El paquete caret (Calsification and regression training) es un paquete integral con una amplia variedad de algoritmos para el aprendizaje automático.
# install.packages("caret") # Algoritmos de aprendizaje automático
library(caret)
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.3.2
## Loading required package: lattice
# install.packages("ggplot2") # Graficar con mejor diseño
library(ggplot2)
# install.packages("lattice") # Crear gráficos
library(lattice)
# install.packages("datasets") # Usar la base de datos "Iris"
library(datasets)
# install.packages("DataExplorer")
library(DataExplorer)
## Warning: package 'DataExplorer' was built under R version 4.3.2
#install.packages("mlbench")
library(mlbench)
data("BreastCancer")
df <- data.frame(BreastCancer)
summary(df)
## Id Cl.thickness Cell.size Cell.shape Marg.adhesion
## Length:699 1 :145 1 :384 1 :353 1 :407
## Class :character 5 :130 10 : 67 2 : 59 2 : 58
## Mode :character 3 :108 3 : 52 10 : 58 3 : 58
## 4 : 80 2 : 45 3 : 56 10 : 55
## 10 : 69 4 : 40 4 : 44 4 : 33
## 2 : 50 5 : 30 5 : 34 8 : 25
## (Other):117 (Other): 81 (Other): 95 (Other): 63
## Epith.c.size Bare.nuclei Bl.cromatin Normal.nucleoli Mitoses
## 2 :386 1 :402 2 :166 1 :443 1 :579
## 3 : 72 10 :132 3 :165 10 : 61 2 : 35
## 4 : 48 2 : 30 1 :152 3 : 44 3 : 33
## 1 : 47 5 : 30 7 : 73 2 : 36 10 : 14
## 6 : 41 3 : 28 4 : 40 8 : 24 4 : 12
## 5 : 39 (Other): 61 5 : 34 6 : 22 7 : 9
## (Other): 66 NA's : 16 (Other): 69 (Other): 69 (Other): 17
## Class
## benign :458
## malignant:241
##
##
##
##
##
str(df)
## 'data.frame': 699 obs. of 11 variables:
## $ Id : chr "1000025" "1002945" "1015425" "1016277" ...
## $ Cl.thickness : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 5 5 3 6 4 8 1 2 2 4 ...
## $ Cell.size : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 4 1 8 1 10 1 1 1 2 ...
## $ Cell.shape : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 4 1 8 1 10 1 2 1 1 ...
## $ Marg.adhesion : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 5 1 1 3 8 1 1 1 1 ...
## $ Epith.c.size : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 2 7 2 3 2 7 2 2 2 2 ...
## $ Bare.nuclei : Factor w/ 10 levels "1","2","3","4",..: 1 10 2 4 1 10 10 1 1 1 ...
## $ Bl.cromatin : Factor w/ 10 levels "1","2","3","4",..: 3 3 3 3 3 9 3 3 1 2 ...
## $ Normal.nucleoli: Factor w/ 10 levels "1","2","3","4",..: 1 2 1 7 1 7 1 1 1 1 ...
## $ Mitoses : Factor w/ 9 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 5 1 ...
## $ Class : Factor w/ 2 levels "benign","malignant": 1 1 1 1 1 2 1 1 1 1 ...
# create_report(df)
sum(is.na(df))
## [1] 16
df <- na.omit(df)
df <- subset(df, select = -Id)
df$Class <- ifelse(df$Class == "benign", 1, 0)
df$Cl.thickness <- as.numeric(df$Cl.thickness)
df$Cell.size <- as.numeric(df$Cell.size)
df$Cell.shape <- as.numeric(df$Cell.shape)
df$Marg.adhesion <- as.numeric(df$Marg.adhesion)
df$Epith.c.size <- as.numeric(df$Epith.c.size)
df$Bare.nuclei <- as.numeric(df$Bare.nuclei)
df$Bl.cromatin <- as.numeric(df$Bl.cromatin)
df$Normal.nucleoli <- as.numeric(df$Normal.nucleoli)
df$Mitoses <- as.numeric(df$Mitoses)
df$Class <- as.factor(df$Class)
Nota: la variable que queremos predecir debe tener formato de factor.
set.seed(123)
renglones_entrenamiento <- createDataPartition(df$Class, p=0.8, list = FALSE)
entrenamiento <- df[renglones_entrenamiento, ]
prueba <- df[-renglones_entrenamiento, ]
Los métodos más utilizados para modelar aprendizajes automático son:
modelo1 <- train(Class ~ ., data = entrenamiento,
method = "svmLinear",
preProcess = c("scale", "center"),
trControl = trainControl(method="cv", number = 10),
tuneGrid = data.frame(C=1) # Cuando es svmLineal
)
resultado_entrenamiento1 <- predict(modelo1, entrenamiento)
resultado_prueba1 <- predict(modelo1, prueba)
# Matriz de Confusión
mcre1 <- confusionMatrix(resultado_entrenamiento1, entrenamiento$Class) # Matriz de Confusión de Resultados del Entrenamiento
mcre1
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 187 11
## 1 5 345
##
## Accuracy : 0.9708
## 95% CI : (0.953, 0.9832)
## No Information Rate : 0.6496
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9363
##
## Mcnemar's Test P-Value : 0.2113
##
## Sensitivity : 0.9740
## Specificity : 0.9691
## Pos Pred Value : 0.9444
## Neg Pred Value : 0.9857
## Prevalence : 0.3504
## Detection Rate : 0.3412
## Detection Prevalence : 0.3613
## Balanced Accuracy : 0.9715
##
## 'Positive' Class : 0
##
mcrp1 <- confusionMatrix(resultado_prueba1, prueba$Class) # Matriz de Confusión de Resultados de la prueba
mcrp1
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 44 1
## 1 3 87
##
## Accuracy : 0.9704
## 95% CI : (0.9259, 0.9919)
## No Information Rate : 0.6519
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9341
##
## Mcnemar's Test P-Value : 0.6171
##
## Sensitivity : 0.9362
## Specificity : 0.9886
## Pos Pred Value : 0.9778
## Neg Pred Value : 0.9667
## Prevalence : 0.3481
## Detection Rate : 0.3259
## Detection Prevalence : 0.3333
## Balanced Accuracy : 0.9624
##
## 'Positive' Class : 0
##
modelo2 <- train(Class ~ ., data = entrenamiento,
method = "svmRadial",
preProcess = c("scale", "center"),
trControl = trainControl(method="cv", number = 10),
tuneGrid = data.frame(sigma = 1 , C=1) # Cambiar
)
resultado_entrenamiento2 <- predict(modelo2, entrenamiento)
resultado_prueba2 <- predict(modelo2, prueba)
