library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 4.3.2
library(socviz)
library(maps)
##
## Attaching package: 'maps'
##
## The following object is masked from 'package:purrr':
##
## map
library(mapproj)
library(questionr)
library(viridis)
## Loading required package: viridisLite
##
## Attaching package: 'viridis'
##
## The following object is masked from 'package:maps':
##
## unemp
library(leaflet)
library(tidycensus)
## Warning: package 'tidycensus' was built under R version 4.3.2
The following code will read the dataset in directly from
data.world.
You may need to join data.world, but I think it works without joining.
(Joining is free.)
If you’d rather download and then import, here is the location of the dataset: https://data.world/data-hut/walmart-store-location-data\
costcoUS <- read.csv("https://query.data.world/s/rei24o74e6hoqboioyjzev6kmdhsoh?dws=00000", header=TRUE, stringsAsFactors=FALSE)
costcoUS <- costcoUS %>% filter(state == "IL")
costcoUS %>% leaflet(width = "100%") %>%
addTiles() %>%
setView(-89.45, 39.76, zoom = 6) %>%
addMarkers(lat = ~latitude,
lng = ~longitude,
popup = costcoUS$name)
Obtain your own census api key at: https://api.census.gov/data/key_signup.html
We will use the api key to directly download population data from the
census.
Let’s map the AR Population Census using the leaflet package.
This time we are using a different provider for the map:
OpenStreetMap
Try swapping other maps – see a few below in the commented code.
MapPalette <- colorQuantile(palette = "viridis", domain = il_pop$estimate, n = 20)
il_pop %>%
st_transform(crs = "+proj=longlat +datum=WGS84") %>%
leaflet(width = "100%", height = 500) %>%
addProviderTiles(provider = "Esri.WorldStreetMap") %>%
addPolygons(popup = ~NAME,
stroke = FALSE,
smoothFactor = 0,
fillOpacity = 0.6,
color = ~ MapPalette(estimate)) %>%
addLegend("bottomright",
pal = MapPalette,
values = ~ estimate,
title = "Population Percentiles",
opacity = 1) %>%
addCircleMarkers(data = costcoUS,
lat = costcoUS$latitude,
lng = costcoUS$longitude,
popup = costcoUS$name,
weight = 1,
radius=4,
color = "blue",
opacity = 1)
## Alternative maps (just swap out the above)
#addProviderTiles(provider = "Esri.WorldStreetMap") %>%
#addProviderTiles(provider = "OpenStreetMap") %>%
#addProviderTiles(provider = "Esri.WorldPhysical") %>%
#addProviderTiles(provider = "Esri.WorldImagery") %>%
#addProviderTiles(provider = "Esri.WorldTopoMap") %>%
Note – modified code slightly in the addPolygons() function to
outline each county border in gray
custom_palette <- colorQuantile(palette = c("darkgreen", "yellow", "lightblue"), domain = il_pop$estimate, n = 10)
il_pop %>%
st_transform(crs = "+proj=longlat +datum=WGS84") %>%
leaflet(width = "110%", height = 500) %>%
addProviderTiles(provider = "Esri.WorldStreetMap") %>%
setView(-89.45, 39.76, zoom = 8) %>%
addPolygons(popup = ~NAME,
stroke = FALSE,
weight = 1,
smoothFactor = 0,
fillOpacity = 0.6,
color = ~ custom_palette(estimate)) %>%
addLegend("bottomright",
pal = custom_palette,
values = ~ estimate,
title = "Population Percentiles",
opacity = 1) %>%
addCircleMarkers(data = costcoUS,
lat = ~latitude,
lng = ~longitude,
popup = costcoUS,
weight = 1,
radius=4,
color = "blue",
opacity = 1)