El paquete caret (Clasification And REgression Training) es un paquete integral con una amplia variedad de algoritmos para el aprendizaje automático.
#install.packages("ggplot2") #Graficas con mejor diseño
library(ggplot2)
#install.packages("lattice") #Crear gráficos
library(lattice)
#install.packages("datasets") #Usar la base de datos "Iris"
#install.packages("caret") #Algoritmos de aprendizaje automático
library(caret)
library(datasets)
#install.packages("DataExplorer")
library(DataExplorer)
df <- data.frame(iris)
summary(df)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
str(df)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#create_report(df)
plot_missing(df)
plot_histogram(df)
plot_correlation(df)
** Nota: La variable que queremos predecir debe tener formato de FACTOR.**
set.seed(123)
renglones_entrenamiento <-
createDataPartition(df$Species, p=0.8, list=FALSE)
entrenamiento <- iris[renglones_entrenamiento, ]
prueba <- iris[-renglones_entrenamiento, ]
Los métodos más utilizados para modelar aprendizaje automático
son:
* SVM: Support Vector Machine o Máquina de
Vectores de Soporte. Hay varios subtipos: Lineal (svmLinear), Radial
(svmRadial), Polinómico (svmPoly), etc.
* Árbol de Decisión: rpart
* Redes Neuronales: nnet
* Random Forest o Bosques Aleatorios: rf
modelo1 <- train(Species ~ ., data=entrenamiento,
method = "svmLinear", # Cambiar
preProcess= c("scale","center"),
trControl = trainControl(method="cv", number=10),
tuneGrid = data.frame(C=1) #Cuando es svmLinear
)
resultado_entrenamiento1 <- predict(modelo1, entrenamiento)
resultado_prueba1 <- predict(modelo1, prueba)
# Matriz de Confusión
mcre1 <- confusionMatrix(resultado_entrenamiento1, entrenamiento$Species) # matriz de confusión del resultado del entrenamiento
mcre1
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 39 0
## virginica 0 1 40
##
## Overall Statistics
##
## Accuracy : 0.9917
## 95% CI : (0.9544, 0.9998)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9875
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9750 1.0000
## Specificity 1.0000 1.0000 0.9875
## Pos Pred Value 1.0000 1.0000 0.9756
## Neg Pred Value 1.0000 0.9877 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3250 0.3333
## Detection Prevalence 0.3333 0.3250 0.3417
## Balanced Accuracy 1.0000 0.9875 0.9938
mcrp1 <- confusionMatrix(resultado_prueba1, prueba$Species) # matriz de confusión del resultado de la prueba
mcrp1
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 10 1
## virginica 0 0 9
##
## Overall Statistics
##
## Accuracy : 0.9667
## 95% CI : (0.8278, 0.9992)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 2.963e-13
##
## Kappa : 0.95
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.9000
## Specificity 1.0000 0.9500 1.0000
## Pos Pred Value 1.0000 0.9091 1.0000
## Neg Pred Value 1.0000 1.0000 0.9524
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.3000
## Detection Prevalence 0.3333 0.3667 0.3000
## Balanced Accuracy 1.0000 0.9750 0.9500
modelo2 <- train(Species ~ ., data=entrenamiento,
method = "svmRadial", # Cambiar
preProcess= c("scale","center"),
trControl = trainControl(method="cv", number=10),
tuneGrid = data.frame(sigma=1,C=1) # Cambiar
)
resultado_entrenamiento2 <- predict(modelo2, entrenamiento)
resultado_prueba2 <- predict(modelo2, prueba)
# Matriz de Confusión
mcre2 <- confusionMatrix(resultado_entrenamiento2, entrenamiento$Species) # matriz de confusión del resultado del entrenamiento
mcre2
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 39 0
## virginica 0 1 40
##
## Overall Statistics
##
## Accuracy : 0.9917
## 95% CI : (0.9544, 0.9998)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9875
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9750 1.0000
## Specificity 1.0000 1.0000 0.9875
## Pos Pred Value 1.0000 1.0000 0.9756
## Neg Pred Value 1.0000 0.9877 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3250 0.3333
## Detection Prevalence 0.3333 0.3250 0.3417
## Balanced Accuracy 1.0000 0.9875 0.9938
mcrp2 <- confusionMatrix(resultado_prueba2, prueba$Species) # matriz de confusión del resultado de la prueba
mcrp2