# Matriz de Confusión
mcre2 <- confusionMatrix(resultado_entrenamiento2, entrenamiento$Class) # Matriz de Confusión de Resultados del Entrenamiento
mcre2
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 192 2
## 1 0 354
##
## Accuracy : 0.9964
## 95% CI : (0.9869, 0.9996)
## No Information Rate : 0.6496
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.992
##
## Mcnemar's Test P-Value : 0.4795
##
## Sensitivity : 1.0000
## Specificity : 0.9944
## Pos Pred Value : 0.9897
## Neg Pred Value : 1.0000
## Prevalence : 0.3504
## Detection Rate : 0.3504
## Detection Prevalence : 0.3540
## Balanced Accuracy : 0.9972
##
## 'Positive' Class : 0
##
mcrp2 <- confusionMatrix(resultado_prueba2, prueba$Class) # Matriz de Confusión de Resultados de la prueba
mcrp2
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 46 7
## 1 1 81
##
## Accuracy : 0.9407
## 95% CI : (0.8866, 0.9741)
## No Information Rate : 0.6519
## P-Value [Acc > NIR] : 1.347e-15
##
## Kappa : 0.8732
##
## Mcnemar's Test P-Value : 0.0771
##
## Sensitivity : 0.9787
## Specificity : 0.9205
## Pos Pred Value : 0.8679
## Neg Pred Value : 0.9878
## Prevalence : 0.3481
## Detection Rate : 0.3407
## Detection Prevalence : 0.3926
## Balanced Accuracy : 0.9496
##
## 'Positive' Class : 0
##
modelo3 <- train(Class ~ ., data = entrenamiento,
method = "svmPoly",
preProcess = c("scale", "center"),
trControl = trainControl(method="cv", number = 10),
tuneGrid = data.frame(degree = 1 , scale = 1, C=1) # Cambiar
)
resultado_entrenamiento3 <- predict(modelo3, entrenamiento)
resultado_prueba3 <- predict(modelo3, prueba)
# Matriz de Confusión
mcre3 <- confusionMatrix(resultado_entrenamiento3, entrenamiento$Class) # Matriz de Confusión de Resultados del Entrenamiento
mcre3
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 187 11
## 1 5 345
##
## Accuracy : 0.9708
## 95% CI : (0.953, 0.9832)
## No Information Rate : 0.6496
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9363
##
## Mcnemar's Test P-Value : 0.2113
##
## Sensitivity : 0.9740
## Specificity : 0.9691
## Pos Pred Value : 0.9444
## Neg Pred Value : 0.9857
## Prevalence : 0.3504
## Detection Rate : 0.3412
## Detection Prevalence : 0.3613
## Balanced Accuracy : 0.9715
##
## 'Positive' Class : 0
##
mcrp3 <- confusionMatrix(resultado_prueba3, prueba$Class) # Matriz de Confusión de Resultados de la prueba
mcrp3
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 44 1
## 1 3 87
##
## Accuracy : 0.9704
## 95% CI : (0.9259, 0.9919)
## No Information Rate : 0.6519
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9341
##
## Mcnemar's Test P-Value : 0.6171
##
## Sensitivity : 0.9362
## Specificity : 0.9886
## Pos Pred Value : 0.9778
## Neg Pred Value : 0.9667
## Prevalence : 0.3481
## Detection Rate : 0.3259
## Detection Prevalence : 0.3333
## Balanced Accuracy : 0.9624
##
## 'Positive' Class : 0
##
modelo4 <- train(Class ~ ., data = entrenamiento,
method = "rpart",
preProcess = c("scale", "center"),
trControl = trainControl(method="cv", number = 10),
tuneLength = 10 # Cambiar
)
resultado_entrenamiento4 <- predict(modelo4, entrenamiento)
resultado_prueba4 <- predict(modelo4, prueba)
# Matriz de Confusión
mcre4 <- confusionMatrix(resultado_entrenamiento4, entrenamiento$Class) # Matriz de Confusión de Resultados del Entrenamiento
mcre4
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 186 13
## 1 6 343
##
## Accuracy : 0.9653
## 95% CI : (0.9464, 0.979)
## No Information Rate : 0.6496
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9245
##
## Mcnemar's Test P-Value : 0.1687
##
## Sensitivity : 0.9688
## Specificity : 0.9635
## Pos Pred Value : 0.9347
## Neg Pred Value : 0.9828
## Prevalence : 0.3504
## Detection Rate : 0.3394
## Detection Prevalence : 0.3631
## Balanced Accuracy : 0.9661
##
## 'Positive' Class : 0
##
mcrp4 <- confusionMatrix(resultado_prueba4, prueba$Class) # Matriz de Confusión de Resultados de la prueba
mcrp4
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 43 6
## 1 4 82
##
## Accuracy : 0.9259
## 95% CI : (0.868, 0.9639)
## No Information Rate : 0.6519
## P-Value [Acc > NIR] : 7.08e-14
##
## Kappa : 0.8384
##
## Mcnemar's Test P-Value : 0.7518
##
## Sensitivity : 0.9149
## Specificity : 0.9318
## Pos Pred Value : 0.8776
## Neg Pred Value : 0.9535
## Prevalence : 0.3481
## Detection Rate : 0.3185
## Detection Prevalence : 0.3630
## Balanced Accuracy : 0.9234
##
## 'Positive' Class : 0
##
modelo5 <- train(Class ~ ., data = entrenamiento,
method = "nnet",
preProcess = c("scale", "center"),
trControl = trainControl(method="cv", number = 10) # Cambiar
)
