Importar base de datos

## Warning: package 'ggplot2' was built under R version 4.2.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.0 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.5.0 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
df= read.csv("/Users/gabrielmedina/Downloads/Walmart_Store_sales.csv")
summary(df)
## Store Date Weekly_Sales Holiday_Flag
## Min. : 1 Length:6435 Min. : 209986 Min. :0.00000
## 1st Qu.:12 Class :character 1st Qu.: 553350 1st Qu.:0.00000
## Median :23 Mode :character Median : 960746 Median :0.00000
## Mean :23 Mean :1046965 Mean :0.06993
## 3rd Qu.:34 3rd Qu.:1420159 3rd Qu.:0.00000
## Max. :45 Max. :3818686 Max. :1.00000
## Temperature Fuel_Price CPI Unemployment
## Min. : -2.06 Min. :2.472 Min. :126.1 Min. : 3.879
## 1st Qu.: 47.46 1st Qu.:2.933 1st Qu.:131.7 1st Qu.: 6.891
## Median : 62.67 Median :3.445 Median :182.6 Median : 7.874
## Mean : 60.66 Mean :3.359 Mean :171.6 Mean : 7.999
## 3rd Qu.: 74.94 3rd Qu.:3.735 3rd Qu.:212.7 3rd Qu.: 8.622
## Max. :100.14 Max. :4.468 Max. :227.2 Max. :14.313
Análisis exploratorio
df$Date=as.Date(df$Date, format="%d-%m-%Y")
str(df)
## 'data.frame': 6435 obs. of 8 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: NA NA ...
## $ Weekly_Sales: num 1643691 1641957 1611968 1409728 1554807 ...
## $ Holiday_Flag: int 0 1 0 0 0 0 0 0 0 0 ...
## $ Temperature : num 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num 2.57 2.55 2.51 2.56 2.62 ...
## $ CPI : num 211 211 211 211 211 ...
## $ Unemployment: num 8.11 8.11 8.11 8.11 8.11 ...
## Store Date Weekly_Sales Holiday_Flag
## Min. : 1 Min. :2010-02-19 Min. : 209986 Min. :0.00000
## 1st Qu.:12 1st Qu.:2010-10-22 1st Qu.: 553350 1st Qu.:0.00000
## Median :23 Median :2011-07-04 Median : 960746 Median :0.00000
## Mean :23 Mean :2011-06-30 Mean :1046965 Mean :0.06993
## 3rd Qu.:34 3rd Qu.:2012-03-16 3rd Qu.:1420159 3rd Qu.:0.00000
## Max. :45 Max. :2012-10-26 Max. :3818686 Max. :1.00000
## NA's :2565
## Temperature Fuel_Price CPI Unemployment
## Min. : -2.06 Min. :2.472 Min. :126.1 Min. : 3.879
## 1st Qu.: 47.46 1st Qu.:2.933 1st Qu.:131.7 1st Qu.: 6.891
## Median : 62.67 Median :3.445 Median :182.6 Median : 7.874
## Mean : 60.66 Mean :3.359 Mean :171.6 Mean : 7.999
## 3rd Qu.: 74.94 3rd Qu.:3.735 3rd Qu.:212.7 3rd Qu.: 8.622
## Max. :100.14 Max. :4.468 Max. :227.2 Max. :14.313
##
Conversión de variables
df$Year=format(df$Date, "%Y")
df$Year=as.integer(df$Year)
df$Month=format(df$Date, "%m")
df$Monthr=as.integer(df$Month)
df$Day=format(df$Date, "%d")
df$Day=as.integer(df$Day)
#df$WeekYear=format(df$Date, "%W")
#df$WeekYear=as.integer(df$WeekYear)
#df$WeekDay=format(df$Date, "%u")
#df$WeekDay=as.integer(df$WeekDay)
Modelo
regresion=lm(Weekly_Sales ~. , data=df)
summary(regresion)
##
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1257597 -377860 -46922 353118 2344499
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.649e+10 2.925e+10 0.906 0.3652
## Store -1.514e+04 6.681e+02 -22.657 < 2e-16 ***
## Date 3.670e+04 4.059e+04 0.904 0.3660
## Holiday_Flag -1.321e+05 5.283e+04 -2.500 0.0125 *
## Temperature -6.170e+02 8.634e+02 -0.715 0.4749
## Fuel_Price 7.974e+04 4.491e+04 1.776 0.0759 .
## CPI -2.166e+03 2.655e+02 -8.161 4.45e-16 ***
## Unemployment -2.772e+04 5.347e+03 -5.184 2.28e-07 ***
## Year -1.344e+07 1.485e+07 -0.905 0.3653
## Month02 -1.010e+06 1.271e+06 -0.795 0.4268
## Month03 -2.109e+06 2.429e+06 -0.868 0.3852
## Month04 -3.250e+06 3.690e+06 -0.881 0.3785
## Month05 -4.328e+06 4.907e+06 -0.882 0.3779
## Month06 -5.417e+06 6.162e+06 -0.879 0.3794
## Month07 -6.559e+06 7.378e+06 -0.889 0.3741
## Month08 -7.661e+06 8.639e+06 -0.887 0.3753
## Month09 -8.893e+06 9.897e+06 -0.899 0.3690
## Month10 -9.966e+06 1.111e+07 -0.897 0.3699
## Month11 -1.078e+07 1.237e+07 -0.872 0.3835
## Month12 -1.179e+07 1.359e+07 -0.868 0.3854
## Monthr NA NA NA NA
## Day -3.815e+04 4.071e+04 -0.937 0.3487
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 518300 on 3849 degrees of freedom
## (2565 observations deleted due to missingness)
## Multiple R-squared: 0.1743, Adjusted R-squared: 0.17
## F-statistic: 40.62 on 20 and 3849 DF, p-value: < 2.2e-16
Modelo ajustado
ajustada=df %>% select(-Store,-Day,-Year:-Day)
ajustada_regresion=lm(Weekly_Sales ~., data=ajustada)
summary(ajustada_regresion)
##
## Call:
## lm(formula = Weekly_Sales ~ ., data = ajustada)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1111688 -473110 -118330 390059 2800968
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2122065.27 724942.69 2.927 0.00344 **
