Variation
Visualizing Distributions
diamonds %>%
ggplot(mapping = aes(x = cut)) +
geom_bar()

diamonds %>%
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.5)

diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.5)

diamonds %>%
ggplot(aes(x = carat, color = cut)) +
geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Typical Values
diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.01)

ggplot(data = faithful, mapping = aes(x = eruptions)) +
geom_histogram(binwidth = 0.25)

Unusual Values
ggplot(diamonds) +
geom_histogram(mapping = aes(x = y), binwidth = 0.5)

ggplot(diamonds) +
geom_histogram(mapping = aes(x = y), binwidth = 0.5) +
coord_cartesian(ylim = c(0, 50))

Missing Values
diamonds %>%
#filter(y < 3 | y > 20) %>%
mutate(y = ifelse(y < 3 | y > 20, NA, y)) %>%
ggplot(mapping = aes(x = x, y = y)) +
geom_point()
## Warning: Removed 9 rows containing missing values (`geom_point()`).

Covariation
A Categorical and a Continuous Variable
ggplot(data = diamonds, mapping = aes(x = cut, y = price)) +
geom_boxplot()

Two Categorical Variables
ggplot(data = diamonds) +
geom_count(mapping = aes(x = cut, y = color))

diamonds %>%
count(color, cut) %>%
ggplot(mapping = aes(x = color, y = cut)) +
geom_tile(mapping = aes(fill = n))

Two Continuous Variables
ggplot(data = diamonds) +
geom_point(mapping = aes(x = carat, y = price), alpha = 1 / 100)

library(hexbin)
ggplot(data = diamonds) +
geom_hex(mapping = aes(x = carat, y = price))

diamonds %>%
filter(carat < 3) %>%
ggplot(mapping = aes(x = carat, y = price)) +
geom_boxplot(mapping = aes(group = cut_width(carat, 0.1)))

Patterns and Models
library(modelr)
mod <- lm(log(price) ~ log(carat), data = diamonds)
diamonds2 <- diamonds %>%
add_residuals(mod) %>%
mutate(resid = exp(resid))
ggplot(data = diamonds2) +
geom_point(mapping = aes(x = carat, y = resid))

ggplot(data = diamonds2) +
geom_boxplot(mapping = aes(x = cut, y = resid))