## # weights: 12
## initial value 398.697981
## iter 10 value 38.916261
## iter 20 value 38.799976
## iter 30 value 35.891392
## iter 40 value 34.730364
## iter 50 value 32.804953
## iter 60 value 32.783892
## iter 70 value 32.781308
## iter 80 value 32.779464
## iter 90 value 32.777403
## iter 100 value 32.776538
## final value 32.776538
## stopped after 100 iterations
## # weights: 34
## initial value 326.971505
## iter 10 value 34.992930
## iter 20 value 32.877195
## iter 30 value 29.610733
## iter 40 value 29.596490
## iter 50 value 29.593497
## iter 60 value 29.592608
## iter 70 value 29.591904
## iter 80 value 29.591880
## iter 90 value 29.591450
## iter 90 value 29.591450
## final value 29.591450
## converged
## # weights: 56
## initial value 439.664312
## iter 10 value 32.195328
## iter 20 value 18.741629
## iter 30 value 16.237027
## iter 40 value 15.495743
## iter 50 value 14.807564
## iter 60 value 14.292059
## iter 70 value 14.216993
## iter 80 value 14.197982
## iter 90 value 14.188802
## iter 100 value 14.180472
## final value 14.180472
## stopped after 100 iterations
## # weights: 12
## initial value 413.714352
## iter 10 value 55.517793
## iter 20 value 49.349272
## iter 30 value 48.796423
## iter 40 value 48.618673
## final value 48.618665
## converged
## # weights: 34
## initial value 333.130947
## iter 10 value 50.087615
## iter 20 value 42.802777
## iter 30 value 37.297926
## iter 40 value 36.695624
## iter 50 value 36.538864
## iter 60 value 36.531462
## final value 36.531420
## converged
## # weights: 56
## initial value 316.353419
## iter 10 value 37.645352
## iter 20 value 36.371645
## iter 30 value 36.163852
## iter 40 value 35.843769
## iter 50 value 34.667077
## iter 60 value 34.150765
## iter 70 value 34.146546
## final value 34.146545
## converged
## # weights: 12
## initial value 385.754243
## iter 10 value 36.172882
## iter 20 value 35.662421
## iter 30 value 32.933898
## iter 40 value 32.909414
## iter 50 value 32.900973
## iter 60 value 32.896553
## iter 70 value 32.891724
## iter 80 value 32.889530
## iter 90 value 32.887848
## iter 100 value 32.886042
## final value 32.886042
## stopped after 100 iterations
## # weights: 34
## initial value 377.504191
## iter 10 value 37.704021
## iter 20 value 31.167540
## iter 30 value 30.785804
## iter 40 value 30.655431
## iter 50 value 30.456611
## iter 60 value 30.057995
## iter 70 value 28.632691
## iter 80 value 28.522468
## iter 90 value 28.485310
## iter 100 value 28.476558
## final value 28.476558
## stopped after 100 iterations
## # weights: 56
## initial value 338.231359
## iter 10 value 30.031271
## iter 20 value 19.609973
## iter 30 value 15.268938
## iter 40 value 10.899995
## iter 50 value 7.731752
## iter 60 value 6.681825
## iter 70 value 5.721026
## iter 80 value 4.138489
## iter 90 value 3.083918
## iter 100 value 3.029580
## final value 3.029580
## stopped after 100 iterations
## # weights: 12
## initial value 308.920461
## iter 10 value 38.686740
## iter 20 value 30.616404
## iter 30 value 26.656342
## iter 40 value 26.601731
## iter 50 value 26.510653
## iter 60 value 26.501796
## iter 70 value 26.448768
## iter 80 value 26.417303
## iter 90 value 26.398434
## iter 100 value 26.348859
## final value 26.348859
## stopped after 100 iterations
## # weights: 34
## initial value 353.435397
## iter 10 value 29.990927
## iter 20 value 24.756669
## iter 30 value 21.484860
## iter 40 value 19.073127
## iter 50 value 17.988990
## iter 60 value 17.749387
## iter 70 value 17.218347
## iter 80 value 16.963581
## iter 90 value 16.842081
## iter 100 value 16.791004
## final value 16.791004
## stopped after 100 iterations
## # weights: 56
## initial value 297.213553
## iter 10 value 28.865518
## iter 20 value 17.726104
## iter 30 value 10.914897
## iter 40 value 9.210645
## iter 50 value 9.010663
## iter 60 value 8.699558
## iter 70 value 8.630005
## iter 80 value 8.552286
## iter 90 value 8.542477
## iter 100 value 8.540344
## final value 8.540344
## stopped after 100 iterations
## # weights: 12
## initial value 310.493173
## iter 10 value 53.657985
## iter 20 value 46.612388
## iter 30 value 46.356718
## final value 46.356717
## converged
## # weights: 34
## initial value 352.570064
## iter 10 value 64.381641
## iter 20 value 37.117782
## iter 30 value 36.047311
## iter 40 value 35.535884
## iter 50 value 35.519713
## final value 35.519708
## converged
## # weights: 56
## initial value 408.673852
## iter 10 value 55.616712
## iter 20 value 38.403285
## iter 30 value 34.848952
## iter 40 value 34.168808
## iter 50 value 34.065485
## iter 60 value 34.051264
## iter 70 value 34.039553
## iter 80 value 34.038878
## iter 90 value 33.936533
## iter 100 value 33.835867
## final value 33.835867
## stopped after 100 iterations
## # weights: 12
## initial value 328.525317
## iter 10 value 44.617254
## iter 20 value 38.898538
## iter 30 value 38.883621
## iter 40 value 38.864878
## iter 50 value 38.856908
## iter 60 value 38.847529
## iter 70 value 38.845166
## iter 80 value 38.842875
## iter 90 value 38.841660
## iter 100 value 38.840358
## final value 38.840358
## stopped after 100 iterations
## # weights: 34
## initial value 310.839449
## iter 10 value 39.541715
## iter 20 value 35.422816
## iter 30 value 30.942491
## iter 40 value 25.176399
## iter 50 value 22.845362
## iter 60 value 21.679695
## iter 70 value 21.437353
## iter 80 value 21.108669
## iter 90 value 21.059507
## iter 100 value 20.991742
## final value 20.991742
## stopped after 100 iterations
## # weights: 56
## initial value 478.367036
## iter 10 value 36.695710
## iter 20 value 26.986877
## iter 30 value 15.589863
## iter 40 value 10.743972
## iter 50 value 9.644528
## iter 60 value 9.135420
## iter 70 value 7.577326
## iter 80 value 7.432887
## iter 90 value 7.394541
## iter 100 value 7.348727
## final value 7.348727
## stopped after 100 iterations
## # weights: 12
## initial value 342.777932
## iter 10 value 50.839903
## iter 20 value 34.001653
## iter 30 value 33.740609
## iter 40 value 33.610520
## iter 50 value 33.310414
## iter 60 value 33.298890
## iter 