La función caret (Clasification And Regression Training) es un paquete integral con una amplia variedad de algoritmos para el aprendizaje automático.
#install.packages("caret") # Algoritmos de aprendizaje automático
#install.packages("ggplot2") # Gráficas con mejor diseño
library(ggplot2)
#install.packages("lattice") # Crear gráficos
library(lattice)
#install.packages("datasets") # Usar la base de datos "BreastCancer"
library(datasets)
library(DataExplorer)
library(caret)
library(MASS)
library(mlbench)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
## select
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
data("BreastCancer")
bc <- BreastCancer
Incluir funciones para evaluacion y comparacion de modelos
summary(bc)
## Id Cl.thickness Cell.size Cell.shape Marg.adhesion
## Length:699 1 :145 1 :384 1 :353 1 :407
## Class :character 5 :130 10 : 67 2 : 59 2 : 58
## Mode :character 3 :108 3 : 52 10 : 58 3 : 58
## 4 : 80 2 : 45 3 : 56 10 : 55
## 10 : 69 4 : 40 4 : 44 4 : 33
## 2 : 50 5 : 30 5 : 34 8 : 25
## (Other):117 (Other): 81 (Other): 95 (Other): 63
## Epith.c.size Bare.nuclei Bl.cromatin Normal.nucleoli Mitoses
## 2 :386 1 :402 2 :166 1 :443 1 :579
## 3 : 72 10 :132 3 :165 10 : 61 2 : 35
## 4 : 48 2 : 30 1 :152 3 : 44 3 : 33
## 1 : 47 5 : 30 7 : 73 2 : 36 10 : 14
## 6 : 41 3 : 28 4 : 40 8 : 24 4 : 12
## 5 : 39 (Other): 61 5 : 34 6 : 22 7 : 9
## (Other): 66 NA's : 16 (Other): 69 (Other): 69 (Other): 17
## Class
## benign :458
## malignant:241
##
##
##
##
##
str(bc)
## 'data.frame': 699 obs. of 11 variables:
## $ Id : chr "1000025" "1002945" "1015425" "1016277" ...
## $ Cl.thickness : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 5 5 3 6 4 8 1 2 2 4 ...
## $ Cell.size : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 4 1 8 1 10 1 1 1 2 ...
## $ Cell.shape : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 4 1 8 1 10 1 2 1 1 ...
## $ Marg.adhesion : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 5 1 1 3 8 1 1 1 1 ...
## $ Epith.c.size : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 2 7 2 3 2 7 2 2 2 2 ...
## $ Bare.nuclei : Factor w/ 10 levels "1","2","3","4",..: 1 10 2 4 1 10 10 1 1 1 ...
## $ Bl.cromatin : Factor w/ 10 levels "1","2","3","4",..: 3 3 3 3 3 9 3 3 1 2 ...
## $ Normal.nucleoli: Factor w/ 10 levels "1","2","3","4",..: 1 2 1 7 1 7 1 1 1 1 ...
## $ Mitoses : Factor w/ 9 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 5 1 ...
## $ Class : Factor w/ 2 levels "benign","malignant": 1 1 1 1 1 2 1 1 1 1 ...
plot_missing(bc)
plot_correlation(bc)
sum(is.na(bc))
## [1] 16
bc <- na.omit(bc)
sum(is.na(bc))
## [1] 0
** Nota: La variable que queremos predecir debe tener formato de FACTOR**
bc <- bc %>%
mutate(Class = ifelse(Class == "benign", 0,
ifelse(Class == "malignant", 1, Class))) %>% select(-Id)
bc$Cl.thickness <- as.factor(as.character(bc$Cl.thickness))
bc$Cell.size <- as.factor(as.character(bc$Cell.size))
bc$Cell.shape <- as.factor(as.character(bc$Cell.shape))
bc$Marg.adhesion <- as.factor(as.character(bc$Marg.adhesion))
bc$Epith.c.size <- as.factor(as.character(bc$Epith.c.size))
bc$Class <- as.factor(bc$Class)
str(bc)