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 10 2
## virginica 0 0 8
##
## Overall Statistics
##
## Accuracy : 0.9333
## 95% CI : (0.7793, 0.9918)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 8.747e-12
##
## Kappa : 0.9
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.8000
## Specificity 1.0000 0.9000 1.0000
## Pos Pred Value 1.0000 0.8333 1.0000
## Neg Pred Value 1.0000 1.0000 0.9091
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.2667
## Detection Prevalence 0.3333 0.4000 0.2667
## Balanced Accuracy 1.0000 0.9500 0.9000
modelo3 <- train(Species ~ ., data=entrenamiento,
method = "svmPoly", # Cambiar
preProcess= c("scale","center"),
trControl = trainControl(method="cv", number=10),
tuneGrid = data.frame(degree=1,scale=1,C=1) # Cambiar
)
resultado_entrenamiento3 <- predict(modelo3, entrenamiento)
resultado_prueba3 <- predict(modelo3, prueba)
# Matriz de Confusión
mcre3 <- confusionMatrix(resultado_entrenamiento3, entrenamiento$Species) # matriz de confusión del resultado del entrenamiento
mcre3
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 39 0
## virginica 0 1 40
##
## Overall Statistics
##
## Accuracy : 0.9917
## 95% CI : (0.9544, 0.9998)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9875
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9750 1.0000
## Specificity 1.0000 1.0000 0.9875
## Pos Pred Value 1.0000 1.0000 0.9756
## Neg Pred Value 1.0000 0.9877 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3250 0.3333
## Detection Prevalence 0.3333 0.3250 0.3417
## Balanced Accuracy 1.0000 0.9875 0.9938
mcrp3 <- confusionMatrix(resultado_prueba3, prueba$Species) # matriz de confusión del resultado de la prueba
mcrp3
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 10 1
## virginica 0 0 9
##
## Overall Statistics
##
## Accuracy : 0.9667
## 95% CI : (0.8278, 0.9992)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 2.963e-13
##
## Kappa : 0.95
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.9000
## Specificity 1.0000 0.9500 1.0000
## Pos Pred Value 1.0000 0.9091 1.0000
## Neg Pred Value 1.0000 1.0000 0.9524
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.3000
## Detection Prevalence 0.3333 0.3667 0.3000
## Balanced Accuracy 1.0000 0.9750 0.9500
modelo4 <- train(Species ~ ., data=entrenamiento,
method = "rpart", # Cambiar
preProcess= c("scale","center"),
trControl = trainControl(method="cv", number=10),
tuneLength = 10 # Cambiar
)
resultado_entrenamiento4 <- predict(modelo4, entrenamiento)
resultado_prueba4 <- predict(modelo4, prueba)
# Matriz de Confusión
mcre4 <- confusionMatrix(resultado_entrenamiento4, entrenamiento$Species) # matriz de confusión del resultado del entrenamiento
mcre4
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 39 3
## virginica 0 1 37
##
## Overall Statistics
##
## Accuracy : 0.9667
## 95% CI : (0.9169, 0.9908)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.95
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9750 0.9250
## Specificity 1.0000 0.9625 0.9875
## Pos Pred Value 1.0000 0.9286 0.9737
## Neg Pred Value 1.0000 0.9872 0.9634
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3250 0.3083
## Detection Prevalence 0.3333 0.3500 0.3167
## Balanced Accuracy 1.0000 0.9688 0.9563
mcrp4 <- confusionMatrix(resultado_prueba4, prueba$Species) # matriz de confusión del resultado de la prueba
mcrp4
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 10 2
## virginica 0 0 8
##
## Overall Statistics
##
## Accuracy : 0.9333
## 95% CI : (0.7793, 0.9918)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 8.747e-12
##
## Kappa : 0.9
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.8000
## Specificity 1.0000 0.9000 1.0000
## Pos Pred Value 1.0000 0.8333 1.0000
## Neg Pred Value 1.0000 1.0000 0.9091
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.2667
## Detection Prevalence 0.3333 0.4000 0.2667
## Balanced Accuracy 1.0000 0.9500 0.9000
modelo5 <- train(Species ~ ., data=entrenamiento,
method = "nnet", # Cambiar
preProcess= c("scale","center"),
trControl = trainControl(method="cv", number=10),
trace = FALSE
# Cambiar
)
