
Importar librerias
library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.1
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Importar base de datos
df=read.csv("/Users/genarorodriguezalcantara/Desktop/Tec/AI - Concentración/Módulo 2 - Machine Learning/BD/Walmart_Store_sales.csv")
head(df)
## Store Date Weekly_Sales Holiday_Flag Temperature Fuel_Price CPI
## 1 1 05-02-2010 1643691 0 42.31 2.572 211.0964
## 2 1 12-02-2010 1641957 1 38.51 2.548 211.2422
## 3 1 19-02-2010 1611968 0 39.93 2.514 211.2891
## 4 1 26-02-2010 1409728 0 46.63 2.561 211.3196
## 5 1 05-03-2010 1554807 0 46.50 2.625 211.3501
## 6 1 12-03-2010 1439542 0 57.79 2.667 211.3806
## Unemployment
## 1 8.106
## 2 8.106
## 3 8.106
## 4 8.106
## 5 8.106
## 6 8.106
Entender la base de datos
df$Date <- as.Date(df$Date, format = "%d-%m-%Y")
summary(df)
## Store Date Weekly_Sales Holiday_Flag
## Min. : 1 Min. :2010-02-05 Min. : 209986 Min. :0.00000
## 1st Qu.:12 1st Qu.:2010-10-08 1st Qu.: 553350 1st Qu.:0.00000
## Median :23 Median :2011-06-17 Median : 960746 Median :0.00000
## Mean :23 Mean :2011-06-17 Mean :1046965 Mean :0.06993
## 3rd Qu.:34 3rd Qu.:2012-02-24 3rd Qu.:1420159 3rd Qu.:0.00000
## Max. :45 Max. :2012-10-26 Max. :3818686 Max. :1.00000
## Temperature Fuel_Price CPI Unemployment
## Min. : -2.06 Min. :2.472 Min. :126.1 Min. : 3.879
## 1st Qu.: 47.46 1st Qu.:2.933 1st Qu.:131.7 1st Qu.: 6.891
## Median : 62.67 Median :3.445 Median :182.6 Median : 7.874
## Mean : 60.66 Mean :3.359 Mean :171.6 Mean : 7.999
## 3rd Qu.: 74.94 3rd Qu.:3.735 3rd Qu.:212.7 3rd Qu.: 8.622
## Max. :100.14 Max. :4.468 Max. :227.2 Max. :14.313
str(df)
## 'data.frame': 6435 obs. of 8 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: "2010-02-05" "2010-02-12" ...
## $ Weekly_Sales: num 1643691 1641957 1611968 1409728 1554807 ...
## $ Holiday_Flag: int 0 1 0 0 0 0 0 0 0 0 ...
## $ Temperature : num 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num 2.57 2.55 2.51 2.56 2.62 ...
## $ CPI : num 211 211 211 211 211 ...
## $ Unemployment: num 8.11 8.11 8.11 8.11 8.11 ...
sum(is.na(df))
## [1] 0
Agregar variables a la base de datos
df$Year <- format(df$Date, "%Y")
df$Year <- as.integer(df$Year)
df$Month <- format(df$Date, "%m")
df$Month <- as.integer(df$Month)
df$Day <- format(df$Date, "%d")
df$Day <- as.integer(df$Day)
df$Day <- format(df$Date, "%d")
df$Day <- as.integer(df$Day)
str(df)