## 'data.frame': 683 obs. of 10 variables:
## $ Cl.thickness : Factor w/ 10 levels "1","10","2","3",..: 6 6 4 7 5 9 1 3 3 5 ...
## $ Cell.size : Factor w/ 10 levels "1","10","2","3",..: 1 5 1 9 1 2 1 1 1 3 ...
## $ Cell.shape : Factor w/ 10 levels "1","10","2","3",..: 1 5 1 9 1 2 1 3 1 1 ...
## $ Marg.adhesion : Factor w/ 10 levels "1","10","2","3",..: 1 6 1 1 4 9 1 1 1 1 ...
## $ Epith.c.size : Factor w/ 10 levels "1","10","2","3",..: 3 8 3 4 3 8 3 3 3 3 ...
## $ Bare.nuclei : Factor w/ 10 levels "1","2","3","4",..: 1 10 2 4 1 10 10 1 1 1 ...
## $ Bl.cromatin : Factor w/ 10 levels "1","2","3","4",..: 3 3 3 3 3 9 3 3 1 2 ...
## $ Normal.nucleoli: Factor w/ 10 levels "1","2","3","4",..: 1 2 1 7 1 7 1 1 1 1 ...
## $ Mitoses : Factor w/ 9 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 5 1 ...
## $ Class : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 1 1 1 1 ...
## - attr(*, "na.action")= 'omit' Named int [1:16] 24 41 140 146 159 165 236 250 276 293 ...
## ..- attr(*, "names")= chr [1:16] "24" "41" "140" "146" ...
set.seed(123)
renglones_entrenamiento <-
createDataPartition(bc$Class, p=0.8, list = FALSE)
entrenamiento <- bc[renglones_entrenamiento, ]
prueba <- bc[-renglones_entrenamiento, ]
Los métodos más utilizados para moelar aprendizaje automático son:
SVM: Support Vector Machine o Máquina de Vectores de Soporte. Hay varios subtipos: Linea (svmLineal)m Radial (svmRadial), Polinómico (svmPoly), etc.
Árbol de Decisión: rpart
Redes Neuronales: nnet
Random Forest o Bosques Aleatorios: rf
# Entrenamiento del modelo
modelo <- train(Class ~ .,
data = entrenamiento,
method = "svmLinear",
preProcess = c("scale", "center"),
trControl = trainControl(method = "cv", number = 10),
tuneGrid = data.frame(C=1)
)
# Predicción en datos de entrenamiento y prueba
resultado_entrenamiento <- predict(modelo, entrenamiento)
resultado_prueba <- predict(modelo, prueba)
# Matriz de Confusión
mcre <- confusionMatrix(resultado_entrenamiento, entrenamiento$Class)
mcre
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 356 0
## 1 0 192
##
## Accuracy : 1
## 95% CI : (0.9933, 1)
## No Information Rate : 0.6496
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Sensitivity : 1.0000
## Specificity : 1.0000
## Pos Pred Value : 1.0000
## Neg Pred Value : 1.0000
## Prevalence : 0.6496
## Detection Rate : 0.6496
## Detection Prevalence : 0.6496
## Balanced Accuracy : 1.0000
##
## 'Positive' Class : 0
##
mcrp <- confusionMatrix(resultado_prueba, prueba$Class)
mcrp
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 82 6
## 1 6 41
##
## Accuracy : 0.9111
## 95% CI : (0.8499, 0.9532)
## No Information Rate : 0.6519
## P-Value [Acc > NIR] : 2.463e-12
##
## Kappa : 0.8042
##
## Mcnemar's Test P-Value : 1
##
## Sensitivity : 0.9318
## Specificity : 0.8723
## Pos Pred Value : 0.9318
## Neg Pred Value : 0.8723
## Prevalence : 0.6519
## Detection Rate : 0.6074
## Detection Prevalence : 0.6519
## Balanced Accuracy : 0.9021
##
## 'Positive' Class : 0
##
# Entrenamiento del modelo
model2_bc <- train(Class ~ .,
data = entrenamiento,
method = "svmRadial",
preProcess = c("scale", "center"),
trControl = trainControl(method = "cv", number = 10),
tuneGrid = data.frame(sigma = 1, C = 1)
)
# Predicción en datos de entrenamiento y prueba
resultado_entrenamiento2 <- predict(model2_bc, entrenamiento)
resultado_prueba2 <- predict(model2_bc, prueba)
# Matriz de Confusión
mcre2 <- confusionMatrix(resultado_entrenamiento2, entrenamiento$Class) # matriz de confusion del resultado del entrenamiento
mcre2
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 356 0
## 1 0 192
##
## Accuracy : 1
## 95% CI : (0.9933, 1)
## No Information Rate : 0.6496
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Sensitivity : 1.0000
## Specificity : 1.0000
## Pos Pred Value : 1.0000
## Neg Pred Value : 1.0000
## Prevalence : 0.6496
## Detection Rate : 0.6496
## Detection Prevalence : 0.6496
## Balanced Accuracy : 1.0000
##
## 'Positive' Class : 0
##
mcrp2 <- confusionMatrix(resultado_prueba2, prueba$Class) # matriz de confusion del resultado de la prueba
mcrp2
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 47 0
## 1 41 47
##
## Accuracy : 0.6963
## 95% CI : (0.6113, 0.7724)
## No Information Rate : 0.6519
## P-Value [Acc > NIR] : 0.1602
##
## Kappa : 0.4439
##
## Mcnemar's Test P-Value : 4.185e-10
##
## Sensitivity : 0.5341
## Specificity : 1.0000
## Pos Pred Value : 1.0000
## Neg Pred Value : 0.5341
## Prevalence : 0.6519
## Detection Rate : 0.3481
## Detection Prevalence : 0.3481
## Balanced Accuracy : 0.7670
##
## 'Positive' Class : 0
##
# Entrenamiento del modelo
model3 <- train(Class ~ .,
