Walmart

Paso 0. Instalar y cargar librerías

#install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Paso 1. Importar la base datos

df <- read.csv("Walmart_Store_sales.csv")

Paso 2. Entender y limpiar la base de datos

df$Date <- as.Date(df$Date, format="%d-%m-%Y")

summary(df)
##      Store         Date             Weekly_Sales      Holiday_Flag    
##  Min.   : 1   Min.   :2010-02-05   Min.   : 209986   Min.   :0.00000  
##  1st Qu.:12   1st Qu.:2010-10-08   1st Qu.: 553350   1st Qu.:0.00000  
##  Median :23   Median :2011-06-17   Median : 960746   Median :0.00000  
##  Mean   :23   Mean   :2011-06-17   Mean   :1046965   Mean   :0.06993  
##  3rd Qu.:34   3rd Qu.:2012-02-24   3rd Qu.:1420159   3rd Qu.:0.00000  
##  Max.   :45   Max.   :2012-10-26   Max.   :3818686   Max.   :1.00000  
##   Temperature       Fuel_Price         CPI         Unemployment   
##  Min.   : -2.06   Min.   :2.472   Min.   :126.1   Min.   : 3.879  
##  1st Qu.: 47.46   1st Qu.:2.933   1st Qu.:131.7   1st Qu.: 6.891  
##  Median : 62.67   Median :3.445   Median :182.6   Median : 7.874  
##  Mean   : 60.66   Mean   :3.359   Mean   :171.6   Mean   : 7.999  
##  3rd Qu.: 74.94   3rd Qu.:3.735   3rd Qu.:212.7   3rd Qu.: 8.622  
##  Max.   :100.14   Max.   :4.468   Max.   :227.2   Max.   :14.313
str(df)
## 'data.frame':    6435 obs. of  8 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : Date, format: "2010-02-05" "2010-02-12" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...

Paso 3. Agregar variables a la base de datos

df$Year <- format(df$Date, "%Y")
df$Year <- as.integer(df$Year)

df$Day <- format(df$Date, "%d")
df$Day <- as.integer(df$Day)

df$Month <- format(df$Date, "%m")
df$Month <- as.integer(df$Month)

df$WeekYear <- format(df$Date, "%W") #Inicia el Lunes
df$WeekYear <- as.integer(df$WeekYear)

df$WeekDay <- format(df$Date, "%u") #Inicia el Lunes
df$WeekDay <- as.integer(df$WeekDay)
str(df)
## 'data.frame':    6435 obs. of  13 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : Date, format: "2010-02-05" "2010-02-12" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...
##  $ Year        : int  2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
##  $ Day         : int  5 12 19 26 5 12 19 26 2 9 ...
##  $ Month       : int  2 2 2 2 3 3 3 3 4 4 ...
##  $ WeekYear    : int  5 6 7 8 9 10 11 12 13 14 ...
##  $ WeekDay     : int  5 5 5 5 5 5 5 5 5 5 ...

Paso 4. Generar regresión

regresion <- lm(Weekly_Sales ~., data=df)
summary(regresion)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1094800  -382464   -42860   375406  2587123 
## 
## Coefficients: (2 not defined because of singularities)
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2.384e+09  9.127e+09  -0.261   0.7940    
## Store        -1.538e+04  5.202e+02 -29.576  < 2e-16 ***
## Date         -3.399e+03  1.266e+04  -0.268   0.7883    
## Holiday_Flag  4.773e+04  2.706e+04   1.763   0.0779 .  
## Temperature  -1.817e+03  4.053e+02  -4.484 7.47e-06 ***
## Fuel_Price    6.124e+04  2.876e+04   2.130   0.0332 *  
## CPI          -2.109e+03  1.928e+02 -10.941  < 2e-16 ***
## Unemployment -2.209e+04  3.967e+03  -5.569 2.67e-08 ***
## Year          1.212e+06  4.633e+06   0.262   0.7937    
## Day           2.171e+03  1.269e+04   0.171   0.8642    
## Month         1.177e+05  3.858e+05   0.305   0.7604    
## WeekYear             NA         NA      NA       NA    
## WeekDay              NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared:  0.1495, Adjusted R-squared:  0.1482 
## F-statistic:   113 on 10 and 6424 DF,  p-value: < 2.2e-16

