2.464665122 0.9119857
## b_125_sh-b_125_ro 1.975000000 -0.68000583 4.630005834 0.4389722
## b_75_ro-b_125_ro 0.108333333 -2.14798776 2.364654426 1.0000000
## b_75_sh-b_125_ro 2.138636364 -0.05366255 4.330935278 0.0647459
## c_125_ro-b_125_ro -0.191666667 -3.05940073 2.676067394 1.0000000
## c_125_sh-b_125_ro 1.875000000 -0.64375969 4.393759691 0.4375875
## c_75_ro-b_125_ro 0.203571429 -2.14983971 2.556982567 1.0000000
## c_75_sh-b_125_ro 2.245000000 0.02366275 4.466337252 0.0445534
## d_125_ro-b_125_ro -0.058333333 -2.92606739 2.809400728 1.0000000
## d_125_sh-b_125_ro 2.308333333 -0.55940073 5.176067394 0.2940485
## d_75_ro-b_125_ro 0.287500000 -2.01180250 2.586802500 1.0000000
## d_75_sh-b_125_ro 3.115000000 0.89366275 5.336337252 0.0002474
## e_125_ro-b_125_ro -0.050000000 -2.70500583 2.605005834 1.0000000
## e_125_sh-b_125_ro 1.523000000 -0.99575969 4.041759691 0.7973188
## e_75_ro-b_125_ro 0.305000000 -1.91633725 2.526337252 1.0000000
## e_75_sh-b_125_ro 3.311363636 1.11906472 5.503662551 0.0000460
## b_75_ro-b_125_sh -1.866666667 -4.12298776 0.389654426 0.2488673
## b_75_sh-b_125_sh 0.163636364 -2.02866255 2.355935278 1.0000000
## c_125_ro-b_125_sh -2.166666667 -5.03440073 0.701067394 0.4092393
## c_125_sh-b_125_sh -0.100000000 -2.61875969 2.418759691 1.0000000
## c_75_ro-b_125_sh -1.771428571 -4.12483971 0.581982567 0.4163748
## c_75_sh-b_125_sh 0.270000000 -1.95133725 2.491337252 1.0000000
## d_125_ro-b_125_sh -2.033333333 -4.90106739 0.834400728 0.5314807
## d_125_sh-b_125_sh 0.333333333 -2.53440073 3.201067394 1.0000000
## d_75_ro-b_125_sh -1.687500000 -3.98680250 0.611802500 0.4649536
## d_75_sh-b_125_sh 1.140000000 -1.08133725 3.361337252 0.9424024
## e_125_ro-b_125_sh -2.025000000 -4.68000583 0.630005834 0.3913463
## e_125_sh-b_125_sh -0.452000000 -2.97075969 2.066759691 1.0000000
## e_75_ro-b_125_sh -1.670000000 -3.89133725 0.551337252 0.4186764
## e_75_sh-b_125_sh 1.336363636 -0.85593528 3.528662551 0.7865671
## b_75_sh-b_75_ro 2.030303030 0.34267054 3.717935522 0.0042706
## c_125_ro-b_75_ro -0.300000000 -2.80316351 2.203163506 1.0000000
## c_125_sh-b_75_ro 1.766666667 -0.32763018 3.860963512 0.2190466
## c_75_ro-b_75_ro 0.095238095 -1.79697566 1.987451846 1.0000000
## c_75_sh-b_75_ro 2.136666667 0.41148028 3.861853057 0.0026438
## d_125_ro-b_75_ro -0.166666667 -2.66983017 2.336496839 1.0000000
## d_125_sh-b_75_ro 2.200000000 -0.30316351 4.703163506 0.1630336
## d_75_ro-b_75_ro 0.179166667 -1.64531158 2.003644915 1.0000000
## d_75_sh-b_75_ro 3.006666667 1.28148028 4.731853057 0.0000010
## e_125_ro-b_75_ro -0.158333333 -2.41465443 2.097987760 1.0000000
## e_125_sh-b_75_ro 1.414666667 -0.67963018 3.508963512 0.6222492
## e_75_ro-b_75_ro 0.196666667 -1.52851972 1.921853057 1.0000000
## e_75_sh-b_75_ro 3.203030303 1.51539781 4.890662795 0.0000001
## c_125_ro-b_75_sh -2.330303030 -4.77591485 0.115308794 0.0815643
## c_125_sh-b_75_sh -0.263636364 -2.28879535 1.761522626 1.0000000
## c_75_ro-b_75_sh -1.935064935 -3.75046091 -0.119668963 0.0238538
## c_75_sh-b_75_sh 0.106363636 -1.53420265 1.746929922 1.0000000
## d_125_ro-b_75_sh -2.196969697 -4.64258152 0.248642127 0.1371844
## d_125_sh-b_75_sh 0.169696970 -2.27591485 2.615308794 1.0000000