data = entrenamiento,
method = "svmPoly",
preProcess = c("scale", "center"),
trControl = trainControl(method = "cv", number = 10),
tuneGrid = data.frame(degree=1, scale=1, C=1)
)
# Define la cuadrícula de sintonización para los parámetros sigma y C
# Predicción en datos de entrenamiento y prueba
resultado_entrenamiento3 <- predict(model3, entrenamiento)
resultado_prueba3 <- predict(model3, prueba)
# Matriz de Confusión
mcre3 <- confusionMatrix(resultado_entrenamiento3, entrenamiento$Class) # matriz de confusion del resultado del entrenamiento
mcre3
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 356 0
## 1 0 192
##
## Accuracy : 1
## 95% CI : (0.9933, 1)
## No Information Rate : 0.6496
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Sensitivity : 1.0000
## Specificity : 1.0000
## Pos Pred Value : 1.0000
## Neg Pred Value : 1.0000
## Prevalence : 0.6496
## Detection Rate : 0.6496
## Detection Prevalence : 0.6496
## Balanced Accuracy : 1.0000
##
## 'Positive' Class : 0
##
mcrp3 <- confusionMatrix(resultado_prueba3, prueba$Class) # matriz de confusion del resultado de la prueba
mcrp3
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 82 6
## 1 6 41
##
## Accuracy : 0.9111
## 95% CI : (0.8499, 0.9532)
## No Information Rate : 0.6519
## P-Value [Acc > NIR] : 2.463e-12
##
## Kappa : 0.8042
##
## Mcnemar's Test P-Value : 1
##
## Sensitivity : 0.9318
## Specificity : 0.8723
## Pos Pred Value : 0.9318
## Neg Pred Value : 0.8723
## Prevalence : 0.6519
## Detection Rate : 0.6074
## Detection Prevalence : 0.6519
## Balanced Accuracy : 0.9021
##
## 'Positive' Class : 0
##
# Entrenamiento del modelo
model4 <- train(Class ~ .,
data = entrenamiento,
method = "rpart",
preProcess = c("scale", "center"),
trControl = trainControl(method = "cv", number = 10),
tuneLength = 10 # numero de divisiones del árbol
)
# Predicción en datos de entrenamiento y prueba
resultado_entrenamiento4 <- predict(model4, entrenamiento)
resultado_prueba4 <- predict(model4, prueba)
# Matriz de Confusión
mcre4 <- confusionMatrix(resultado_entrenamiento4, entrenamiento$Class) # matriz de confusion del resultado del entrenamiento
mcre4
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 346 17
## 1 10 175
##
## Accuracy : 0.9507
## 95% CI : (0.9291, 0.9673)
## No Information Rate : 0.6496
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.8908
##
## Mcnemar's Test P-Value : 0.2482
##
## Sensitivity : 0.9719
## Specificity : 0.9115
## Pos Pred Value : 0.9532
## Neg Pred Value : 0.9459
## Prevalence : 0.6496
## Detection Rate : 0.6314
## Detection Prevalence : 0.6624
## Balanced Accuracy : 0.9417
##
## 'Positive' Class : 0
##
mcrp4 <- confusionMatrix(resultado_prueba4, prueba$Class) # matriz de confusion del resultado de la prueba
mcrp4
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 88 8
## 1 0 39
##
## Accuracy : 0.9407
## 95% CI : (0.8866, 0.9741)
## No Information Rate : 0.6519
## P-Value [Acc > NIR] : 1.347e-15
##
## Kappa : 0.864
##
## Mcnemar's Test P-Value : 0.01333
##
## Sensitivity : 1.0000
## Specificity : 0.8298
## Pos Pred Value : 0.9167
## Neg Pred Value : 1.0000
## Prevalence : 0.6519
## Detection Rate : 0.6519
## Detection Prevalence : 0.7111
## Balanced Accuracy : 0.9149
##
## 'Positive' Class : 0
##
# Entrenamiento del modelo
model5 <- train(Class ~ .,
data = entrenamiento,
method = "nnet",
preProcess = c("scale", "center"),
trControl = trainControl(method = "cv", number = 10)
)
## # weights: 83
## initial value 373.635149
## iter 10 value 50.010671
## iter 20 value 25.241095
## iter 30 value 21.925308
## iter 40 value 21.587540
## iter 50 value 21.561887
## iter 60 value 17.027619
## iter 70 value 17.025370
## iter 80 value 17.024262
## iter 90 value 17.023785
## iter 100 value 17.023409
## final value 17.023409
## stopped after 100 iterations
## # weights: 247
## initial value 324.935863
## iter 10 value 24.197369
## iter 20 value 13.270270
## iter 30 value 11.090580
## iter 40 value 10.919035
## iter 50 value 9.535371
## iter 60 value 9.386065
## iter 70 value 9.371595
## iter 80 value 9.315208
## iter 90 value 9.240369
## iter 100 value 9.085473
## final value 9.085473
## stopped after 100 iterations
## # weights: 411
## initial value 329.413639
## iter 10 value 18.363156
## iter 20 value 4.104714
## iter 30 value 0.313717
## iter 40 value 0.037740
## iter 50 value 0.013030
## iter 60 value 0.002195
## iter 70 value 0.000359
## iter 80 value 0.000193
## final value 0.000091
## converged
## # weights: 83
## initial value 318.958373