70 value 33.238826
## iter 80 value 33.205856
## iter 90 value 33.205758
## iter 100 value 33.184575
## final value 33.184575
## stopped after 100 iterations
## # weights: 34
## initial value 326.507118
## iter 10 value 25.290938
## iter 20 value 19.940769
## iter 30 value 15.868790
## iter 40 value 13.884547
## iter 50 value 13.619267
## iter 60 value 13.563640
## iter 70 value 13.557308
## iter 80 value 13.540995
## iter 90 value 13.516090
## iter 100 value 13.508238
## final value 13.508238
## stopped after 100 iterations
## # weights: 56
## initial value 332.208631
## iter 10 value 35.282750
## iter 20 value 15.718835
## iter 30 value 8.348914
## iter 40 value 7.995759
## iter 50 value 7.925410
## iter 60 value 7.814947
## iter 70 value 7.312981
## iter 80 value 7.273626
## iter 90 value 7.249200
## iter 100 value 7.137288
## final value 7.137288
## stopped after 100 iterations
## # weights: 12
## initial value 326.961008
## iter 10 value 75.659626
## iter 20 value 56.413823
## iter 30 value 46.667102
## iter 40 value 46.386691
## final value 46.386682
## converged
## # weights: 34
## initial value 320.634051
## iter 10 value 49.196074
## iter 20 value 44.542012
## iter 30 value 42.810290
## iter 40 value 41.127159
## iter 50 value 38.550177
## iter 60 value 36.984427
## iter 70 value 36.937230
## final value 36.937217
## converged
## # weights: 56
## initial value 333.095787
## iter 10 value 42.001646
## iter 20 value 37.364165
## iter 30 value 35.840153
## iter 40 value 35.027157
## iter 50 value 33.792623
## iter 60 value 33.148545
## iter 70 value 33.027191
## iter 80 value 32.994483
## iter 90 value 32.993309
## iter 100 value 32.993262
## final value 32.993262
## stopped after 100 iterations
## # weights: 12
## initial value 390.505167
## iter 10 value 46.907262
## iter 20 value 37.300433
## iter 30 value 34.776589
## iter 40 value 34.019814
## iter 50 value 33.305306
## iter 60 value 33.273883
## iter 70 value 33.065909
## final value 33.059886
## converged
## # weights: 34
## initial value 415.284033
## iter 10 value 36.019954
## iter 20 value 27.281270
## iter 30 value 26.635746
## iter 40 value 26.554278
## iter 50 value 26.538329
## iter 60 value 26.529920
## iter 70 value 26.523009
## iter 80 value 26.515506
## iter 90 value 26.505556
## iter 100 value 26.494241
## final value 26.494241
## stopped after 100 iterations
## # weights: 56
## initial value 425.681193
## iter 10 value 26.825062
## iter 20 value 16.512161
## iter 30 value 14.660266
## iter 40 value 14.154621
## iter 50 value 13.989435
## iter 60 value 12.908514
## iter 70 value 12.830659
## iter 80 value 12.781454
## iter 90 value 12.731468
## iter 100 value 12.658006
## final value 12.658006
## stopped after 100 iterations
## # weights: 12
## initial value 396.424622
## iter 10 value 44.355043
## iter 20 value 36.820545
## iter 30 value 35.858148
## iter 40 value 35.846685
## iter 50 value 35.844172
## final value 35.844160
## converged
## # weights: 34
## initial value 334.539569
## iter 10 value 30.920404
## iter 20 value 19.105143
## iter 30 value 13.498508
## iter 40 value 12.798030
## iter 50 value 12.542690
## iter 60 value 12.337274
## iter 70 value 12.304074
## iter 80 value 12.303786
## final value 12.303751
## converged
## # weights: 56
## initial value 380.225329
## iter 10 value 29.861227
## iter 20 value 20.618442
## iter 30 value 14.290768
## iter 40 value 12.301394
## iter 50 value 12.074867
## iter 60 value 12.022325
## iter 70 value 11.959556
## iter 80 value 11.883326
## iter 90 value 11.876798
## iter 100 value 11.875785
## final value 11.875785
## stopped after 100 iterations
## # weights: 12
## initial value 349.594525
## iter 10 value 54.200114
## iter 20 value 49.212038
## iter 30 value 48.372354
## final value 48.371349
## converged
## # weights: 34
## initial value 393.755111
## iter 10 value 46.491877
## iter 20 value 38.143729
## iter 30 value 37.026446
## iter 40 value 36.289342
## iter 50 value 36.180764
## final value 36.180367
## converged
## # weights: 56
## initial value 382.898410
## iter 10 value 113.549238
## iter 20 value 45.334116
## iter 30 value 36.733185
## iter 40 value 35.669140
## iter 50 value 35.160287
## iter 60 value 34.622381
## iter 70 value 34.405987
## iter 80 value 34.393829
## iter 90 value 34.393394
## iter 100 value 34.393306
## final value 34.393306
## stopped after 100 iterations
## # weights: 12
## initial value 398.243654
## iter 10 value 108.040699
## iter 20 value 54.328770
## iter 30 value 39.802917
## iter 40 value 36.044553
## iter 50 value 35.970195
## iter 60 value 35.962346
## iter 70 value 35.959868
## iter 80 value 35.958060
## iter 90 value 35.956993
## iter 100 value 35.956351
## final value 35.956351
## stopped after 100 iterations
## # weights: 34
## initial value 348.499279
## iter 10 value 31.029645
## iter 20 value 25.456219
## iter 30 value 23.310011
## iter 40 value 23.162789
## iter 50 value 23.135904
## iter 60 value 23.111795
## iter 70 value 23.086877
## iter 80 value 23.061305
## iter 90 value 23.050580
## iter 100 value 23.043019
## final value 23.043019
## stopped after 100 iterations
## # weights: 56
## initial value 479.998608
## iter 10 value 28.429402
## iter 20 value 14.595137
## iter 30 value 11.201508
## iter 40 value 10.772120
## iter 50 value 10.642136
## iter 60 value 