Importing global temperature data

From https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/globe/land_ocean/12/9/1999-2024?trend=true&trend_base=10&begtrendyear=1999&endtrendyear=2024

Temp <- read.csv('https://raw.githubusercontent.com/Kingtilon1/DATA608/main/data%20-%20data.csv')
glimpse(Temp)
## Rows: 36
## Columns: 2
## $ Year    <int> 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 19…
## $ Anomaly <dbl> 0.20, 0.33, 0.19, 0.16, 0.23, 0.36, 0.37, 0.31, 0.45, 0.42, 0.…

This table is storing two things, the Year(Year) and the corresponding change in the earths temperature in Celsius(Anomaly) relative to to the 1991-2020 average, which is 14.4 degrees Celsius or 57.92 degrees Fahrenheit

I will change the column name to Change.In.Temp for ease of reading

Temp <- subset(Temp, Year < 1983 | Year > 1992)
colnames(Temp)[2] <- "Change.In.Temp"
Temp
##    Year Change.In.Temp
## 11 1993           0.23
## 12 1994           0.26
## 13 1995           0.35
## 14 1996           0.46
## 15 1997           0.35
## 16 1998           0.51
## 17 1999           0.62
## 18 2000           0.40
## 19 2001           0.42
## 20 2002           0.57
## 21 2003           0.62
## 22 2004           0.62
## 23 2005           0.57
## 24 2006           0.68
## 25 2007           0.68
## 26 2008           0.59
## 27 2009           0.58
## 28 2010           0.68
## 29 2011           0.72
## 30 2012           0.61
## 31 2013           0.67
## 32 2014           0.69
## 33 2015           0.76
## 34 2016           0.95
## 35 2017           1.02
## 36 2018           0.92

Lets Convert the tempurature under Change.In.Temp to Farenheit

Temp$Change.In.Temp <- celsius.to.fahrenheit(Temp$Change.In.Temp)
Temp
##    Year Change.In.Temp
## 11 1993          32.41
## 12 1994          32.47
## 13 1995          32.63
## 14 1996          32.83
## 15 1997          32.63
## 16 1998          32.92
## 17 1999          33.12
## 18 2000          32.72
## 19 2001          32.76
## 20 2002          33.03
## 21 2003          33.12
## 22 2004          33.12
## 23 2005          33.03
## 24 2006          33.22
## 25 2007          33.22
## 26 2008          33.06
## 27 2009          33.04
## 28 2010          33.22
## 29 2011          33.30
## 30 2012          33.10
## 31 2013          33.21
## 32 2014          33.24
## 33 2015          33.37
## 34 2016          33.71
## 35 2017          33.84
## 36 2018          33.66

What is the trend of the Global temperature within those 25 years?

p <- ggplot(Temp, aes(Year, Change.In.Temp, fill = Year)) + 
  geom_bar(stat = "identity") +
  ggtitle("Bar Chart with changed factor levels")

ggplotly(p)

The Bar chart shows a slight increase, but lets use a line chart to better visualize if there is a positive trend

p <- Temp %>%
    ggplot(aes(x = Year, y = Change.In.Temp)) +
    geom_line(color = palette_light()[[1]]) + 
    scale_y_continuous() +
  geom_smooth(method = "lm") +
    labs(title = "Trend in Global Temperature Over Time", 
         subtitle = "Continuous Scale", 
         y = "Change in Temperature(in Farenheit)", x = "Year") + 
    theme_tq()

ggplotly(p)
## `geom_smooth()` using formula = 'y ~ x'

Here we can see that there is a positive trend in changes in the Earths Temperature

Importing Hurricae Number over the years, and intesity

From https://www.epa.gov/climate-indicators/climate-change-indicators-tropical-cyclone-activity

HurNum<-read.csv('https://raw.githubusercontent.com/Kingtilon1/DATA608/main/Num.of.hurricanes.csv')
HurInt<-read.csv('https://raw.githubusercontent.com/Kingtilon1/DATA608/main/cyclone.ace.index.csv')