resultado_entrenamiento5 <- predict(modelo5, entrenamiento)
resultado_prueba5 <- predict(modelo5, prueba)
# Matriz de Confusión
mcre5 <- confusionMatrix(resultado_entrenamiento5, entrenamiento$Species) # matriz de confusión del resultado del entrenamiento
mcre5
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 36 0
## virginica 0 4 40
##
## Overall Statistics
##
## Accuracy : 0.9667
## 95% CI : (0.9169, 0.9908)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.95
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9000 1.0000
## Specificity 1.0000 1.0000 0.9500
## Pos Pred Value 1.0000 1.0000 0.9091
## Neg Pred Value 1.0000 0.9524 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3000 0.3333
## Detection Prevalence 0.3333 0.3000 0.3667
## Balanced Accuracy 1.0000 0.9500 0.9750
mcrp5 <- confusionMatrix(resultado_prueba5, prueba$Species) # matriz de confusión del resultado de la prueba
mcrp5
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 9 0
## virginica 0 1 10
##
## Overall Statistics
##
## Accuracy : 0.9667
## 95% CI : (0.8278, 0.9992)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 2.963e-13
##
## Kappa : 0.95
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9000 1.0000
## Specificity 1.0000 1.0000 0.9500
## Pos Pred Value 1.0000 1.0000 0.9091
## Neg Pred Value 1.0000 0.9524 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3000 0.3333
## Detection Prevalence 0.3333 0.3000 0.3667
## Balanced Accuracy 1.0000 0.9500 0.9750
modelo6 <- train(Species ~ ., data=entrenamiento,
method = "rf", # Cambiar
preProcess= c("scale","center"),
trControl = trainControl(method="cv", number=10),
tuneGrid = expand.grid(mtry = c(2,4,6)) # Cambiar
)
resultado_entrenamiento6 <- predict(modelo6, entrenamiento)
resultado_prueba6 <- predict(modelo6, prueba)
# Matriz de Confusión
mcre6 <- confusionMatrix(resultado_entrenamiento6, entrenamiento$Species) # matriz de confusión del resultado del entrenamiento
mcre6
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 40 0
## virginica 0 0 40
##
## Overall Statistics
##
## Accuracy : 1
## 95% CI : (0.9697, 1)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 1.0000
## Specificity 1.0000 1.0000 1.0000
## Pos Pred Value 1.0000 1.0000 1.0000
## Neg Pred Value 1.0000 1.0000 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.3333
## Detection Prevalence 0.3333 0.3333 0.3333
## Balanced Accuracy 1.0000 1.0000 1.0000
mcrp6 <- confusionMatrix(resultado_prueba6, prueba$Species) # matriz de confusión del resultado de la prueba
mcrp6
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 10 2
## virginica 0 0 8
##
## Overall Statistics
##
## Accuracy : 0.9333
## 95% CI : (0.7793, 0.9918)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 8.747e-12
##
## Kappa : 0.9
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.8000
## Specificity 1.0000 0.9000 1.0000
## Pos Pred Value 1.0000 0.8333 1.0000
## Neg Pred Value 1.0000 1.0000 0.9091
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.2667
## Detection Prevalence 0.3333 0.4000 0.2667
## Balanced Accuracy 1.0000 0.9500 0.9000
resultados <- data.frame(
"svmLinear" = c(mcre1$overall["Accuracy"], mcrp1$overall["Accuracy"]),
"svmRadial" = c(mcre2$overall["Accuracy"], mcrp2$overall["Accuracy"]),
"svmPoly" = c(mcre3$overall["Accuracy"], mcrp3$overall["Accuracy"]),
"rpart" = c(mcre4$overall["Accuracy"], mcrp4$overall["Accuracy"]),
"nnet" = c(mcre5$overall["Accuracy"], mcrp5$overall["Accuracy"]),
"rf" = c(mcre6$overall["Accuracy"], mcrp6$overall["Accuracy"])
)
rownames(resultados) <- c("Precisión de entrenamiento", "Precisión de prueba")
resultados
## svmLinear svmRadial svmPoly rpart nnet
## Precisión de entrenamiento 0.9916667 0.9916667 0.9916667 0.9666667 0.9666667
## Precisión de prueba 0.9666667 0.9333333 0.9666667 0.9333333 0.9666667
## rf
## Precisión de entrenamiento 1.0000000
## Precisión de prueba 0.9333333
El modelo con el método de bosques aleatorios presenta sobreajuste, ya que tiene una alta precisión en entrenamiento, pero baja en prueba.
Acorde al resumen de resultados, el mejor modelo es el de Máquina de Vectores de Soporte Lineal.