10.614477
## iter 70 value 10.548779
## iter 80 value 10.429821
## iter 90 value 6.209610
## iter 100 value 6.092511
## final value 6.092511
## stopped after 100 iterations
## # weights: 12
## initial value 318.995581
## iter 10 value 38.486987
## iter 20 value 35.961196
## iter 30 value 35.846040
## iter 40 value 35.839692
## iter 50 value 35.838384
## iter 60 value 35.837920
## iter 70 value 35.837706
## iter 80 value 35.837024
## iter 90 value 35.836557
## iter 100 value 35.835905
## final value 35.835905
## stopped after 100 iterations
## # weights: 34
## initial value 330.992875
## iter 10 value 32.762832
## iter 20 value 21.775183
## iter 30 value 18.694488
## iter 40 value 14.786226
## iter 50 value 12.138218
## iter 60 value 8.440254
## iter 70 value 8.065251
## iter 80 value 8.060194
## iter 90 value 8.059938
## iter 90 value 8.059938
## iter 90 value 8.059938
## final value 8.059938
## converged
## # weights: 56
## initial value 365.447734
## iter 10 value 53.218554
## iter 20 value 27.286978
## iter 30 value 23.666512
## iter 40 value 21.629312
## iter 50 value 15.363143
## iter 60 value 8.217156
## iter 70 value 6.928314
## iter 80 value 4.601743
## iter 90 value 1.918466
## iter 100 value 0.159959
## final value 0.159959
## stopped after 100 iterations
## # weights: 12
## initial value 404.310186
## iter 10 value 63.347807
## iter 20 value 43.470938
## iter 30 value 40.330369
## final value 40.328317
## converged
## # weights: 34
## initial value 393.530131
## iter 10 value 64.567824
## iter 20 value 36.884942
## iter 30 value 34.610119
## iter 40 value 33.892724
## iter 50 value 33.531169
## iter 60 value 33.516177
## iter 70 value 33.502010
## iter 80 value 33.501944
## final value 33.501941
## converged
## # weights: 56
## initial value 320.802488
## iter 10 value 41.161982
## iter 20 value 34.065467
## iter 30 value 32.460820
## iter 40 value 32.253851
## iter 50 value 31.807850
## iter 60 value 31.715921
## iter 70 value 31.667956
## iter 80 value 31.667662
## final value 31.667662
## converged
## # weights: 12
## initial value 341.367588
## iter 10 value 38.242785
## iter 20 value 31.683855
## iter 30 value 29.619740
## iter 40 value 28.094706
## iter 50 value 27.961073
## iter 60 value 27.947238
## iter 70 value 27.661892
## iter 80 value 27.661764
## iter 90 value 27.655238
## final value 27.655236
## converged
## # weights: 34
## initial value 331.318346
## iter 10 value 26.660915
## iter 20 value 20.862264
## iter 30 value 19.711772
## iter 40 value 19.630798
## iter 50 value 19.586675
## iter 60 value 19.572778
## iter 70 value 19.560701
## iter 80 value 19.553187
## iter 90 value 19.549753
## iter 100 value 19.545184
## final value 19.545184
## stopped after 100 iterations
## # weights: 56
## initial value 473.022078
## iter 10 value 28.151511
## iter 20 value 23.356634
## iter 30 value 21.671024
## iter 40 value 20.448188
## iter 50 value 20.157141
## iter 60 value 20.084440
## iter 70 value 20.027636
## iter 80 value 19.968133
## iter 90 value 19.935649
## iter 100 value 19.899601
## final value 19.899601
## stopped after 100 iterations
## # weights: 12
## initial value 334.408190
## iter 10 value 79.385300
## iter 20 value 42.217448
## iter 30 value 36.233504
## iter 40 value 33.630712
## iter 50 value 33.202459
## iter 60 value 33.116061
## iter 70 value 32.963504
## iter 80 value 32.877715
## iter 90 value 32.877459
## iter 100 value 32.825356
## final value 32.825356
## stopped after 100 iterations
## # weights: 34
## initial value 344.631800
## iter 10 value 31.964329
## iter 20 value 23.853520
## iter 30 value 20.611079
## iter 40 value 19.319039
## iter 50 value 18.868773
## iter 60 value 18.839168
## iter 70 value 18.837951
## iter 80 value 18.837702
## iter 90 value 18.837575
## final value 18.837574
## converged
## # weights: 56
## initial value 408.196670
## iter 10 value 28.341954
## iter 20 value 13.036678
## iter 30 value 7.855732
## iter 40 value 5.682467
## iter 50 value 5.367304
## iter 60 value 5.144385
## iter 70 value 5.126729
## iter 80 value 5.120703
## iter 90 value 5.118528
## iter 100 value 5.115059
## final value 5.115059
## stopped after 100 iterations
## # weights: 12
## initial value 329.986125
## iter 10 value 79.704193
## iter 20 value 56.415089
## iter 30 value 46.709702
## iter 40 value 46.108103
## final value 46.107582
## converged
## # weights: 34
## initial value 328.245569
## iter 10 value 53.369534
## iter 20 value 40.866540
## iter 30 value 37.755953
## iter 40 value 37.367734
## iter 50 value 37.220664
## iter 60 value 37.178872
## iter 70 value 37.178606
## final value 37.178586
## converged
## # weights: 56
## initial value 454.539164
## iter 10 value 38.644759
## iter 20 value 37.518511
## iter 30 value 36.765696
## iter 40 value 36.280674
## iter 50 value 35.468158
## iter 60 value 35.129403
## iter 70 value 35.119518
## iter 80 value 35.106676
## iter 90 value 35.106205
## final value 35.106162
## converged
## # weights: 12
## initial value 313.809515
## iter 10 value 42.416897
## iter 20 value 38.963013
## iter 30 value 38.844071
## iter 40 value 38.833132
## iter 50 value 38.827756
## iter 60 value 38.823725
## iter 70 value 38.821575
## iter 80 value 38.821011
## final value 38.820547
## converged
## # weights: 34
## initial value 373.140339
## iter 10 value 34.190037