## 'data.frame': 6435 obs. of 11 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: "2010-02-05" "2010-02-12" ...
## $ Weekly_Sales: num 1643691 1641957 1611968 1409728 1554807 ...
## $ Holiday_Flag: int 0 1 0 0 0 0 0 0 0 0 ...
## $ Temperature : num 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num 2.57 2.55 2.51 2.56 2.62 ...
## $ CPI : num 211 211 211 211 211 ...
## $ Unemployment: num 8.11 8.11 8.11 8.11 8.11 ...
## $ Year : int 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
## $ Month : int 2 2 2 2 3 3 3 3 4 4 ...
## $ Day : int 5 12 19 26 5 12 19 26 2 9 ...
#df$WeekYear <- format(df$Date, "%W") # Iniciando en lunes
#df$WeekYear <- as.integer(df$WeekYear)
#df$Weekday <- format(df$Date, "%u") Todas las ventas son declaradas cada viernes
#df$Weekday <- as.integer(df$Weekday)
#str(df)
Generar regresion lineal
regresion <- lm(Weekly_Sales ~., data = df)
summary(regresion)
##
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1094800 -382464 -42860 375406 2587123
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.384e+09 9.127e+09 -0.261 0.7940
## Store -1.538e+04 5.202e+02 -29.576 < 2e-16 ***
## Date -3.399e+03 1.266e+04 -0.268 0.7883
## Holiday_Flag 4.773e+04 2.706e+04 1.763 0.0779 .
## Temperature -1.817e+03 4.053e+02 -4.484 7.47e-06 ***
## Fuel_Price 6.124e+04 2.876e+04 2.130 0.0332 *
## CPI -2.109e+03 1.928e+02 -10.941 < 2e-16 ***
## Unemployment -2.209e+04 3.967e+03 -5.569 2.67e-08 ***
## Year 1.212e+06 4.633e+06 0.262 0.7937
## Month 1.177e+05 3.858e+05 0.305 0.7604
## Day 2.171e+03 1.269e+04 0.171 0.8642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared: 0.1495, Adjusted R-squared: 0.1482
## F-statistic: 113 on 10 and 6424 DF, p-value: < 2.2e-16
Ajustar Regresión Lineal
df_ajustada <- df %>% select(-Store, -Date, -Fuel_Price, -Year:-Day)
regresion_ajustada <- lm(Weekly_Sales ~., data = df_ajustada)
summary(regresion_ajustada)
##
## Call:
## lm(formula = Weekly_Sales ~ ., data = df_ajustada)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1020421 -477999 -115859 396128 2800875
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1687798.2 52515.7 32.139 < 2e-16 ***