## iter 10 value 57.637764
## iter 20 value 33.652471
## iter 30 value 26.386981
## iter 40 value 19.289464
## iter 50 value 18.320550
## iter 60 value 18.174575
## iter 70 value 18.129560
## iter 80 value 18.126970
## final value 18.126968
## converged
## # weights: 247
## initial value 396.840774
## iter 10 value 60.301000
## iter 20 value 30.285635
## iter 30 value 18.109551
## iter 40 value 11.365297
## iter 50 value 10.437392
## iter 60 value 10.281993
## iter 70 value 10.213385
## iter 80 value 10.213031
## iter 80 value 10.213031
## iter 80 value 10.213031
## final value 10.213031
## converged
## # weights: 411
## initial value 403.742728
## iter 10 value 42.745688
## iter 20 value 23.969799
## iter 30 value 10.812540
## iter 40 value 8.884698
## iter 50 value 8.695950
## iter 60 value 8.518855
## iter 70 value 8.469847
## iter 80 value 8.464782
## iter 90 value 8.460793
## iter 100 value 8.460143
## final value 8.460143
## stopped after 100 iterations
## # weights: 83
## initial value 307.501897
## iter 10 value 53.323549
## iter 20 value 43.553017
## iter 30 value 39.751860
## iter 40 value 39.734468
## iter 50 value 39.730037
## iter 60 value 39.726097
## iter 70 value 39.723878
## iter 80 value 39.717712
## iter 90 value 39.714081
## iter 100 value 36.159141
## final value 36.159141
## stopped after 100 iterations
## # weights: 247
## initial value 320.984086
## iter 10 value 37.588695
## iter 20 value 25.922245
## iter 30 value 25.830445
## iter 40 value 25.693199
## iter 50 value 25.635604
## iter 60 value 25.591611
## iter 70 value 25.410406
## iter 80 value 24.618588
## iter 90 value 18.563094
## iter 100 value 6.738598
## final value 6.738598
## stopped after 100 iterations
## # weights: 411
## initial value 319.401333
## iter 10 value 30.716565
## iter 20 value 6.430031
## iter 30 value 1.796554
## iter 40 value 0.225601
## iter 50 value 0.131631
## iter 60 value 0.114607
## iter 70 value 0.103543
## iter 80 value 0.094038
## iter 90 value 0.086110
## iter 100 value 0.079612
## final value 0.079612
## stopped after 100 iterations
## # weights: 83
## initial value 399.275854
## iter 10 value 147.256303
## iter 20 value 58.230939
## iter 30 value 30.096555
## iter 40 value 29.630330
## iter 50 value 29.597795
## iter 60 value 29.592758
## iter 70 value 29.591759
## iter 80 value 29.591598
## iter 90 value 29.591514
## iter 100 value 29.591455
## final value 29.591455
## stopped after 100 iterations
## # weights: 247
## initial value 318.996893
## iter 10 value 37.506485
## iter 20 value 21.935282
## iter 30 value 20.343560
## iter 40 value 19.104752
## iter 50 value 17.100408
## iter 60 value 16.299547
## iter 70 value 15.400348
## iter 80 value 15.395893
## iter 90 value 15.378299
## iter 100 value 10.155206
## final value 10.155206
## stopped after 100 iterations
## # weights: 411
## initial value 351.316133
## iter 10 value 20.691403
## iter 20 value 8.754505
## iter 30 value 8.163574
## iter 40 value 7.745295
## iter 50 value 7.719769
## iter 60 value 7.220389
## iter 70 value 7.208166
## iter 80 value 7.203428
## iter 90 value 7.029015
## iter 100 value 7.001851
## final value 7.001851
## stopped after 100 iterations
## # weights: 83
## initial value 410.719376
## iter 10 value 121.894143
## iter 20 value 79.143390
## iter 30 value 56.729354
## iter 40 value 45.456008
## iter 50 value 32.850148
## iter 60 value 28.792197
## iter 70 value 25.194005
## iter 80 value 22.021304
## iter 90 value 21.619492
## iter 100 value 21.604683
## final value 21.604683
## stopped after 100 iterations
## # weights: 247
## initial value 353.788416
## iter 10 value 51.867085
## iter 20 value 29.505012
## iter 30 value 19.478593
## iter 40 value 16.876406
## iter 50 value 13.295657
## iter 60 value 12.069946
## iter 70 value 12.019379
## iter 80 value 12.017621
## iter 90 value 12.014693
## iter 100 value 12.009964
## final value 12.009964
## stopped after 100 iterations
## # weights: 411
## initial value 375.590053
## iter 10 value 39.047954
## iter 20 value 13.891850
## iter 30 value 11.530722
## iter 40 value 11.090873
## iter 50 value 10.208973
## iter 60 value 9.600850
## iter 70 value 9.407459
## iter 80 value 9.395895
## iter 90 value 9.391065
## iter 100 value 9.388096
## final value 9.388096
## stopped after 100 iterations
## # weights: 83
## initial value 317.324835
## iter 10 value 47.946792
## iter 20 value 42.634575
## iter 30 value 39.581261
## iter 40 value 39.561390
## iter 50 value 39.554272
## iter 60 value 39.531222
## iter 70 value 36.356421
## iter 80 value 36.351714
