Group countries together for analysis
# Create data frame that has continental data on each of the countries
asian_countries <- c(
"Afghanistan", "Armenia", "Azerbaijan", "Bahrain", "Bangladesh", "Bhutan",
"British Indian Ocean Territory", "Brunei", "Cambodia", "China", "Cyprus",
"Egypt", "Georgia", "Hong Kong", "India", "Indonesia", "Iran", "Iraq",
"Israel", "Japan", "Jordan", "Kazakhstan", "Kuwait", "Kyrgyzstan", "Laos",
"Lebanon", "Macau", "Malaysia", "Maldives", "Mongolia", "Myanmar", "Nepal",
"North Korea", "Oman", "Pakistan", "Palestine", "Philippines", "Qatar",
"Russia", "Saudi Arabia", "Singapore", "South Korea", "Sri Lanka", "Syria",
"Taiwan", "Tajikistan", "Thailand", "Timor-Leste", "Turkey", "Turkmenistan",
"United Arab Emirates", "Uzbekistan", "Vietnam", "Yemen"
)
asian_countries_df <- data.frame(
country = asian_countries,
continent = rep("Asia", length(asian_countries))
)
african_countries <- c(
"Algeria", "Angola", "Benin", "Botswana", "Burkina Faso", "Burundi",
"Cabo Verde", "Cameroon", "Central African Republic", "Chad", "Comoros",
"Congo", "Democratic Republic of the Congo", "Djibouti", "Egypt",
"Equatorial Guinea", "Eritrea", "Eswatini", "Ethiopia", "Gabon",
"Gambia, The", "Ghana", "Guinea", "Guinea-Bissau", "Ivory Coast",
"Kenya", "Lesotho", "Liberia", "Libya", "Madagascar", "Malawi", "Mali",
"Mauritania", "Mauritius", "Morocco", "Mozambique", "Namibia", "Niger",
"Nigeria", "Rwanda", "Sao Tome and Principe", "Senegal", "Seychelles",
"Sierra Leone", "Somalia", "South Africa", "South Sudan", "Sudan",
"Tanzania", "Togo", "Tunisia", "Uganda", "Zambia", "Zimbabwe"
)
african_countries_df <- data.frame(
country = african_countries,
continent = rep("Africa", length(african_countries))
)
european_countries <- c(
"Albania", "Andorra", "Armenia", "Austria", "Azerbaijan", "Belarus",
"Belgium", "Bosnia and Herzegovina", "Bulgaria", "Croatia", "Cyprus",
"Czechia", "Denmark", "Estonia", "Finland", "France", "Georgia", "Germany",
"Greece", "Hungary", "Iceland", "Ireland", "Italy", "Kazakhstan", "Latvia",
"Liechtenstein", "Lithuania", "Luxembourg", "Malta", "Moldova", "Monaco",
"Montenegro", "Netherlands", "North Macedonia", "Norway", "Poland",
"Portugal", "Romania", "Russia", "San Marino", "Serbia", "Slovakia",
"Slovenia", "Spain", "Sweden", "Switzerland", "Turkey", "Ukraine",
"United Kingdom", "Vatican City"
)
european_countries_df <- data.frame(
country = european_countries,
continent = rep("Europe", length(european_countries))
)
north_american_countries <- c(
"Canada",
"United States"
)
north_american_countries_df <- data.frame(
country = north_american_countries,
continent = rep("North America", length(north_american_countries))
)
central <- c(
"Costa Rica", "Cuba", "Dominica", "Dominican Republic", "El Salvador",
"Grenada", "Guatemala", "Haiti", "Honduras", "Jamaica", "Mexico",
"Nicaragua", "Panama", "Saint Kitts and Nevis", "Saint Lucia",
"Saint Vincent and the Grenadines", "Trinidad and Tobago",
"Antigua and Barbuda", "Bahamas", "Barbados", "Belize"
)
central_df <- data.frame(
country = central,
continent = rep("Carribean_Central", length(central))
)
oceania_countries <- c(
"Australia", "Fiji", "Kiribati", "Marshall Islands",
"Micronesia", "Nauru", "New Zealand",
"Palau", "Papua New Guinea", "Samoa", "Solomon Islands", "Tonga",
"Tuvalu", "Vanuatu"
)
oceania_countries_df <- data.frame(
country = oceania_countries,
continent = rep("Oceania", length(oceania_countries))
)
south_american_countries <- c(
"Argentina", "Bolivia", "Brazil", "Chile", "Colombia", "Ecuador",
"Guyana", "Paraguay", "Peru", "Suriname", "Uruguay", "Venezuela"
)