## iter 20 value 29.220762
## iter 30 value 29.024769
## iter 40 value 28.989596
## iter 50 value 28.978826
## iter 60 value 28.967759
## iter 70 value 28.964341
## iter 80 value 28.953781
## iter 90 value 28.943163
## iter 100 value 28.935106
## final value 28.935106
## stopped after 100 iterations
## # weights: 56
## initial value 456.286277
## iter 10 value 33.043123
## iter 20 value 28.021793
## iter 30 value 25.080899
## iter 40 value 21.894929
## iter 50 value 21.732518
## iter 60 value 21.707501
## iter 70 value 21.357013
## iter 80 value 21.045551
## iter 90 value 20.524202
## iter 100 value 19.985985
## final value 19.985985
## stopped after 100 iterations
## # weights: 12
## initial value 319.400513
## iter 10 value 51.420766
## iter 20 value 28.068152
## iter 30 value 23.325820
## iter 40 value 22.817923
## iter 50 value 22.792940
## iter 60 value 22.792017
## final value 22.791830
## converged
## # weights: 34
## initial value 336.123162
## iter 10 value 30.555526
## iter 20 value 29.446128
## iter 30 value 25.003754
## iter 40 value 23.454267
## iter 50 value 19.996655
## iter 60 value 18.598351
## iter 70 value 17.963073
## iter 80 value 17.734462
## iter 90 value 17.613589
## iter 100 value 17.552761
## final value 17.552761
## stopped after 100 iterations
## # weights: 56
## initial value 297.990920
## iter 10 value 19.807317
## iter 20 value 9.357392
## iter 30 value 4.407808
## iter 40 value 3.927781
## iter 50 value 3.740458
## iter 60 value 3.282073
## iter 70 value 3.020757
## iter 80 value 2.668226
## iter 90 value 2.512064
## iter 100 value 2.506359
## final value 2.506359
## stopped after 100 iterations
## # weights: 12
## initial value 365.555558
## iter 10 value 50.071017
## iter 20 value 37.410947
## iter 30 value 37.269451
## iter 40 value 36.976540
## iter 50 value 36.931261
## iter 50 value 36.931260
## iter 50 value 36.931260
## final value 36.931260
## converged
## # weights: 34
## initial value 461.404708
## iter 10 value 52.176233
## iter 20 value 31.019929
## iter 30 value 28.739495
## iter 40 value 28.360392
## iter 50 value 28.322595
## final value 28.322575
## converged
## # weights: 56
## initial value 535.884532
## iter 10 value 30.741733
## iter 20 value 29.406655
## iter 30 value 27.798159
## iter 40 value 27.254774
## iter 50 value 27.236540
## iter 60 value 27.236017
## final value 27.236012
## converged
## # weights: 12
## initial value 328.654982
## iter 10 value 52.801883
## iter 20 value 34.617501
## iter 30 value 30.392721
## iter 40 value 26.721256
## iter 50 value 26.557384
## iter 60 value 26.552078
## iter 70 value 26.549838
## iter 80 value 26.545488
## iter 90 value 26.540146
## iter 100 value 26.539202
## final value 26.539202
## stopped after 100 iterations
## # weights: 34
## initial value 292.257333
## iter 10 value 23.300636
## iter 20 value 22.911492
## iter 30 value 22.823259
## iter 40 value 22.801147
## iter 50 value 22.491363
## iter 60 value 19.143080
## iter 70 value 19.097570
## iter 80 value 19.077340
## iter 90 value 18.694257
## iter 100 value 18.427787
## final value 18.427787
## stopped after 100 iterations
## # weights: 56
## initial value 445.202945
## iter 10 value 19.726901
## iter 20 value 16.776475
## iter 30 value 15.890269
## iter 40 value 15.689566
## iter 50 value 15.557951
## iter 60 value 14.422733
## iter 70 value 13.536910
## iter 80 value 12.820573
## iter 90 value 12.701810
## iter 100 value 12.634941
## final value 12.634941
## stopped after 100 iterations
## # weights: 12
## initial value 384.085126
## iter 10 value 41.199037
## iter 20 value 38.815942
## iter 30 value 38.648362
## iter 40 value 35.877174
## iter 50 value 35.852730
## iter 60 value 35.843194
## iter 70 value 35.842099
## iter 80 value 35.840599
## iter 90 value 35.839449
## iter 100 value 35.838069
## final value 35.838069
## stopped after 100 iterations
## # weights: 34
## initial value 349.385815
## iter 10 value 28.618128
## iter 20 value 20.819594
## iter 30 value 12.913642
## iter 40 value 5.932463
## iter 50 value 5.833368
## iter 60 value 5.831452
## iter 70 value 5.824661
## iter 80 value 5.824500
## iter 90 value 5.824316
## final value 5.824315
## converged
## # weights: 56
## initial value 389.565367
## iter 10 value 39.486616
## iter 20 value 19.537734
## iter 30 value 11.907730
## iter 40 value 10.810154
## iter 50 value 10.663255
## iter 60 value 10.566386
## iter 70 value 10.471933
## iter 80 value 10.351967
## iter 90 value 10.282889
## iter 100 value 10.221271
## final value 10.221271
## stopped after 100 iterations
## # weights: 12
## initial value 382.875533
## iter 10 value 83.920415
## iter 20 value 54.288718
## iter 30 value 43.394001
## iter 40 value 42.453583
## iter 50 value 41.472776
## final value 41.472553
## converged
## # weights: 34
## initial value 318.109860
## iter 10 value 37.480846
## iter 20 value 35.228840
## iter 30 value 35.115871
## iter 40 value 35.044836
## final value 35.043640
## converged
## # weights: 56
## initial value 364.313155
## iter 10 value 33.115775
## iter 20 value 30.329782
## iter 30 value 29.289416
## iter 40 value 29.048164
## iter 50 value 28.948550
## iter 60 value 28.868886
## iter 70 value 28.778125
## iter 80 value 28.724775
## final value 28.724022
## converged
## # weights: 12
## initial value 318.453334
## iter 10 