## iter 90 value 36.342081
## iter 100 value 29.832717
## final value 29.832717
## stopped after 100 iterations
## # weights: 247
## initial value 336.154420
## iter 10 value 39.725801
## iter 20 value 23.047981
## iter 30 value 18.171629
## iter 40 value 13.227256
## iter 50 value 8.818794
## iter 60 value 8.700327
## iter 70 value 8.675930
## iter 80 value 8.666686
## iter 90 value 8.646051
## iter 100 value 8.365185
## final value 8.365185
## stopped after 100 iterations
## # weights: 411
## initial value 355.907547
## iter 10 value 7.607314
## iter 20 value 2.842838
## iter 30 value 2.404559
## iter 40 value 2.056356
## iter 50 value 2.039687
## iter 60 value 1.500617
## iter 70 value 0.173945
## iter 80 value 0.134923
## iter 90 value 0.126418
## iter 100 value 0.117700
## final value 0.117700
## stopped after 100 iterations
## # weights: 83
## initial value 304.878892
## iter 10 value 53.658023
## iter 20 value 45.483812
## iter 30 value 42.526718
## iter 40 value 42.525605
## iter 50 value 42.525438
## iter 60 value 42.525323
## final value 42.525309
## converged
## # weights: 247
## initial value 321.339700
## iter 10 value 41.898623
## iter 20 value 17.062164
## iter 30 value 9.929280
## iter 40 value 7.774503
## iter 50 value 6.212717
## iter 60 value 6.191650
## iter 70 value 6.187855
## iter 80 value 5.550241
## iter 90 value 4.832015
## iter 100 value 4.782757
## final value 4.782757
## stopped after 100 iterations
## # weights: 411
## initial value 442.755632
## iter 10 value 36.594432
## iter 20 value 11.008288
## iter 30 value 8.521503
## iter 40 value 7.913952
## iter 50 value 7.856826
## iter 60 value 7.748840
## iter 70 value 7.697261
## iter 80 value 6.135351
## iter 90 value 6.083494
## iter 100 value 6.063149
## final value 6.063149
## stopped after 100 iterations
## # weights: 83
## initial value 362.653174
## iter 10 value 78.227678
## iter 20 value 54.789295
## iter 30 value 40.834704
## iter 40 value 31.723420
## iter 50 value 23.153795
## iter 60 value 22.044195
## iter 70 value 21.867575
## iter 80 value 21.647002
## iter 90 value 21.632273
## iter 100 value 21.619513
## final value 21.619513
## stopped after 100 iterations
## # weights: 247
## initial value 408.594347
## iter 10 value 112.221292
## iter 20 value 44.094922
## iter 30 value 25.987559
## iter 40 value 16.034581
## iter 50 value 12.492871
## iter 60 value 12.114491
## iter 70 value 12.072795
## iter 80 value 12.071994
## final value 12.071991
## converged
## # weights: 411
## initial value 418.370721
## iter 10 value 68.428554
## iter 20 value 27.912396
## iter 30 value 13.504148
## iter 40 value 10.967551
## iter 50 value 10.258892
## iter 60 value 9.891453
## iter 70 value 9.740163
## iter 80 value 9.702950
## iter 90 value 9.681110
## iter 100 value 9.677718
## final value 9.677718
## stopped after 100 iterations
## # weights: 83
## initial value 322.165018
## iter 10 value 132.531064
## iter 20 value 109.912008
## iter 30 value 105.725503
## iter 40 value 105.689596
## iter 50 value 97.285659
## iter 60 value 91.729992
## iter 70 value 86.641050
## iter 80 value 86.282199
## iter 90 value 83.404959
## iter 100 value 80.454198
## final value 80.454198
## stopped after 100 iterations
## # weights: 247
## initial value 429.601322
## iter 10 value 37.348912
## iter 20 value 21.826465
## iter 30 value 15.622029
## iter 40 value 13.684480
## iter 50 value 12.489567
## iter 60 value 11.064243
## iter 70 value 10.732953
## iter 80 value 10.400882
## iter 90 value 9.638218
## iter 100 value 9.215717
## final value 9.215717
## stopped after 100 iterations
## # weights: 411
## initial value 322.717597
## iter 10 value 23.498085
## iter 20 value 11.876630
## iter 30 value 7.558572
## iter 40 value 6.872976
## iter 50 value 6.373976
## iter 60 value 5.788632
## iter 70 value 4.910256
## iter 80 value 4.384007
## iter 90 value 1.618620
## iter 100 value 0.201096
## final value 0.201096
## stopped after 100 iterations
## # weights: 83
## initial value 423.189085
## iter 10 value 98.568316
## iter 20 value 55.902316
## iter 30 value 43.666625
## iter 40 value 33.067515
## iter 50 value 32.965397
## iter 60 value 22.814943
## iter 70 value 22.764657
## iter 80 value 22.763024
## iter 90 value 22.762328
## iter 90 value 22.762328
## iter 90 value 22.762327
## final value 22.762327
## converged
## # weights: 247
## initial value 416.671102
## iter 10 value 32.351600
## iter 20 value 26.033187
## iter 30 value 22.007964
## iter 40 value 20.856000
## iter 50 value 20.715288
## iter 60 value 19.868537
## iter 70 