south_american_countries_df <- data.frame(
country = south_american_countries,
continent = rep("South America", length(south_american_countries))
)
combined_df <- rbind(african_countries_df, asian_countries_df, european_countries_df, north_american_countries_df, oceania_countries_df, south_american_countries_df,central_df)
Look at the inflation leaderboard for each continent
# View each continents' inflation leaderboard
african_mean <- subset(country_continent, continent == 'Africa') |> group_by(country) |> summarize(mean_value=mean(value))
african_median <- subset(country_continent, continent == 'Africa') |> group_by(country) |> summarize(median_value=median(value))
african_mean_median <- left_join(african_median, african_mean, by='country')
african_mean_median[order(african_mean_median$median_value),]
## # A tibble: 49 Ă— 3
## country median_value mean_value
## <chr> <dbl> <dbl>
## 1 Zimbabwe 1.1 39.8
## 2 Niger 1.6 3.30
## 3 Senegal 1.7 3.74
## 4 Togo 1.8 3.93
## 5 Benin 2.1 3.52
## 6 Gabon 2.1 3.48
## 7 Burkina Faso 2.3 3.5
## 8 Mali 2.4 3.54
## 9 Seychelles 2.4 4.24
## 10 Djibouti 2.5 2.96
## # ℹ 39 more rows
american_mean <- subset(country_continent, continent == 'North America') |> group_by(country) |> summarize(mean_value=mean(value))
american_median <- subset(country_continent, continent == 'North America') |> group_by(country) |> summarize(median_value=median(value))
american_mean_median <- left_join(american_median, american_mean, by='country')
american_mean_median[order(american_mean_median$median_value),]
## # A tibble: 2 Ă— 3
## country median_value mean_value
## <chr> <dbl> <dbl>
## 1 Canada 2.3 3.17
## 2 United States 2.9 3.33
european_mean <- subset(country_continent, continent == 'Europe') |> group_by(country) |> summarize(mean_value=mean(value))
european_median <- subset(country_continent, continent == 'Europe') |> group_by(country) |> summarize(median_value=median(value))
european_mean_median <- left_join(european_median, european_mean, by='country')
european_mean_median[order(european_mean_median$median_value),]
## # A tibble: 42 Ă— 3
## country median_value mean_value
## <chr> <dbl> <dbl>
## 1 Switzerland 0.9 1.62
## 2 Bosnia and Herzegovina 1.75 2.26
## 3 Germany 1.9 2.36
## 4 San Marino 1.9 2.03
## 5 Sweden 2 3.80
## 6 Netherlands 2.05 2.37
## 7 Austria 2.1 2.69
## 8 Denmark 2.1 3.01
## 9 Finland 2.1 3.22
## 10 France 2.1 3.14
## # ℹ 32 more rows
oceania_mean <- subset(country_continent, continent == 'Oceania') |> group_by(country) |> summarize(mean_value=mean(value))
oceania_median <- subset(country_continent, continent == 'Oceania') |> group_by(country) |> summarize(median_value=median(value))
oceania_mean_median <- left_join(oceania_median, oceania_mean, by='country')
oceania_mean_median[order(oceania_mean_median$median_value),]
## # A tibble: 13 Ă— 3
## country median_value mean_value
## <chr> <dbl> <dbl>
## 1 Marshall Islands 2 2.52
## 2 Palau 2.5 3.20
## 3 New Zealand 2.6 4.51
## 4 Australia 2.9 4.05
## 5 Tuvalu 3 3.37
## 6 Vanuatu 3 4.45
## 7 Kiribati 3.2 3.09
## 8 Fiji 3.7 4.25
## 9 Nauru 4.5 4.14
## 10 Samoa 5 6.27
## 11 Papua New Guinea 5.3 6.72
## 12 Tonga 5.6 6.13
## 13 Solomon Islands 8 8.09
south_american_mean <- subset(country_continent, continent == 'South America') |> group_by(country) |> summarize(mean_value=mean(value))
south_american_median <- subset(country_continent, continent == 'South America') |> group_by(country) |> summarize(median_value=median(value))
south_american_mean_median <- left_join(south_american_median, south_american_mean, by='country')
south_american_mean_median[order(south_american_mean_median$median_value),]
