── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.4.4 ✔ tibble 3.2.1
✔ lubridate 1.9.3 ✔ tidyr 1.3.1
✔ purrr 1.0.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(plotly)
Attaching package: 'plotly'
The following object is masked from 'package:ggplot2':
last_plot
The following object is masked from 'package:stats':
filter
The following object is masked from 'package:graphics':
layout
Rows: 5275 Columns: 10
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (5): iso2c, iso3c, country, region, income
dbl (5): year, gdp_percap, population, birth_rate, neonat_mortal_rate
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(nations)
# A tibble: 6 × 10
iso2c iso3c country year gdp_percap population birth_rate neonat_mortal_rate
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 AD AND Andorra 1996 NA 64291 10.9 2.8
2 AD AND Andorra 1994 NA 62707 10.9 3.2
3 AD AND Andorra 2003 NA 74783 10.3 2
4 AD AND Andorra 1990 NA 54511 11.9 4.3
5 AD AND Andorra 2009 NA 85474 9.9 1.7
6 AD AND Andorra 2011 NA 82326 NA 1.6
# ℹ 2 more variables: region <chr>, income <chr>
Creation of Nations.2
nations.2<- nations %>%mutate( gdp.in.trill = ( gdp_percap * population ) /1000000000) %>%select( year, gdp.in.trill, country ) %>%filter( country %in%c( "Brazil", "United States", "Chile", "China" ))
Nations.2 Line Graph (non-Interactive)
p.1<-ggplot( data = nations.2, mapping =aes( y = gdp.in.trill, x = year, color = country ) ) +geom_point() +geom_line() +scale_color_brewer(palette ="Set1") +theme_bw() +labs( title ="BRICS: China's Dominance & Brazil's Undeveloped Potential", color ="Country" ) +ylab( "GDP ($Trillion)" ) +xlab( "Year (1990-2015)" ) +theme( legend.position =c(0.15,0.8)) +theme( plot.title =element_text(hjust =0.5) )p.1
`summarise()` has grouped output by 'region'. You can override using the
`.groups` argument.
nations.3 Area Plot (non-Interactive)
p.2<-ggplot( data = nations.3, mapping =aes( y = sum_GDP, x = year, fill = region, ) ) +geom_area( color ="white") +scale_fill_brewer(palette ="Set2") +theme_bw(10) +labs( title ="GDP by Region: East Asia & Pacific Ahead of the Pack", fill ="Region" ) +ylab( "GDP ($Trillion)" ) +xlab( "Year (1990-2015)" ) +theme(aspect.ratio =0.6,axis.text =element_text(colour =1, size =12),legend.background =element_blank(),legend.box.background =element_rect(colour ="black"),legend.position =c(0.17,0.7),plot.title =element_text(hjust =0.5))p.2
nations.3 Area Plot (Interactive)
p.2<-ggplotly(p.2)
Warning: Aspect ratios aren't yet implemented, but you can manually set a
suitable height/width
Warning: Aspect ratios aren't yet implemented, but you can manually set a
suitable height/width