value 15.977669
## iter 80 value 14.734450
## iter 90 value 14.591448
## iter 100 value 14.051185
## final value 14.051185
## stopped after 100 iterations
## # weights: 411
## initial value 348.181757
## iter 10 value 20.296521
## iter 20 value 6.160163
## iter 30 value 3.016387
## iter 40 value 2.743314
## iter 50 value 0.121064
## iter 60 value 0.069201
## iter 70 value 0.025341
## iter 80 value 0.010843
## iter 90 value 0.001997
## iter 100 value 0.000465
## final value 0.000465
## stopped after 100 iterations
## # weights: 83
## initial value 345.838875
## iter 10 value 125.484239
## iter 20 value 77.767736
## iter 30 value 29.835119
## iter 40 value 26.443435
## iter 50 value 22.149082
## iter 60 value 22.075985
## iter 70 value 22.075624
## iter 70 value 22.075623
## iter 70 value 22.075623
## final value 22.075623
## converged
## # weights: 247
## initial value 338.774453
## iter 10 value 62.726504
## iter 20 value 38.356677
## iter 30 value 20.660954
## iter 40 value 12.552314
## iter 50 value 11.435050
## iter 60 value 10.883996
## iter 70 value 10.791865
## iter 80 value 10.783840
## iter 90 value 10.758564
## iter 100 value 10.758187
## final value 10.758187
## stopped after 100 iterations
## # weights: 411
## initial value 479.706024
## iter 10 value 40.346499
## iter 20 value 19.458565
## iter 30 value 12.385741
## iter 40 value 9.989186
## iter 50 value 9.016262
## iter 60 value 8.827129
## iter 70 value 8.775357
## iter 80 value 8.764210
## iter 90 value 8.762907
## iter 100 value 8.762802
## final value 8.762802
## stopped after 100 iterations
## # weights: 83
## initial value 331.563494
## iter 10 value 39.578829
## iter 20 value 36.410202
## iter 30 value 36.317587
## iter 40 value 36.303196
## iter 50 value 36.238962
## iter 60 value 32.991043
## iter 70 value 32.987250
## iter 80 value 32.983318
## iter 90 value 23.381541
## iter 100 value 17.713663
## final value 17.713663
## stopped after 100 iterations
## # weights: 247
## initial value 472.807591
## iter 10 value 37.491348
## iter 20 value 11.590607
## iter 30 value 8.101483
## iter 40 value 7.667777
## iter 50 value 6.340593
## iter 60 value 6.314589
## iter 70 value 6.307880
## iter 80 value 6.299962
## iter 90 value 6.296085
## iter 100 value 6.290074
## final value 6.290074
## stopped after 100 iterations
## # weights: 411
## initial value 352.606924
## iter 10 value 31.497198
## iter 20 value 19.093436
## iter 30 value 15.001494
## iter 40 value 13.818165
## iter 50 value 12.534943
## iter 60 value 7.728711
## iter 70 value 5.089390
## iter 80 value 5.017709
## iter 90 value 5.007984
## iter 100 value 4.382313
## final value 4.382313
## stopped after 100 iterations
## # weights: 83
## initial value 363.395485
## iter 10 value 42.710982
## iter 20 value 36.273921
## iter 30 value 36.259569
## iter 40 value 36.259475
## iter 50 value 36.259436
## iter 50 value 36.259436
## final value 36.259436
## converged
## # weights: 247
## initial value 318.389292
## iter 10 value 30.075533
## iter 20 value 20.630980
## iter 30 value 16.614563
## iter 40 value 15.217691
## iter 50 value 13.926245
## iter 60 value 13.163435
## iter 70 value 11.524621
## iter 80 value 9.267836
## iter 90 value 9.041419
## iter 100 value 9.033010
## final value 9.033010
## stopped after 100 iterations
## # weights: 411
## initial value 376.840066
## iter 10 value 48.716139
## iter 20 value 27.402176
## iter 30 value 7.823619
## iter 40 value 0.339544
## iter 50 value 0.020036
## iter 60 value 0.006464
## iter 70 value 0.002406
## iter 80 value 0.000676
## iter 90 value 0.000270
## final value 0.000092
## converged
## # weights: 83
## initial value 321.355181
## iter 10 value 60.191634
## iter 20 value 42.134754
## iter 30 value 30.946083
## iter 40 value 24.295596
## iter 50 value 22.561110
## iter 60 value 22.411909
## iter 70 value 22.407399
## final value 22.407384
## converged
## # weights: 247
## initial value 475.306726
## iter 10 value 145.391333
## iter 20 value 74.213763
## iter 30 value 35.863610
## iter 40 value 23.997682
## iter 50 value 14.446250
## iter 60 value 11.353779
## iter 70 value 11.081877
## iter 80 value 10.929958
## iter 90 value 10.911007
## iter 100 value 10.909130
## final value 10.909130
## stopped after 100 iterations
## # weights: 411
## initial value 352.784287
## iter 10 value 39.757791
## iter 20 value 22.887694
## iter 30 value 14.294650
## iter 40 value 11.918362
## iter 50 value 10.536873
## iter 60 value 9.365154
## iter 70 value 9.144375
## iter 80 value 9.138044
## iter 90 value 9.137862
## final value 