value 33.112714
## iter 20 value 31.045995
## iter 30 value 30.474296
## iter 40 value 28.731666
## iter 50 value 27.299086
## iter 60 value 27.276535
## iter 70 value 27.255386
## iter 80 value 27.254419
## iter 90 value 27.253441
## iter 100 value 27.251416
## final value 27.251416
## stopped after 100 iterations
## # weights: 34
## initial value 371.364289
## iter 10 value 29.360603
## iter 20 value 26.172225
## iter 30 value 25.495486
## iter 40 value 25.443387
## iter 50 value 25.237951
## iter 60 value 24.675616
## iter 70 value 23.502374
## iter 80 value 20.274501
## iter 90 value 19.943151
## iter 100 value 19.289595
## final value 19.289595
## stopped after 100 iterations
## # weights: 56
## initial value 376.172759
## iter 10 value 23.205245
## iter 20 value 9.882168
## iter 30 value 6.410002
## iter 40 value 6.149141
## iter 50 value 5.746953
## iter 60 value 4.609458
## iter 70 value 2.879813
## iter 80 value 2.120263
## iter 90 value 0.915281
## iter 100 value 0.756020
## final value 0.756020
## stopped after 100 iterations
## # weights: 12
## initial value 332.624415
## iter 10 value 47.813604
## iter 20 value 44.504124
## iter 30 value 39.052678
## iter 40 value 38.853898
## iter 50 value 38.820116
## iter 60 value 38.810450
## iter 70 value 38.804754
## iter 80 value 38.802203
## iter 90 value 38.800070
## iter 100 value 38.796765
## final value 38.796765
## stopped after 100 iterations
## # weights: 34
## initial value 369.349248
## iter 10 value 39.349200
## iter 20 value 27.588482
## iter 30 value 23.240878
## iter 40 value 22.336274
## iter 50 value 21.954353
## iter 60 value 21.770509
## iter 70 value 21.670447
## iter 80 value 21.657598
## iter 90 value 21.620857
## iter 100 value 21.602053
## final value 21.602053
## stopped after 100 iterations
## # weights: 56
## initial value 351.057802
## iter 10 value 32.975645
## iter 20 value 20.788102
## iter 30 value 16.377304
## iter 40 value 16.019998
## iter 50 value 16.017444
## iter 60 value 16.005920
## iter 60 value 16.005920
## iter 60 value 16.005920
## final value 16.005920
## converged
## # weights: 12
## initial value 344.598521
## iter 10 value 56.803045
## iter 20 value 51.551732
## iter 30 value 49.651187
## iter 40 value 49.292831
## iter 40 value 49.292831
## iter 40 value 49.292831
## final value 49.292831
## converged
## # weights: 34
## initial value 362.900807
## iter 10 value 53.867862
## iter 20 value 44.629859
## iter 30 value 41.501559
## iter 40 value 40.074238
## iter 50 value 38.457121
## iter 60 value 38.129405
## iter 70 value 38.095275
## iter 80 value 38.093648
## final value 38.093535
## converged
## # weights: 56
## initial value 348.519450
## iter 10 value 48.528375
## iter 20 value 39.967361
## iter 30 value 37.962625
## iter 40 value 36.998507
## iter 50 value 36.806161
## iter 60 value 36.802835
## final value 36.802822
## converged
## # weights: 12
## initial value 328.345633
## iter 10 value 61.765012
## iter 20 value 54.164969
## iter 30 value 49.419285
## iter 40 value 42.684916
## iter 50 value 38.211568
## iter 60 value 36.122241
## iter 70 value 36.052780
## iter 80 value 36.042857
## iter 90 value 36.040315
## iter 100 value 36.037326
## final value 36.037326
## stopped after 100 iterations
## # weights: 34
## initial value 339.331180
## iter 10 value 34.678461
## iter 20 value 22.513699
## iter 30 value 15.792884
## iter 40 value 7.860213
## iter 50 value 6.434516
## iter 60 value 6.371622
## iter 70 value 6.314230
## iter 80 value 6.265785
## iter 90 value 6.180748
## iter 100 value 6.149116
## final value 6.149116
## stopped after 100 iterations
## # weights: 56
## initial value 345.581414
## iter 10 value 31.106280
## iter 20 value 16.368585
## iter 30 value 4.914761
## iter 40 value 3.236319
## iter 50 value 2.865856
## iter 60 value 2.783344
## iter 70 value 2.684775
## iter 80 value 2.624286
## iter 90 value 2.590358
## iter 100 value 2.546412
## final value 2.546412
## stopped after 100 iterations
## # weights: 12
## initial value 322.741425
## iter 10 value 53.645388
## iter 20 value 47.552530
## iter 30 value 41.662105
## iter 40 value 38.808063
## iter 50 value 38.802479
## final value 38.797876
## converged
## # weights: 34
## initial value 325.587800
## iter 10 value 32.996894
## iter 20 value 27.036432
## iter 30 value 22.064835
## iter 40 value 19.752793
## iter 50 value 19.720122
## iter 60 value 19.680315
## iter 70 value 19.519329
## iter 80 value 19.519074
## iter 90 value 19.240206
## iter 100 value 19.235470
## final value 19.235470
## stopped after 100 iterations
## # weights: 56
## initial value 300.707060
## iter 10 value 28.347003
## iter 20 value 17.340030
## iter 30 value 10.891374
## iter 40 value 10.630352
## iter 50 value 10.594789
## iter 60 value 10.502444
## iter 70 value 10.496886
## iter 80 value 10.496705
## iter 90 value 10.470416
## iter 100 value 10.468145
## final value 10.468145
## stopped after 100 iterations
## # weights: 12
## initial value 368.906570
## iter 10 value 67.495247
## iter 20 value 53.716750
## iter 30 value 48.161940
## final value 48.120168
## converged
## # weights: 34
## initial value 303.880966
## iter 10 value 53.559238
## iter 20 value 39.729784
## iter 30 value 37.214348
## iter 40 value 36.966309
## iter 50 value 36.942840
## iter 60 value 36.941196
## final value 