Memuat paket tambahan yang digunakan.
library("vegan")
library("indicspecies")
# memuat data
dm <- read.csv("data ekologi.csv")
head(dm)
## site env1 env2 env3 env4 env5 sp.1 sp.2 sp.3 sp.4 sp.5 sp.6 sp.7 sp.8 sp.9
## 1 site1 27.71 34.17 7.78 5.4 6.7 19 2 0 0 0 12 0 0 0
## 2 site2 28.37 34.07 7.78 5.5 5.6 3 1 0 0 0 19 0 1 0
## 3 site3 29.81 34.32 7.80 4.9 7.1 6 0 1 0 0 11 1 0 0
## 4 site4 27.27 34.37 7.84 5.0 5.5 5 0 0 0 0 0 0 0 1
## 5 site5 28.42 34.01 7.79 5.2 6.9 1 4 0 1 0 2 2 0 0
## 6 site1 29.97 33.77 7.71 5.0 6.3 30 4 0 0 0 14 0 0 0
## sp.10 sp.11 sp.12
## 1 0 0 8
## 2 2 0 0
## 3 0 9 14
## 4 0 0 0
## 5 0 0 0
## 6 8 0 5
# indeksing
dm.bio <- dm[,7:ncol(dm)] #data biologi
head(dm.bio)
## sp.1 sp.2 sp.3 sp.4 sp.5 sp.6 sp.7 sp.8 sp.9 sp.10 sp.11 sp.12
## 1 19 2 0 0 0 12 0 0 0 0 0 8
## 2 3 1 0 0 0 19 0 1 0 2 0 0
## 3 6 0 1 0 0 11 1 0 0 0 9 14
## 4 5 0 0 0 0 0 0 0 1 0 0 0
## 5 1 4 0 1 0 2 2 0 0 0 0 0
## 6 30 4 0 0 0 14 0 0 0 8 0 5
dm.env <- dm[,2:6] #data lingkungan
head(dm.env)
## env1 env2 env3 env4 env5
## 1 27.71 34.17 7.78 5.4 6.7
## 2 28.37 34.07 7.78 5.5 5.6
## 3 29.81 34.32 7.80 4.9 7.1
## 4 27.27 34.37 7.84 5.0 5.5
## 5 28.42 34.01 7.79 5.2 6.9
## 6 29.97 33.77 7.71 5.0 6.3
# transformasi data biologi
dm.bio.hel <- decostand(dm.bio, method = "hellinger") #Hellinger transformasi
ano <- anosim(dm.bio.hel, dm$site, distance = "bray", permutations = 9999)
summary(ano)
##
## Call:
## anosim(x = dm.bio.hel, grouping = dm$site, permutations = 9999, distance = "bray")
## Dissimilarity: bray
##
## ANOSIM statistic R: 0.7348
## Significance: 1e-04
##
## Permutation: free
## Number of permutations: 9999
##
## Upper quantiles of permutations (null model):
## 90% 95% 97.5% 99%
## 0.167 0.227 0.286 0.357
##
## Dissimilarity ranks between and within classes:
## 0% 25% 50% 75% 100% N
## Between 1 35.25 59.5 82.75 105 90
## site1 4 6.50 9.0 13.50 18 3
## site2 3 17.50 32.0 36.00 40 3
## site3 14 30.50 47.0 57.50 68 3
## site4 5 9.00 13.0 22.00 31 3
## site5 2 4.00 6.0 6.50 7 3
Berdasarkan hasil analisis, perbedan kelimpahan dan komposisi spesies antar lokasi signifikan secara statistik.
loc <- dm$site #vector
inv <- multipatt(dm.bio.hel, loc, func = "r.g", control = how(nperm = 9999)) # add alpha = 1 to show all your species
summary(inv)
##
## Multilevel pattern analysis
## ---------------------------
##
## Association function: r.g
## Significance level (alpha): 0.05
##
## Total number of species: 12
## Selected number of species: 5
## Number of species associated to 1 group: 4
## Number of species associated to 2 groups: 1
## Number of species associated to 3 groups: 0
## Number of species associated to 4 groups: 0
##
## List of species associated to each combination:
##
## Group site3 #sps. 1
## stat p.value
## sp.3 0.945 0.0116 *
##
## Group site5 #sps. 3
## stat p.value
## sp.4 0.984 0.0108 *
## sp.2 0.905 0.0108 *
## sp.7 0.862 0.0108 *
##
## Group site1+site4 #sps. 1
## stat p.value
## sp.1 0.92 0.0026 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Berdasarkan hasil analisis, terbentuk tiga kelompok, yaitu kelompok 1 (site3), kelompok 2 (site5), dan kelompok 3 (site1 dan site4). Spesies indikator pada kelompok 1 adalah sp.3, pada kelompok 2 adalah sp.2, sp.4, dan sp.7, dan pada kelompok 3 adalah sp.1.
Visualisasi pengelompokan ini dapat dilakukan dengan analisis nonmetric multidimensional scaling (NMDS).
## R version 4.3.2 (2023-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
##
## Matrix products: default
##
##
## locale:
## [1] LC_COLLATE=English_United States.utf8
## [2] LC_CTYPE=English_United States.utf8
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.utf8
##
## time zone: Asia/Jakarta
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] indicspecies_1.7.14 vegan_2.6-4 lattice_0.21-9
## [4] permute_0.9-7
##
## loaded via a namespace (and not attached):
## [1] nlme_3.1-163 cli_3.6.2 knitr_1.45 rlang_1.1.3
## [5] xfun_0.42 jsonlite_1.8.8 htmltools_0.5.7 sass_0.4.8
## [9] rmarkdown_2.25 grid_4.3.2 evaluate_0.23 jquerylib_0.1.4
## [13] MASS_7.3-60 fastmap_1.1.1 yaml_2.3.8 lifecycle_1.0.4
## [17] cluster_2.1.4 compiler_4.3.2 mgcv_1.9-0 rstudioapi_0.15.0
## [21] digest_0.6.34 R6_2.5.1 parallel_4.3.2 splines_4.3.2
## [25] bslib_0.6.1 Matrix_1.6-5 tools_4.3.2 cachem_1.0.8