## Holiday_Flag 75760.1 27605.3 2.744 0.00608 **
## Temperature -773.1 393.2 -1.966 0.04930 *
## CPI -1570.0 189.9 -8.267 < 2e-16 ***
## Unemployment -41235.7 3942.0 -10.460 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 557300 on 6430 degrees of freedom
## Multiple R-squared: 0.02538, Adjusted R-squared: 0.02477
## F-statistic: 41.86 on 4 and 6430 DF, p-value: < 2.2e-16

LS0tCnRpdGxlOiAiUmVncmVzacOzbiBMaW5lYWwgLSBXYWxtYXJ0IFNhbGVzIgphdXRob3I6ICJHZW5hcm8gUm9kcsOtZ3VleiBBbGPDoW50YXJhIC0gQTAwODMzMTcyIgpkYXRlOiAiMjAyNC0wMi0yNyIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OiAKICAgIHRvYzogVFJVRQogICAgdG9jX2Zsb2F0OiBUUlVFCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCiAgICB0aGVtZTogY2VydWxlYW4KLS0tCgohW10oL1VzZXJzL2dlbmFyb3JvZHJpZ3VlemFsY2FudGFyYS9EZXNrdG9wL1RlYy9BSSAtIENvbmNlbnRyYWNpb8yBbi9Nb8yBZHVsbyAyIC0gTWFjaGluZSBMZWFybmluZy9CRC93YWwtc3VwcGx5Y2hhaW5oaXJpbmdnaWYtdjUuZ2lmKQoKIyBJbXBvcnRhciBsaWJyZXJpYXMKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpgYGAKCgojIEltcG9ydGFyIGJhc2UgZGUgZGF0b3MKYGBge3J9CmRmPXJlYWQuY3N2KCIvVXNlcnMvZ2VuYXJvcm9kcmlndWV6YWxjYW50YXJhL0Rlc2t0b3AvVGVjL0FJIC0gQ29uY2VudHJhY2lvzIFuL01vzIFkdWxvIDIgLSBNYWNoaW5lIExlYXJuaW5nL0JEL1dhbG1hcnRfU3RvcmVfc2FsZXMuY3N2IikKaGVhZChkZikgCmBgYAoKIyBFbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zCmBgYHtyfQpkZiREYXRlIDwtIGFzLkRhdGUoZGYkRGF0ZSwgZm9ybWF0ID0gIiVkLSVtLSVZIikKc3VtbWFyeShkZikKc3RyKGRmKQpzdW0oaXMubmEoZGYpKQpgYGAKCiMgQWdyZWdhciB2YXJpYWJsZXMgYSBsYSBiYXNlIGRlIGRhdG9zCmBgYHtyfQpkZiRZZWFyIDwtIGZvcm1hdChkZiREYXRlLCAiJVkiKQpkZiRZZWFyIDwtIGFzLmludGVnZXIoZGYkWWVhcikKCmRmJE1vbnRoIDwtIGZvcm1hdChkZiREYXRlLCAiJW0iKQpkZiRNb250aCA8LSBhcy5pbnRlZ2VyKGRmJE1vbnRoKQoKZGYkRGF5IDwtIGZvcm1hdChkZiREYXRlLCAiJWQiKQpkZiREYXkgPC0gYXMuaW50ZWdlcihkZiREYXkpCgpkZiREYXkgPC0gZm9ybWF0KGRmJERhdGUsICIlZCIpCmRmJERheSA8LSBhcy5pbnRlZ2VyKGRmJERheSkKc3RyKGRmKQoKI2RmJFdlZWtZZWFyIDwtIGZvcm1hdChkZiREYXRlLCAiJVciKSAjIEluaWNpYW5kbyBlbiBsdW5lcwojZGYkV2Vla1llYXIgPC0gYXMuaW50ZWdlcihkZiRXZWVrWWVhcikKCiNkZiRXZWVrZGF5IDwtIGZvcm1hdChkZiREYXRlLCAiJXUiKSBUb2RhcyBsYXMgdmVudGFzIHNvbiBkZWNsYXJhZGFzIGNhZGEgdmllcm5lcwojZGYkV2Vla2RheSA8LSBhcy5pbnRlZ2VyKGRmJFdlZWtkYXkpCiNzdHIoZGYpCmBgYAoKIyBHZW5lcmFyIHJlZ3Jlc2lvbiBsaW5lYWwKYGBge3J9CnJlZ3Jlc2lvbiA8LSBsbShXZWVrbHlfU2FsZXMgfi4sIGRhdGEgPSBkZikKc3VtbWFyeShyZWdyZXNpb24pCmBgYAojIEFqdXN0YXIgUmVncmVzacOzbiBMaW5lYWwKYGBge3J9CmRmX2FqdXN0YWRhIDwtIGRmICU+JSBzZWxlY3QoLVN0b3JlLCAtRGF0ZSwgLUZ1ZWxfUHJpY2UsIC1ZZWFyOi1EYXkpCnJlZ3Jlc2lvbl9hanVzdGFkYSA8LSBsbShXZWVrbHlfU2FsZXMgfi4sIGRhdGEgPSBkZl9hanVzdGFkYSkKc3VtbWFyeShyZWdyZXNpb25fYWp1c3RhZGEpCmBgYAoKIVtdKC9Vc2Vycy9nZW5hcm9yb2RyaWd1ZXphbGNhbnRhcmEvRGVza3RvcC9UZWMvQUkgLSBDb25jZW50cmFjaW/MgW4vTW/MgWR1bG8gMiAtIE1hY2hpbmUgTGVhcm5pbmcvQkQvd2FsbWFydC1raWQuZ2lmKQ==