Paso 5. Ajustar regresión lineal

df_ajustada <- df %>% select(-Store, -Date, -Fuel_Price, -Year:-Day)
regresion_ajustada <- lm(Weekly_Sales ~., data= df_ajustada)
summary(regresion_ajustada)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df_ajustada)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1069878  -470146  -117461   403864  2705866 
## 
## Coefficients: (1 not defined because of singularities)
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1593231.9    54731.5  29.110  < 2e-16 ***
## Holiday_Flag   48020.7    27974.7   1.717 0.086105 .  
## Temperature    -1467.3      407.1  -3.604 0.000315 ***
## CPI            -1496.6      189.6  -7.892 3.47e-15 ***
## Unemployment  -39956.8     3938.9 -10.144  < 2e-16 ***
## Month          57686.0    23926.6   2.411 0.015939 *  
## WeekYear       -9921.3     5490.0  -1.807 0.070783 .  
## WeekDay             NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 555400 on 6428 degrees of freedom
## Multiple R-squared:  0.03231,    Adjusted R-squared:  0.03141 
## F-statistic: 35.77 on 6 and 6428 DF,  p-value: < 2.2e-16
LS0tCnRpdGxlOiAiUmVncmVzacOzbiBMaW5lYWwiCmF1dGhvcjogIkF2cmlsIExvYmF0byAtIEEwMDgzMzExMyIKZGF0ZTogIjIwMjQtMDItMjMiCgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IFRSVUUKICAgIHRvY19mbG9hdDogVFJVRQogICAgY29kZV9kb3dubG9hZDogVFJVRQogICAgdGhlbWU6IGNvc21vCi0tLQoKIyA8c3BhbiBzdHlsZT0iY29sb3I6IzE4NzRDRCI+KipXYWxtYXJ0Kio8L3NwYW4+CiFbXShodHRwczovL2ltYWdlbmVzLmVscGFpcy5jb20vcmVzaXplci9HWXBXWnNtVm0ta2ZHbWY1bkl2S205cUY2U2s9LzE5NjB4MTQ3MC9jbG91ZGZyb250LWV1LWNlbnRyYWwtMS5pbWFnZXMuYXJjcHVibGlzaGluZy5jb20vcHJpc2EvQURRUEhNTDRXSjJDTzJaVE5ZVzdBSkk0QUUuanBnKQoKIyAqKlBhc28gMC4gKipJbnN0YWxhciB5IGNhcmdhciBsaWJyZXLDrWFzCmBgYHtyfQojaW5zdGFsbC5wYWNrYWdlcygidGlkeXZlcnNlIikKbGlicmFyeSh0aWR5dmVyc2UpCmBgYAoKIyAqKlBhc28gMS4gKipJbXBvcnRhciBsYSBiYXNlIGRhdG9zCmBgYHtyfQpkZiA8LSByZWFkLmNzdigiV2FsbWFydF9TdG9yZV9zYWxlcy5jc3YiKQpgYGAKCiMgKipQYXNvIDIuICoqRW50ZW5kZXIgeSBsaW1waWFyIGxhIGJhc2UgZGUgZGF0b3MKYGBge3J9CmRmJERhdGUgPC0gYXMuRGF0ZShkZiREYXRlLCBmb3JtYXQ9IiVkLSVtLSVZIikKCnN1bW1hcnkoZGYpCnN0cihkZikKYGBgCgojICoqUGFzbyAzLiAqKkFncmVnYXIgdmFyaWFibGVzIGEgbGEgYmFzZSBkZSBkYXRvcwpgYGB7cn0KZGYkWWVhciA8LSBmb3JtYXQoZGYkRGF0ZSwgIiVZIikKZGYkWWVhciA8LSBhcy5pbnRlZ2VyKGRmJFllYXIpCgpkZiREYXkgPC0gZm9ybWF0KGRmJERhdGUsICIlZCIpCmRmJERheSA8LSBhcy5pbnRlZ2VyKGRmJERheSkKCmRmJE1vbnRoIDwtIGZvcm1hdChkZiREYXRlLCAiJW0iKQpkZiRNb250aCA8LSBhcy5pbnRlZ2VyKGRmJE1vbnRoKQoKZGYkV2Vla1llYXIgPC0gZm9ybWF0KGRmJERhdGUsICIlVyIpICNJbmljaWEgZWwgTHVuZXMKZGYkV2Vla1llYXIgPC0gYXMuaW50ZWdlcihkZiRXZWVrWWVhcikKCmRmJFdlZWtEYXkgPC0gZm9ybWF0KGRmJERhdGUsICIldSIpICNJbmljaWEgZWwgTHVuZXMKZGYkV2Vla0RheSA8LSBhcy5pbnRlZ2VyKGRmJFdlZWtEYXkpCnN0cihkZikKYGBgCgojICoqUGFzbyA0LiAqKkdlbmVyYXIgcmVncmVzacOzbgpgYGB7cn0KcmVncmVzaW9uIDwtIGxtKFdlZWtseV9TYWxlcyB+LiwgZGF0YT1kZikKc3VtbWFyeShyZWdyZXNpb24pCmBgYAoKIyAqKlBhc28gNS4gKipBanVzdGFyIHJlZ3Jlc2nDs24gbGluZWFsCmBgYHtyfQpkZl9hanVzdGFkYSA8LSBkZiAlPiUgc2VsZWN0KC1TdG9yZSwgLURhdGUsIC1GdWVsX1ByaWNlLCAtWWVhcjotRGF5KQpyZWdyZXNpb25fYWp1c3RhZGEgPC0gbG0oV2Vla2x5X1NhbGVzIH4uLCBkYXRhPSBkZl9hanVzdGFkYSkKc3VtbWFyeShyZWdyZXNpb25fYWp1c3RhZGEpCmBgYAo=