Importar librerias

library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.1
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Importar base de datos

df=read.csv("/Users/genarorodriguezalcantara/Desktop/Tec/AI - Concentración/Módulo 2 - Machine Learning/BD/Walmart_Store_sales.csv")
head(df) 
##   Store       Date Weekly_Sales Holiday_Flag Temperature Fuel_Price      CPI
## 1     1 05-02-2010      1643691            0       42.31      2.572 211.0964
## 2     1 12-02-2010      1641957            1       38.51      2.548 211.2422
## 3     1 19-02-2010      1611968            0       39.93      2.514 211.2891
## 4     1 26-02-2010      1409728            0       46.63      2.561 211.3196
## 5     1 05-03-2010      1554807            0       46.50      2.625 211.3501
## 6     1 12-03-2010      1439542            0       57.79      2.667 211.3806
##   Unemployment
## 1        8.106
## 2        8.106
## 3        8.106
## 4        8.106
## 5        8.106
## 6        8.106

Entender la base de datos

df$Date <- as.Date(df$Date, format = "%d-%m-%Y")
summary(df)
##      Store         Date             Weekly_Sales      Holiday_Flag    
##  Min.   : 1   Min.   :2010-02-05   Min.   : 209986   Min.   :0.00000  
##  1st Qu.:12   1st Qu.:2010-10-08   1st Qu.: 553350   1st Qu.:0.00000  
##  Median :23   Median :2011-06-17   Median : 960746   Median :0.00000  
##  Mean   :23   Mean   :2011-06-17   Mean   :1046965   Mean   :0.06993  
##  3rd Qu.:34   3rd Qu.:2012-02-24   3rd Qu.:1420159   3rd Qu.:0.00000  
##  Max.   :45   Max.   :2012-10-26   Max.   :3818686   Max.   :1.00000  
##   Temperature       Fuel_Price         CPI         Unemployment   
##  Min.   : -2.06   Min.   :2.472   Min.   :126.1   Min.   : 3.879  
##  1st Qu.: 47.46   1st Qu.:2.933   1st Qu.:131.7   1st Qu.: 6.891  
##  Median : 62.67   Median :3.445   Median :182.6   Median : 7.874  
##  Mean   : 60.66   Mean   :3.359   Mean   :171.6   Mean   : 7.999  
##  3rd Qu.: 74.94   3rd Qu.:3.735   3rd Qu.:212.7   3rd Qu.: 8.622  
##  Max.   :100.14   Max.   :4.468   Max.   :227.2   Max.   :14.313
str(df)
## 'data.frame':    6435 obs. of  8 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : Date, format: "2010-02-05" "2010-02-12" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...
sum(is.na(df))
## [1] 0

Agregar variables a la base de datos

df$Year <- format(df$Date, "%Y")
df$Year <- as.integer(df$Year)

df$Month <- format(df$Date, "%m")
df$Month <- as.integer(df$Month)

df$Day <- format(df$Date, "%d")
df$Day <- as.integer(df$Day)

df$Day <- format(df$Date, "%d")
df$Day <- as.integer(df$Day)
str(df)
## 'data.frame':    6435 obs. of  11 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : Date, format: "2010-02-05" "2010-02-12" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...
##  $ Year        : int  2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
##  $ Month       : int  2 2 2 2 3 3 3 3 4 4 ...
##  $ Day         : int  5 12 19 26 5 12 19 26 2 9 ...
#df$WeekYear <- format(df$Date, "%W") # Iniciando en lunes
#df$WeekYear <- as.integer(df$WeekYear)

#df$Weekday <- format(df$Date, "%u") Todas las ventas son declaradas cada viernes
#df$Weekday <- as.integer(df$Weekday)
#str(df)

Generar regresion lineal

regresion <- lm(Weekly_Sales ~., data = df)
summary(regresion)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1094800  -382464   -42860   375406  2587123 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2.384e+09  9.127e+09  -0.261   0.7940    
## Store        -1.538e+04  5.202e+02 -29.576  < 2e-16 ***
## Date         -3.399e+03  1.266e+04  -0.268   0.7883    
## Holiday_Flag  4.773e+04  2.706e+04   1.763   0.0779 .  
## Temperature  -1.817e+03  4.053e+02  -4.484 7.47e-06 ***
## Fuel_Price    6.124e+04  2.876e+04   2.130   0.0332 *  
## CPI          -2.109e+03  1.928e+02 -10.941  < 2e-16 ***
## Unemployment -2.209e+04  3.967e+03  -5.569 2.67e-08 ***
## Year          1.212e+06  4.633e+06   0.262   0.7937    
## Month         1.177e+05  3.858e+05   0.305   0.7604    
## Day           2.171e+03  1.269e+04   0.171   0.8642    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared:  0.1495, Adjusted R-squared:  0.1482 
## F-statistic:   113 on 10 and 6424 DF,  p-value: < 2.2e-16

Ajustar Regresión Lineal

df_ajustada <- df %>% select(-Store, -Date, -Fuel_Price, -Year:-Day)
regresion_ajustada <- lm(Weekly_Sales ~., data = df_ajustada)
summary(regresion_ajustada)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df_ajustada)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1020421  -477999  -115859   396128  2800875 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1687798.2    52515.7  32.139  < 2e-16 ***
## Holiday_Flag   75760.1    27605.3   2.744  0.00608 ** 
## Temperature     -773.1      393.2  -1.966  0.04930 *  
## CPI            -1570.0      189.9  -8.267  < 2e-16 ***
## Unemployment  -41235.7     3942.0 -10.460  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 557300 on 6430 degrees of freedom
## Multiple R-squared:  0.02538,    Adjusted R-squared:  0.02477 
## F-statistic: 41.86 on 4 and 6430 DF,  p-value: < 2.2e-16