## # A tibble: 12 Ă— 3
## country median_value mean_value
## <chr> <dbl> <dbl>
## 1 Peru 4 288.
## 2 Chile 4.7 9.46
## 3 Bolivia 5.7 312.
## 4 Guyana 6.5 14
## 5 Brazil 8.3 264.
## 6 Paraguay 9 11.5
## 7 Colombia 9.2 13.1
## 8 Uruguay 9.6 28.2
## 9 Argentina 10.6 25.8
## 10 Ecuador 12.5 20.9
## 11 Suriname 14 22.9
## 12 Venezuela 31.4 2042.
asian_mean <- subset(country_continent, continent == 'Asia') |> group_by(country) |> summarize(mean_value=mean(value))
asian_median <- subset(country_continent, continent == 'Asia') |> group_by(country) |> summarize(median_value=median(value))
asian_mean_median <- left_join(asian_median, asian_mean, by='country')
african_mean_median[order(asian_mean_median$median_value),]
## # A tibble: 41 Ă— 3
## country median_value mean_value
## <chr> <dbl> <dbl>
## 1 Eswatini 7.5 8.96
## 2 Libya 4 5.98
## 3 Mauritania 4.7 5.34
## 4 Botswana 8.5 8.51
## 5 Mauritius 6 7.06
## 6 Equatorial Guinea 4.5 8.93
## 7 Cameroon 2.7 4.41
## 8 Guinea 11.9 16.8
## 9 Mali 2.4 3.54
## 10 Niger 1.6 3.30
## # ℹ 31 more rows
central_mean <- subset(country_continent, continent == 'Carribean_Central') |> group_by(country) |> summarize(mean_value=mean(value))
central_median <- subset(country_continent, continent == 'Carribean_Central') |> group_by(country) |> summarize(median_value=median(value))
central_mean_median <- left_join(central_median, central_mean, by='country')
central_mean_median[order(central_mean_median$median_value),]
## # A tibble: 19 Ă— 3
## country median_value mean_value
## <chr> <dbl> <dbl>
## 1 Panama 1.3 2.16
## 2 Dominica 1.7 3.03
## 3 Belize 2 2.49
## 4 Saint Kitts and Nevis 2.2 2.90
## 5 Antigua and Barbuda 2.4 3.23
## 6 Saint Vincent and the Grenadines 2.4 3.23
## 7 Grenada 2.5 3.28
## 8 Saint Lucia 2.7 3.20
## 9 Barbados 3.6 3.16
## 10 El Salvador 4.5 8.00
## 11 Trinidad and Tobago 5.7 6.82
## 12 Mexico 6.4 22.5
## 13 Guatemala 6.7 9.10
## 14 Dominican Republic 7.5 12.5
## 15 Honduras 7.7 9.52
## 16 Jamaica 9.4 14.6
## 17 Nicaragua 9.6 676.
## 18 Costa Rica 11.3 13.0
## 19 Haiti 11.4 13.1