Removing rows to only have data from 1993 to 2018

HurNum <- subset(HurNum, Year < 1880 | Year > 1992)
HurNum
##     Year Total.hurricanes..adjusted. Total.hurricanes..unadjusted.
## 114 1993                         5.2                           5.2
## 115 1994                         6.2                           6.2
## 116 1995                         6.0                           6.0
## 117 1996                         7.2                           7.2
## 118 1997                         8.2                           8.2
## 119 1998                         7.6                           7.6
## 120 1999                         7.6                           7.6
## 121 2000                         7.8                           7.8
## 122 2001                         7.2                           7.2
## 123 2002                         7.4                           7.4
## 124 2003                         8.8                           8.8
## 125 2004                         8.0                           8.0
## 126 2005                         8.4                           8.4
## 127 2006                         8.6                           8.6
## 128 2007                         7.4                           7.4
## 129 2008                         6.8                           6.8
## 130 2009                         7.2                           7.2
## 131 2010                         8.0                           8.0
## 132 2011                         6.8                           6.8
## 133 2012                         7.4                           7.4
## 134 2013                         5.8                           5.8
## 135 2014                         5.8                           5.8
## 136 2015                         5.8                           5.8
## 137 2016                         7.0                           7.0
## 138 2017                         7.0                           7.0
## 139 2018                         8.8                           8.8
##     Hurricanes.reaching.the.United.States
## 114                                   1.0
## 115                                   1.2
## 116                                   1.2
## 117                                   1.6
## 118                                   2.2
## 119                                   1.8
## 120                                   1.4
## 121                                   1.4
## 122                                   1.2
## 123                                   1.8
## 124                                   3.0
## 125                                   3.0
## 126                                   3.0
## 127                                   3.2
## 128                                   2.0
## 129                                   0.8
## 130                                   1.0
## 131                                   1.2
## 132                                   0.6
## 133                                   0.8
## 134                                   0.8
## 135                                   1.0
## 136                                   1.2
## 137                                   1.6
## 138                                   1.8
## 139                                   3.0
HurInt <- subset(HurInt, (Year < 1950 | Year > 1992) & !(Year %in% c(2019, 2020)))
HurInt
##    Year Adjusted.ACE.Index..as...of.1981.2010.median.
## 44 1993                                      42.16216
## 45 1994                                      34.59459
## 46 1995                                     246.48649
## 47 1996                                     179.45946
## 48 1997                                      44.32432
## 49 1998                                     196.75676
## 50 1999                                     191.35135
## 51 2000                                     128.64865
## 52 2001                                     118.91892
## 53 2002                                      72.43243
## 54 2003                                     190.27027
## 55 2004                                     245.40541
## 56 2005                                     270.27027
## 57 2006                                      85.40541
## 58 2007                                      80.00000
## 59 2008                                     157.83784
## 60 2009                                      57.29730
## 61 2010                                     178.37838
## 62 2011                                     136.21622
## 63 2012                                     139.45946
## 64 2013                                      38.91892
## 65 2014                                      72.43243
## 66 2015                                      68.10811
## 67 2016                                     152.43243
## 68 2017                                     241.08108
## 69 2018                                     144.86486

I will now combine all the data frames by their matching column, ‘Year’

merged_data <- merge(Temp, HurInt, by = "Year", all = TRUE)
merged_data <- merge(merged_data, HurNum, by = "Year", all = TRUE)
head(merged_data)
##   Year Change.In.Temp Adjusted.ACE.Index..as...of.1981.2010.median.
## 1 1993          32.41                                      42.16216
## 2 1994          32.47                                      34.59459
## 3 1995          32.63                                     246.48649
## 4 1996          32.83                                     179.45946
## 5 1997          32.63                                      44.32432
## 6 1998          32.92                                     196.75676
##   Total.hurricanes..adjusted. Total.hurricanes..unadjusted.
## 1                         5.2                           5.2
## 2                         6.2                           6.2
## 3                         6.0                           6.0
## 4                         7.2                           7.2
## 5                         8.2                           8.2
## 6                         7.6                           7.6
##   Hurricanes.reaching.the.United.States
## 1                                   1.0
## 2                                   1.2
## 3                                   1.2
## 4                                   1.6
## 5                                   2.2
## 6                                   1.8

What is the trend of Hurricane occurences within the 25 years?

p <- merged_data %>%
    ggplot(aes(x = Year, y = Total.hurricanes..adjusted.)) +
    geom_line(color = palette_light()[[1]]) + 
    scale_y_continuous() +
    labs(title = "Trend of Hurricane occurences", 
         subtitle = "Continuous Scale", 
         y = "Number of Hurricane occurences", x = "Year") + 
    theme_tq()

ggplotly(p)

There doesn’t seem to be a linear trend in the amount of hurricanes over time like there is with the increase in global temperature, but notice how in the years where there is a trough(the point before a rapid spike) in global temperature like 1997, 2005 or 2017, there was also spikes in the amount of hurricane occurrences

What is the strength of Hurricane occurences within the 25 years?

The total annual Accumulated Cyclone Energy (ACE) Index values, shows the median cyclone strength, duration, and frequency, from 1993 to 2018

p <- merged_data %>%
    ggplot(aes(x = Year, y = Adjusted.ACE.Index..as...of.1981.2010.median.)) +
    geom_line(color = palette_light()[[1]]) + 
    scale_y_continuous() +
    labs(title = "Trend of Hurricane occurences", 
         subtitle = "Continuous Scale", 
         y = "Number of Hurricane occurences", x = "Year") + 
    theme_tq()

ggplotly(p)

Again, here doesn’t seem to be a linear trend in the strength of hurricanes over time like there is with the increase in global temperature, but notice how in the years where there is a trough(the point before a rapid spike) in global temperature like 1997, 2005 or 2017, there was also spikes in the median strength of hurricanes

correlation_matrix <- cor(merged_data[c("Adjusted.ACE.Index..as...of.1981.2010.median.", "Total.hurricanes..adjusted.", "Change.In.Temp")])
correlation_df <- datatable(correlation_matrix)

correlation_df
ggpairs(merged_data[c("Adjusted.ACE.Index..as...of.1981.2010.median.", "Total.hurricanes..adjusted.", "Change.In.Temp")])

Conclusion Diagonal (Always 1): Each variable’s correlation with itself is always 1, indicating perfect correlation. Adjusted ACE Index vs. Total Hurricanes (0.386): Moderate positive correlation suggests that more intense hurricanes may lead to more hurricanes overall, but the relationship isn’t very strong. Adjusted ACE Index vs. Change in Temp (0.246): Weak positive correlation indicates that as intense hurricanes increase, there might be a slight increase in temperature, but the relationship isn’t very strong. Total Hurricanes vs. Change in Temp (0.219): Weak positive correlation suggests that as the total number of hurricanes rises, there might be a slight increase in temperature, but the connection isn’t very strong. Overall, these correlations suggest some links between hurricane intensity, the number of hurricanes, and changes in temperature, but other factors may also play a role.