9.137856
## converged
## # weights: 83
## initial value 414.434442
## iter 10 value 53.272377
## iter 20 value 33.405426
## iter 30 value 29.534825
## iter 40 value 22.057561
## iter 50 value 21.948962
## iter 60 value 17.706869
## iter 70 value 17.702747
## iter 80 value 17.702167
## iter 90 value 17.701397
## iter 100 value 17.700844
## final value 17.700844
## stopped after 100 iterations
## # weights: 247
## initial value 305.757140
## iter 10 value 35.820849
## iter 20 value 14.635996
## iter 30 value 9.976552
## iter 40 value 7.831708
## iter 50 value 6.606666
## iter 60 value 6.580143
## iter 70 value 6.551154
## iter 80 value 6.226117
## iter 90 value 6.204714
## iter 100 value 6.197260
## final value 6.197260
## stopped after 100 iterations
## # weights: 411
## initial value 305.436786
## iter 10 value 28.273847
## iter 20 value 16.579537
## iter 30 value 13.341741
## iter 40 value 11.148623
## iter 50 value 9.994417
## iter 60 value 8.984229
## iter 70 value 8.368035
## iter 80 value 8.012897
## iter 90 value 6.098687
## iter 100 value 4.925818
## final value 4.925818
## stopped after 100 iterations
## # weights: 83
## initial value 324.476204
## iter 10 value 36.615518
## iter 20 value 29.615467
## iter 30 value 29.592020
## iter 40 value 29.591457
## final value 29.591454
## converged
## # weights: 247
## initial value 446.088008
## iter 10 value 24.570634
## iter 20 value 9.854754
## iter 30 value 4.520976
## iter 40 value 4.417626
## iter 50 value 4.166881
## iter 60 value 4.162604
## iter 70 value 4.160414
## iter 80 value 4.159764
## iter 90 value 4.159488
## iter 100 value 4.159013
## final value 4.159013
## stopped after 100 iterations
## # weights: 411
## initial value 323.836817
## iter 10 value 17.271652
## iter 20 value 5.922613
## iter 30 value 0.641732
## iter 40 value 0.072225
## iter 50 value 0.009256
## iter 60 value 0.002760
## iter 70 value 0.000827
## iter 80 value 0.000307
## iter 90 value 0.000206
## iter 100 value 0.000146
## final value 0.000146
## stopped after 100 iterations
## # weights: 83
## initial value 384.525267
## iter 10 value 54.441366
## iter 20 value 39.969248
## iter 30 value 33.957643
## iter 40 value 30.552212
## iter 50 value 26.358328
## iter 60 value 21.940774
## iter 70 value 21.862617
## iter 80 value 21.860287
## final value 21.860281
## converged
## # weights: 247
## initial value 395.127787
## iter 10 value 77.670501
## iter 20 value 46.107871
## iter 30 value 37.412720
## iter 40 value 32.364264
## iter 50 value 25.040275
## iter 60 value 19.860236
## iter 70 value 15.488320
## iter 80 value 13.287123
## iter 90 value 12.752815
## iter 100 value 12.714153
## final value 12.714153
## stopped after 100 iterations
## # weights: 411
## initial value 347.534493
## iter 10 value 34.592515
## iter 20 value 16.578743
## iter 30 value 10.844778
## iter 40 value 9.629021
## iter 50 value 8.792030
## iter 60 value 8.428157
## iter 70 value 8.385866
## iter 80 value 8.362507
## iter 90 value 8.361327
## iter 100 value 8.361138
## final value 8.361138
## stopped after 100 iterations
## # weights: 83
## initial value 325.078075
## iter 10 value 39.207835
## iter 20 value 33.044497
## iter 30 value 22.915520
## iter 40 value 22.854877
## iter 50 value 22.853160
## iter 60 value 19.565324
## iter 70 value 19.169659
## iter 80 value 19.166065
## iter 90 value 19.164044
## iter 100 value 19.162303
## final value 19.162303
## stopped after 100 iterations
## # weights: 247
## initial value 381.280502
## iter 10 value 26.582402
## iter 20 value 21.426055
## iter 30 value 21.227402
## iter 40 value 19.241281
## iter 50 value 15.286576
## iter 60 value 15.267535
## iter 70 value 15.257189
## iter 80 value 15.252443
## iter 90 value 15.245505
## iter 100 value 15.241917
## final value 15.241917
## stopped after 100 iterations
## # weights: 411
## initial value 385.211649
## iter 10 value 18.277608
## iter 20 value 7.177657
## iter 30 value 1.681694
## iter 40 value 1.556520
## iter 50 value 1.529355
## iter 60 value 1.502919
## iter 70 value 1.440263
## iter 80 value 0.110011
## iter 90 value 0.093966
## iter 100 value 0.088360
## final value 0.088360
## stopped after 100 iterations
## # weights: 83
## initial value 347.208663
## iter 10 value 186.365060
## iter 20 value 67.729968
## iter 30 value 58.257140
## iter 40 value 58.252905
## iter 50 value 54.045032
## iter 60 value 54.042663
## iter 70 value 54.042461
## final value 54.042459
## converged
## # weights: 247
## initial value 312.113077
## iter 10 value 46.493217
## iter 20 value 39.873209