## Date -26.74 53.23 -0.502 0.61545
## Holiday_Flag 172222.88 44490.26 3.871 0.00011 ***
## Temperature -989.33 541.15 -1.828 0.06760 .
## Fuel_Price -3705.97 33393.96 -0.111 0.91164
## CPI -1532.67 260.00 -5.895 4.07e-09 ***
## Unemployment -43842.71 5377.15 -8.154 4.73e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 560600 on 3863 degrees of freedom
## (2565 observations deleted due to missingness)
## Multiple R-squared: 0.03028, Adjusted R-squared: 0.02878
## F-statistic: 20.11 on 6 and 3863 DF, p-value: < 2.2e-16
LS0tCnRpdGxlOiAiUmVncmVzacOzbiBsaW5lYWwiCmF1dGhvcjogIkdhYnJpZWwgTWVkaW5hIC0gQTAxMjc1NzYzIgpkYXRlOiAiMjAyNC0wMi0yMCIKb3V0cHV0OgogIGh0bWxfZG9jdW1lbnQ6CiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUKICAgIHRvYzogeWVzCiAgICB0b2NfZmxvYXQ6IHllcwogICAgY29kZV9kb3dubG9hZDogeWVzCiAgICB0aGVtZTogcGFwZXIKICAgIGhpZ2hsaWdodDogdGFuZ28KICBwZGZfZG9jdW1lbnQ6CiAgICB0b2M6IHllcwotLS0KPHN0eWxlPgpoMSwgaDIsIGgzLCBoNCwgaDUsIGg2IHsKICBjb2xvcjogYmx1ZTsKfQouYXV0aG9yLCAuZGF0ZSB7CiAgY29sb3I6IGJsdWU7Cn0KPC9zdHlsZT4KCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+SW1wb3J0YXIgYmFzZSBkZSBkYXRvczwvc3Bhbj4KCiFbXSgvVXNlcnMvZ2FicmllbG1lZGluYS9Eb3dubG9hZHMvTTIvd2FsbWFydC5naWYpCgoKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpkZj0gcmVhZC5jc3YoIi9Vc2Vycy9nYWJyaWVsbWVkaW5hL0Rvd25sb2Fkcy9XYWxtYXJ0X1N0b3JlX3NhbGVzLmNzdiIpCnN1bW1hcnkoZGYpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij5BbsOhbGlzaXMgZXhwbG9yYXRvcmlvPC9zcGFuPgpgYGB7cn0KZGYkRGF0ZT1hcy5EYXRlKGRmJERhdGUsIGZvcm1hdD0iJWQtJW0tJVkiKQpzdHIoZGYpCmBgYApgYGB7cn0Kc3VtbWFyeShkZikKYGBgCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+Q29udmVyc2nDs24gZGUgdmFyaWFibGVzPC9zcGFuPgoKYGBge3J9CmRmJFllYXI9Zm9ybWF0KGRmJERhdGUsICIlWSIpCmRmJFllYXI9YXMuaW50ZWdlcihkZiRZZWFyKQoKZGYkTW9udGg9Zm9ybWF0KGRmJERhdGUsICIlbSIpCmRmJE1vbnRocj1hcy5pbnRlZ2VyKGRmJE1vbnRoKQoKZGYkRGF5PWZvcm1hdChkZiREYXRlLCAiJWQiKQpkZiREYXk9YXMuaW50ZWdlcihkZiREYXkpCgojZGYkV2Vla1llYXI9Zm9ybWF0KGRmJERhdGUsICIlVyIpCiNkZiRXZWVrWWVhcj1hcy5pbnRlZ2VyKGRmJFdlZWtZZWFyKQoKI2RmJFdlZWtEYXk9Zm9ybWF0KGRmJERhdGUsICIldSIpCiNkZiRXZWVrRGF5PWFzLmludGVnZXIoZGYkV2Vla0RheSkKCmBgYAoKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+TW9kZWxvPC9zcGFuPgpgYGB7cn0KcmVncmVzaW9uPWxtKFdlZWtseV9TYWxlcyB+LiAsIGRhdGE9ZGYpCnN1bW1hcnkocmVncmVzaW9uKQpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+TW9kZWxvIGFqdXN0YWRvPC9zcGFuPgoKYGBge3J9CmFqdXN0YWRhPWRmICU+JSBzZWxlY3QoLVN0b3JlLC1EYXksLVllYXI6LURheSkKYWp1c3RhZGFfcmVncmVzaW9uPWxtKFdlZWtseV9TYWxlcyB+LiwgZGF0YT1hanVzdGFkYSkKc3VtbWFyeShhanVzdGFkYV9yZWdyZXNpb24pCmBgYAoK