LS0tCnRpdGxlOiAiUmVncmVzacOzbiBMaW5lYWwgLSBXYWxtYXJ0IFNhbGVzIgphdXRob3I6ICJHZW5hcm8gUm9kcsOtZ3VleiBBbGPDoW50YXJhIC0gQTAwODMzMTcyIgpkYXRlOiAiMjAyNC0wMi0yNyIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OiAKICAgIHRvYzogVFJVRQogICAgdG9jX2Zsb2F0OiBUUlVFCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCiAgICB0aGVtZTogY2VydWxlYW4KLS0tCgohW10oL1VzZXJzL2dlbmFyb3JvZHJpZ3VlemFsY2FudGFyYS9EZXNrdG9wL1RlYy9BSSAtIENvbmNlbnRyYWNpb8yBbi9Nb8yBZHVsbyAyIC0gTWFjaGluZSBMZWFybmluZy9CRC93YWwtc3VwcGx5Y2hhaW5oaXJpbmdnaWYtdjUuZ2lmKQoKIyBJbXBvcnRhciBsaWJyZXJpYXMKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpgYGAKCgojIEltcG9ydGFyIGJhc2UgZGUgZGF0b3MKYGBge3J9CmRmPXJlYWQuY3N2KCIvVXNlcnMvZ2VuYXJvcm9kcmlndWV6YWxjYW50YXJhL0Rlc2t0b3AvVGVjL0FJIC0gQ29uY2VudHJhY2lvzIFuL01vzIFkdWxvIDIgLSBNYWNoaW5lIExlYXJuaW5nL0JEL1dhbG1hcnRfU3RvcmVfc2FsZXMuY3N2IikKaGVhZChkZikgCmBgYAoKIyBFbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zCmBgYHtyfQpkZiREYXRlIDwtIGFzLkRhdGUoZGYkRGF0ZSwgZm9ybWF0ID0gIiVkLSVtLSVZIikKc3VtbWFyeShkZikKc3RyKGRmKQpzdW0oaXMubmEoZGYpKQpgYGAKCiMgQWdyZWdhciB2YXJpYWJsZXMgYSBsYSBiYXNlIGRlIGRhdG9zCmBgYHtyfQpkZiRZZWFyIDwtIGZvcm1hdChkZiREYXRlLCAiJVkiKQpkZiRZZWFyIDwtIGFzLmludGVnZXIoZGYkWWVhcikKCmRmJE1vbnRoIDwtIGZvcm1hdChkZiREYXRlLCAiJW0iKQpkZiRNb250aCA8LSBhcy5pbnRlZ2VyKGRmJE1vbnRoKQoKZGYkRGF5IDwtIGZvcm1hdChkZiREYXRlLCAiJWQiKQpkZiREYXkgPC0gYXMuaW50ZWdlcihkZiREYXkpCgpkZiREYXkgPC0gZm9ybWF0KGRmJERhdGUsICIlZCIpCmRmJERheSA8LSBhcy5pbnRlZ2VyKGRmJERheSkKc3RyKGRmKQoKI2RmJFdlZWtZZWFyIDwtIGZvcm1hdChkZiREYXRlLCAiJVciKSAjIEluaWNpYW5kbyBlbiBsdW5lcwojZGYkV2Vla1llYXIgPC0gYXMuaW50ZWdlcihkZiRXZWVrWWVhcikKCiNkZiRXZWVrZGF5IDwtIGZvcm1hdChkZiREYXRlLCAiJXUiKSBUb2RhcyBsYXMgdmVudGFzIHNvbiBkZWNsYXJhZGFzIGNhZGEgdmllcm5lcwojZGYkV2Vla2RheSA8LSBhcy5pbnRlZ2VyKGRmJFdlZWtkYXkpCiNzdHIoZGYpCmBgYAoKIyBHZW5lcmFyIHJlZ3Jlc2lvbiBsaW5lYWwKYGBge3J9CnJlZ3Jlc2lvbiA8LSBsbShXZWVrbHlfU2FsZXMgfi4sIGRhdGEgPSBkZikKc3VtbWFyeShyZWdyZXNpb24pCmBgYAojIEFqdXN0YXIgUmVncmVzacOzbiBMaW5lYWwKYGBge3J9CmRmX2FqdXN0YWRhIDwtIGRmICU+JSBzZWxlY3QoLVN0b3JlLCAtRGF0ZSwgLUZ1ZWxfUHJpY2UsIC1ZZWFyOi1EYXkpCnJlZ3Jlc2lvbl9hanVzdGFkYSA8LSBsbShXZWVrbHlfU2FsZXMgfi4sIGRhdGEgPSBkZl9hanVzdGFkYSkKc3VtbWFyeShyZWdyZXNpb25fYWp1c3RhZGEpCmBgYAoKIVtdKC9Vc2Vycy9nZW5hcm9yb2RyaWd1ZXphbGNhbnRhcmEvRGVza3RvcC9UZWMvQUkgLSBDb25jZW50cmFjaW/MgW4vTW/MgWR1bG8gMiAtIE1hY2hpbmUgTGVhcm5pbmcvQkQvd2FsbWFydC1raWQuZ2lmKQ==