## d_75_ro-b_75_sh -1.851136364 -3.59581700 -0.106455723 0.0252564
## d_75_sh-b_75_sh 0.976363636 -0.66420265 2.616929922 0.8174033
## e_125_ro-b_75_sh -2.188636364 -4.38093528 0.003662551 0.0509047
## e_125_sh-b_75_sh -0.615636364 -2.64079535 1.409522626 0.9998944
## e_75_ro-b_75_sh -1.833636364 -3.47420265 -0.193070078 0.0127984
## e_75_sh-b_75_sh 1.172727273 -0.42830149 2.773756031 0.4687336
## c_125_sh-c_125_ro 2.066666667 -0.67541157 4.808744901 0.4138960
## c_75_ro-c_125_ro 0.395238095 -2.19578229 2.986258483 1.0000000
## c_75_sh-c_125_ro 2.436666667 -0.03500925 4.908342586 0.0581315
## d_125_ro-c_125_ro 0.133333333 -2.93240333 3.199070000 1.0000000
## d_125_sh-c_125_ro 2.500000000 -0.56573667 5.565736666 0.2721916
## d_75_ro-c_125_ro 0.479166667 -2.06280789 3.021141224 1.0000000
## d_75_sh-c_125_ro 3.306666667 0.83499075 5.778342586 0.0006467
## e_125_ro-c_125_ro 0.141666667 -2.72606739 3.009400728 1.0000000
## e_125_sh-c_125_ro 1.714666667 -1.02741157 4.456744901 0.7503946
## e_75_ro-c_125_ro 0.496666667 -1.97500925 2.968342586 0.9999999
## e_75_sh-c_125_ro 3.503030303 1.05741848 5.948642127 0.0001563
## c_75_ro-c_125_sh -1.671428571 -3.86998227 0.527125132 0.3974656
## c_75_sh-c_125_sh 0.370000000 -1.68655868 2.426558676 1.0000000
## d_125_ro-c_125_sh -1.933333333 -4.67541157 0.808744901 0.5422463
## d_125_sh-c_125_sh 0.433333333 -2.30874490 3.175411568 1.0000000
## d_75_ro-c_125_sh -1.587500000 -3.72803414 0.553034136 0.4447747
## d_75_sh-c_125_sh 1.240000000 -0.81655868 3.296558676 0.8010092
## e_125_ro-c_125_sh -1.925000000 -4.44375969 0.593759691 0.3875159
## e_125_sh-c_125_sh -0.352000000 -2.72670941 2.022709410 1.0000000
## e_75_ro-c_125_sh -1.570000000 -3.62655868 0.486558676 0.3896172
## e_75_sh-c_125_sh 1.436363636 -0.58879535 3.461522626 0.5308821
## c_75_sh-c_75_ro 2.041428571 0.19106991 3.891787237 0.0152756
## d_125_ro-c_75_ro -0.261904762 -2.85292515 2.329115625 1.0000000
## d_125_sh-c_75_ro 2.104761905 -0.48625848 4.695782292 0.2785904
## d_75_ro-c_75_ro 0.083928571 -1.85933672 2.027193862 1.0000000
## d_75_sh-c_75_ro 2.911428571 1.06106991 4.761787237 0.0000166
## e_125_ro-c_75_ro -0.253571429 -2.60698257 2.099839709 1.0000000
## e_125_sh-c_75_ro 1.319428571 -0.87912513 3.517982275 0.8069973
## e_75_ro-c_75_ro 0.101428571 -1.74893009 1.951787237 1.0000000
## e_75_sh-c_75_ro 3.107792208 1.29239624 4.923188180 0.0000016
## d_125_ro-c_75_sh -2.303333333 -4.77500925 0.168342586 0.1002174
## d_125_sh-c_75_sh 0.063333333 -2.40834259 2.535009253 1.0000000
## d_75_ro-c_75_sh -1.957500000 -3.73853206 -0.176467942 0.0160712
## d_75_sh-c_75_sh 0.870000000 -0.80917313 2.549173128 0.9373721
## e_125_ro-c_75_sh -2.295000000 -4.51633725 -0.073662748 0.0347256
## e_125_sh-c_75_sh -0.722000000 -2.77855868 1.334558676 0.9992041
## e_75_ro-c_75_sh -1.940000000 -3.61917313 -0.260826872 0.0079695
## e_75_sh-c_75_sh 1.066363636 -0.57420265 2.706929922 0.6892957
## d_125_sh-d_125_ro 2.366666667 -0.69907000 5.432403333 0.3687820
## d_75_ro-d_125_ro 0.345833333 -2.19614122 2.887807890 1.0000000
## d_75_sh-d_125_ro 3.173333333 0.70165741 5.645009253 0.0014056
## e_125_ro-d_125_ro 0.008333333 -2.85940073 2.876067394 1.0000000
## e_125_sh-d_125_ro 