Import data

# excel file
data <- read_excel("../00_data/MKmyData1.xlsx")
data
## # A tibble: 101 × 17
##    Column1 id.on.tag    animal.name scientific.name `tag deployment.start`      
##      <dbl> <chr>        <chr>       <chr>           <chr>                       
##  1       1 Tommy-Tag    Tommy       Felis catus     2017-06-03T01:02:00.0000001…
##  2       2 Athena       Athena      Felis catus     2017-06-24T01:02:00.0000001…
##  3       3 Ares         Ares        Felis catus     2017-06-24T01:02:59.9999997…
##  4       4 Lola         Lola        Felis catus     2017-06-24T01:18:00.0000001…
##  5       5 Maverick     Maverick    Felis catus     2017-06-25T01:03:59.9999999…
##  6       6 Coco         Coco        Felis catus     2017-06-28T01:02:00.0000001…
##  7       7 Charlie      Charlie     Felis catus     2017-06-28T01:02:59.9999997…
##  8       8 Jago         Jago        Felis catus     2017-06-28T04:09:59.9999998…
##  9       9 Morpheus-Tag Morpheus    Felis catus     2017-07-01T01:02:00.0000001…
## 10      10 Nettle-Tag   Nettle      Felis catus     2017-07-01T01:05:00.0000001…
## # ℹ 91 more rows
## # ℹ 12 more variables: `tag deployment.end` <chr>, hunt <chr>,
## #   prey.per.month <dbl>, reproductive.condition <chr>, sex <chr>,
## #   hours.indoor.per.day <dbl>, cats.in.house <dbl>, dry.food <lgl>,
## #   wet.food <lgl>, other.food <chr>, study.location <chr>, age <chr>

Filter rows

filter(data, wet.food == "FALSE")
## # A tibble: 30 × 17
##    Column1 id.on.tag    animal.name scientific.name `tag deployment.start`      
##      <dbl> <chr>        <chr>       <chr>           <chr>                       
##  1       9 Morpheus-Tag Morpheus    Felis catus     2017-07-01T01:02:00.0000001…
##  2      10 Nettle-Tag   Nettle      Felis catus     2017-07-01T01:05:00.0000001…
##  3      12 Friday       Friday      Felis catus     2017-07-02T07:28:00.0000002…
##  4      13 Carbonel-Tag Carbonel    Felis catus     2017-07-07T01:00:59.9999999…
##  5      18 Indie-Tag    Indie       Felis catus     2017-07-09T01:02:59.9999997…
##  6      20 Rusty-Tag    Rusty       Felis catus     2017-07-09T02:19:00.0000001…
##  7      22 Wilfred-Tag  Wilfred     Felis catus     2017-07-13T01:00:59.9999999…
##  8      25 Pussy-Tag    Pussy       Felis catus     2017-07-13T01:05:00.0000001…
##  9      38 Merlin-Tag   Merlin      Felis catus     2017-07-20T09:24:59.9999998…
## 10      41 Sid-Tag      Sid         Felis catus     2017-07-22T01:03:59.9999999…
## # ℹ 20 more rows
## # ℹ 12 more variables: `tag deployment.end` <chr>, hunt <chr>,
## #   prey.per.month <dbl>, reproductive.condition <chr>, sex <chr>,
## #   hours.indoor.per.day <dbl>, cats.in.house <dbl>, dry.food <lgl>,
## #   wet.food <lgl>, other.food <chr>, study.location <chr>, age <chr>

Arrange rows

arrange(data, scientific.name, animal.name)
## # A tibble: 101 × 17
##    Column1 id.on.tag  animal.name scientific.name `tag deployment.start`        
##      <dbl> <chr>      <chr>       <chr>           <chr>                         
##  1      83 Abba-Tag   Abba        Felis catus     2017-09-25T01:18:59.999999734…
##  2      93 Alfie-Tag  Alfie       Felis catus     2017-10-23T01:02:59.999999748…
##  3      43 Amber-Tag  Amber       Felis catus     2017-07-28T01:02:59.999999748…
##  4       3 Ares       Ares        Felis catus     2017-06-24T01:02:59.999999748…
##  5       2 Athena     Athena      Felis catus     2017-06-24T01:02:00.000000181…
##  6      76 Balu-Tag   Balu        Felis catus     2017-09-18T01:02:59.999999748…
##  7      16 Barney-Tag Barney      Felis catus     2017-07-08T01:15:59.999999776…
##  8      40 Beanie-Tag Beanie      Felis catus     2017-07-22T01:02:00.000000181…
##  9      35 Bear-Tag   Bear        Felis catus     2017-07-20T01:02:59.999999748…
## 10      30 Bella-Tag  Bella       Felis catus     2017-07-16T01:45:59.999999986…
## # ℹ 91 more rows
## # ℹ 12 more variables: `tag deployment.end` <chr>, hunt <chr>,
## #   prey.per.month <dbl>, reproductive.condition <chr>, sex <chr>,
## #   hours.indoor.per.day <dbl>, cats.in.house <dbl>, dry.food <lgl>,
## #   wet.food <lgl>, other.food <chr>, study.location <chr>, age <chr>

Select columns

select(data, prey.per.month, reproductive.condition:sex)
## # A tibble: 101 × 3
##    prey.per.month reproductive.condition sex  
##             <dbl> <chr>                  <chr>
##  1           12.5 Neutered               m    
##  2            3   Spayed                 f    
##  3            0   Neutered               m    
##  4            3   Spayed                 f    
##  5            3   Neutered               m    
##  6            3   Spayed                 f    
##  7            3   Neutered               m    
##  8           17.5 Neutered               m    
##  9            3   Neutered               m    
## 10            7.5 Spayed                 f    
## # ℹ 91 more rows

Add columns

data_sml <- select(data, prey.per.month, hours.indoor.per.day)

mutate(data_sml, 
       prey.per.day = prey.per.month / hours.indoor.per.day)
## # A tibble: 101 × 3
##    prey.per.month hours.indoor.per.day prey.per.day
##             <dbl>                <dbl>        <dbl>
##  1           12.5                 12.5        1    
##  2            3                    7.5        0.4  
##  3            0                    7.5        0    
##  4            3                   17.5        0.171
##  5            3                   12.5        0.24 
##  6            3                   12.5        0.24 
##  7            3                   12.5        0.24 
##  8           17.5                  7.5        2.33 
##  9            3                    2.5        1.2  
## 10            7.5                 12.5        0.6  
## # ℹ 91 more rows

Summarize by groups

by_age <- group_by(data, prey.per.month, hours.indoor.per.day, cats.in.house)

summarise(by_age, na.rim = TRUE)
## # A tibble: 46 × 4
## # Groups:   prey.per.month, hours.indoor.per.day [20]
##    prey.per.month hours.indoor.per.day cats.in.house na.rim
##             <dbl>                <dbl>         <dbl> <lgl> 
##  1              0                  2.5             1 TRUE  
##  2              0                  7.5             1 TRUE  
##  3              0                  7.5             2 TRUE  
##  4              0                  7.5             4 TRUE  
##  5              0                 12.5             1 TRUE  
##  6              0                 12.5             2 TRUE  
##  7              0                 12.5             3 TRUE  
##  8              0                 17.5             1 TRUE  
##  9              0                 17.5             2 TRUE  
## 10              0                 17.5             4 TRUE  
## # ℹ 36 more rows