36.941194
## converged
## # weights: 56
## initial value 488.881087
## iter 10 value 106.463939
## iter 20 value 41.920099
## iter 30 value 38.327594
## iter 40 value 36.806148
## iter 50 value 36.080936
## iter 60 value 35.474949
## iter 70 value 35.217379
## iter 80 value 35.206053
## iter 90 value 35.205784
## final value 35.205776
## converged
## # weights: 12
## initial value 328.281196
## iter 10 value 55.979766
## iter 20 value 39.260361
## iter 30 value 38.893298
## iter 40 value 38.889449
## iter 50 value 38.887916
## iter 60 value 38.885075
## iter 70 value 38.883551
## iter 80 value 38.883079
## iter 90 value 38.882786
## iter 100 value 38.882638
## final value 38.882638
## stopped after 100 iterations
## # weights: 34
## initial value 339.639028
## iter 10 value 36.635961
## iter 20 value 25.565579
## iter 30 value 20.685742
## iter 40 value 17.972740
## iter 50 value 17.639145
## iter 60 value 17.501850
## iter 70 value 17.459714
## iter 80 value 17.394904
## iter 90 value 17.337793
## iter 100 value 17.244632
## final value 17.244632
## stopped after 100 iterations
## # weights: 56
## initial value 499.806262
## iter 10 value 31.101730
## iter 20 value 19.729013
## iter 30 value 15.204951
## iter 40 value 13.172743
## iter 50 value 12.650130
## iter 60 value 12.490049
## iter 70 value 12.436885
## iter 80 value 12.375981
## iter 90 value 12.314392
## iter 100 value 12.273630
## final value 12.273630
## stopped after 100 iterations
## # weights: 12
## initial value 400.843197
## iter 10 value 45.770053
## iter 20 value 42.875782
## iter 30 value 42.795285
## iter 40 value 42.777247
## iter 50 value 42.775172
## iter 60 value 42.771905
## iter 70 value 42.769289
## iter 80 value 42.768943
## iter 90 value 42.767865
## iter 100 value 42.767454
## final value 42.767454
## stopped after 100 iterations
resultado_entrenamiento5 <- predict(modelo5, entrenamiento)
resultado_prueba5 <- predict(modelo5, prueba)
# Matriz de Confusión
mcre5 <- confusionMatrix(resultado_entrenamiento5, entrenamiento$Class) # Matriz de Confusión de Resultados del Entrenamiento
mcre5
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 192 11
## 1 0 345
##
## Accuracy : 0.9799
## 95% CI : (0.9644, 0.9899)
## No Information Rate : 0.6496
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9565
##
## Mcnemar's Test P-Value : 0.002569
##
## Sensitivity : 1.0000
## Specificity : 0.9691
## Pos Pred Value : 0.9458
## Neg Pred Value : 1.0000
## Prevalence : 0.3504
## Detection Rate : 0.3504
## Detection Prevalence : 0.3704
## Balanced Accuracy : 0.9846
##
## 'Positive' Class : 0
##
mcrp5 <- confusionMatrix(resultado_prueba5, prueba$Class) # Matriz de Confusión de Resultados de la prueba
mcrp5
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 46 4
## 1 1 84
##
## Accuracy : 0.963
## 95% CI : (0.9157, 0.9879)
## No Information Rate : 0.6519
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9196
##
## Mcnemar's Test P-Value : 0.3711
##
## Sensitivity : 0.9787
## Specificity : 0.9545
## Pos Pred Value : 0.9200
## Neg Pred Value : 0.9882
## Prevalence : 0.3481
## Detection Rate : 0.3407
## Detection Prevalence : 0.3704
## Balanced Accuracy : 0.9666
##
## 'Positive' Class : 0
##
modelo6 <- train(Class ~ ., data = entrenamiento,
method = "rf",
preProcess = c("scale", "center"),
trControl = trainControl(method="cv", number = 10),
tuneGrid = expand.grid(mtry = c(2,4,6))# Cambiar
)
resultado_entrenamiento6 <- predict(modelo6, entrenamiento)
resultado_prueba6 <- predict(modelo6, prueba)
# Matriz de Confusión
mcre6 <- confusionMatrix(resultado_entrenamiento6, entrenamiento$Class) # Matriz de Confusión de Resultados del Entrenamiento
mcre6
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 192 0
## 1 0 356
##
## Accuracy : 1
## 95% CI : (0.9933, 1)
## No Information Rate : 0.6496
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Sensitivity : 1.0000
## Specificity : 1.0000
## Pos Pred Value : 1.0000
## Neg Pred Value : 1.0000
## Prevalence : 0.3504
## Detection Rate : 0.3504
## Detection Prevalence : 0.3504
## Balanced Accuracy : 1.0000
##
## 'Positive' Class : 0
##
mcrp6 <- confusionMatrix(resultado_prueba6, prueba$Class) # Matriz de Confusión de Resultados de la prueba
mcrp6
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 45 1
## 1 2 87
##
## Accuracy : 0.9778
## 95% CI : (0.9364, 0.9954)
## No Information Rate : 0.6519
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9508
##
## Mcnemar's Test P-Value : 1
##
## Sensitivity : 0.9574
## Specificity : 0.9886
## Pos Pred Value : 0.9783
## Neg Pred Value : 0.9775
## Prevalence : 0.3481
## Detection Rate : 0.3333
## Detection Prevalence : 0.3407
## Balanced Accuracy : 0.9730
##
## 'Positive' Class : 0
##
resultados <- data.frame(
"svmLinear" = c(mcre1$overall["Accuracy"], mcrp1$overall["Accuracy"]),
"svmRadial" = c(mcre2$overall["Accuracy"], mcrp2$overall["Accuracy"]),
"svmPoly" = c(mcre3$overall["Accuracy"], mcrp3$overall["Accuracy"]),
"rpart" = c(mcre4$overall["Accuracy"], mcrp4$overall["Accuracy"]),
"nnet" = c(mcre5$overall["Accuracy"], mcrp5$overall["Accuracy"]),
"rf" = c(mcre6$overall["Accuracy"], mcrp6$overall["Accuracy"])
)
resultados
## svmLinear svmRadial svmPoly rpart nnet rf
## 1 0.9708029 0.9963504 0.9708029 0.9653285 0.979927 1.0000000
## 2 0.9703704 0.9407407 0.9703704 0.9259259 0.962963 0.9777778