1.581333333 -1.16074490 4.323411568 0.8531902
## e_75_ro-d_125_ro 0.363333333 -2.10834259 2.835009253 1.0000000
## e_75_sh-d_125_ro 3.369696970 0.92408515 5.815308794 0.0003576
## d_75_ro-d_125_sh -2.020833333 -4.56280789 0.521141224 0.3156233
## d_75_sh-d_125_sh 0.806666667 -1.66500925 3.278342586 0.9997076
## e_125_ro-d_125_sh -2.358333333 -5.22606739 0.509400728 0.2584301
## e_125_sh-d_125_sh -0.785333333 -3.52741157 1.956744901 0.9999564
## e_75_ro-d_125_sh -2.003333333 -4.47500925 0.468342586 0.2823328
## e_75_sh-d_125_sh 1.003030303 -1.44258152 3.448642127 0.9943544
## d_75_sh-d_75_ro 2.827500000 1.04646794 4.608532058 0.0000132
## e_125_ro-d_75_ro -0.337500000 -2.63680250 1.961802500 1.0000000
## e_125_sh-d_75_ro 1.235500000 -0.90503414 3.376034136 0.8522752
## e_75_ro-d_75_ro 0.017500000 -1.76353206 1.798532058 1.0000000
## e_75_sh-d_75_ro 3.023863636 1.27918300 4.768544277 0.0000011
## e_125_ro-d_75_sh -3.165000000 -5.38633725 -0.943662748 0.0001756
## e_125_sh-d_75_sh -1.592000000 -3.64855868 0.464558676 0.3636698
## e_75_ro-d_75_sh -2.810000000 -4.48917313 -1.130826872 0.0000032
## e_75_sh-d_75_sh 0.196363636 -1.44420265 1.836929922 1.0000000
## e_125_sh-e_125_ro 1.573000000 -0.94575969 4.091759691 0.7522973
## e_75_ro-e_125_ro 0.355000000 -1.86633725 2.576337252 1.0000000
## e_75_sh-e_125_ro 3.361363636 1.16906472 5.553662551 0.0000319
## e_75_ro-e_125_sh -1.218000000 -3.27455868 0.838558676 0.8232804
## e_75_sh-e_125_sh 1.788363636 -0.23679535 3.813522626 0.1571794
## e_75_sh-e_75_ro 3.006363636 1.36579735 4.646929922 0.0000002
P6 = Output$All.ID2[,'p adj']
stat.test<- multcompLetters(P6)
stat.test
## a_125_sh a_75_ro a_75_sh b_125_ro b_125_sh b_75_ro b_75_sh c_125_ro
## "abcd" "abc" "d" "ab" "abcd" "a" "bcd" "abc"
## c_125_sh c_75_ro c_75_sh d_125_ro d_125_sh d_75_ro d_75_sh e_125_ro
## "abcd" "a" "cd" "abc" "abcd" "a" "d" "ab"
## e_125_sh e_75_ro e_75_sh a_125_ro
## "abcd" "a" "d" "a"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
test$info <- strsplit(test$group1, "_")
test$info[[1]][2]
## [1] "125"
test$info[[1]][3]
## [1] "sh"
test$Accession <- "none"
test$Condition<- "none"
test$Tissue<- "none"
test
for(i in 1:nrow(test)){
test$Accession[i] <- test$info[[i]][1]
test$Condition[i] <- test$info[[i]][2]
test$Tissue[i] <- test$info[[i]][3]
}
test2 <- test[,c(5:7,1)]
test2$group1 <- test2$Accession
test2$group2 <- test2$Accession
ICP_wd
DW_wd <- ggplot(data = ICP_wd, mapping = aes(x = Accession, y = DW.mg, colour = Accession))
DW_wd <- DW_wd + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
DW_wd <- DW_wd + facet_grid(Tissue ~ Condition, scales = "free_y")
DW_wd <- DW_wd + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
DW_wd <- DW_wd + scale_color_manual(values = c("blue", "plum", "rosybrown1", "hotpink","red"))
DW_wd <- DW_wd + ylab("Dry weight, mg") + xlab("")+stat_pvalue_manual(test2, label = "Tukey", y.position = 3)
DW_wd <- DW_wd + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
DW_wd <- DW_wd + rremove("legend")
DW_wd
#library(cowplot)
#pdf("ICP-all-cyto.pdf", height = 5, width = 12)
#plot_grid(Na_content_cyto,K_content_cyto,Na.K_ratio, ncol=3,
#align = "hv", labels=c("AUTO"),
#label_size = 24)
#dev.off()