## iter 30 value 39.644910
## iter 40 value 39.306371
## iter 50 value 39.251848
## iter 60 value 38.852498
## iter 70 value 38.840106
## iter 80 value 38.839901
## iter 90 value 38.677097
## iter 100 value 38.617816
## final value 38.617816
## stopped after 100 iterations
## # weights: 411
## initial value 300.552579
## iter 10 value 15.585435
## iter 20 value 9.514834
## iter 30 value 7.716820
## iter 40 value 7.188319
## iter 50 value 7.139834
## iter 60 value 7.127998
## iter 70 value 4.771481
## iter 80 value 4.620824
## iter 90 value 4.615926
## iter 100 value 4.597679
## final value 4.597679
## stopped after 100 iterations
## # weights: 83
## initial value 322.607546
## iter 10 value 120.020873
## iter 20 value 68.151574
## iter 30 value 42.828788
## iter 40 value 30.232388
## iter 50 value 23.823618
## iter 60 value 22.654288
## iter 70 value 22.397084
## iter 80 value 22.334864
## iter 90 value 22.325904
## iter 100 value 22.321285
## final value 22.321285
## stopped after 100 iterations
## # weights: 247
## initial value 420.254648
## iter 10 value 59.013405
## iter 20 value 26.311798
## iter 30 value 16.355978
## iter 40 value 14.973845
## iter 50 value 14.428144
## iter 60 value 14.143222
## iter 70 value 14.036036
## iter 80 value 13.943858
## iter 90 value 13.902017
## iter 100 value 13.866617
## final value 13.866617
## stopped after 100 iterations
## # weights: 411
## initial value 381.988851
## iter 10 value 44.236412
## iter 20 value 24.776275
## iter 30 value 17.192349
## iter 40 value 15.277607
## iter 50 value 13.284299
## iter 60 value 10.918848
## iter 70 value 9.496306
## iter 80 value 9.073378
## iter 90 value 8.999449
## iter 100 value 8.984649
## final value 8.984649
## stopped after 100 iterations
## # weights: 83
## initial value 401.070059
## iter 10 value 43.098192
## iter 20 value 33.058078
## iter 30 value 26.353500
## iter 40 value 22.839703
## iter 50 value 22.836439
## iter 60 value 22.835277
## iter 70 value 18.697529
## iter 80 value 15.234638
## iter 90 value 15.233030
## iter 100 value 15.232286
## final value 15.232286
## stopped after 100 iterations
## # weights: 247
## initial value 313.002738
## iter 10 value 42.572011
## iter 20 value 42.464848
## iter 30 value 41.934093
## iter 40 value 41.457126
## iter 50 value 41.067206
## iter 60 value 40.913579
## iter 70 value 40.865055
## iter 80 value 37.946890
## iter 90 value 34.965295
## iter 100 value 34.864997
## final value 34.864997
## stopped after 100 iterations
## # weights: 411
## initial value 323.458812
## iter 10 value 7.017947
## iter 20 value 1.781510
## iter 30 value 0.800011
## iter 40 value 0.178438
## iter 50 value 0.166575
## iter 60 value 0.153104
## iter 70 value 0.138888
## iter 80 value 0.124647
## iter 90 value 0.114195
## iter 100 value 0.107296
## final value 0.107296
## stopped after 100 iterations
## # weights: 83
## initial value 372.186377
## iter 10 value 35.516922
## iter 20 value 30.190891
## iter 30 value 29.543063
## iter 40 value 29.527497
## iter 50 value 29.525078
## iter 60 value 29.521076
## iter 70 value 29.520121
## iter 80 value 29.519868
## iter 90 value 29.519830
## iter 100 value 29.519723
## final value 29.519723
## stopped after 100 iterations
## # weights: 247
## initial value 348.196422
## iter 10 value 67.209271
## iter 20 value 48.731305
## iter 30 value 45.163292
## iter 40 value 43.901667
## iter 50 value 41.782432
## iter 60 value 41.196818
## iter 70 value 41.179131
## iter 80 value 40.604475
## iter 90 value 39.100728
## iter 100 value 38.933283
## final value 38.933283
## stopped after 100 iterations
## # weights: 411
## initial value 375.440700
## iter 10 value 24.999531
## iter 20 value 10.975472
## iter 30 value 3.681002
## iter 40 value 2.362900
## iter 50 value 0.464151
## iter 60 value 0.023842
## iter 70 value 0.003190
## iter 80 value 0.001639
## iter 90 value 0.000465
## iter 100 value 0.000188
## final value 0.000188
## stopped after 100 iterations
## # weights: 83
## initial value 355.343494
## iter 10 value 65.142462
## iter 20 value 47.372080
## iter 30 value 37.574348
## iter 40 value 26.884776
## iter 50 value 24.944949
## iter 60 value 21.922548
## iter 70 value 21.279979
## iter 80 value 21.261494
## iter 90 value 21.259775
## final value 21.259772
## converged
## # weights: 247
## initial value 346.808588
## iter 10 value 49.181931
## iter 20 value 23.923815
## iter 30 value 16.285646
## iter 40 value 14.987987
## iter 50 value 14.626359
## iter 60 value 14.595872
## iter 70 value 14.592341
## iter 80 value 14.592292
## iter 80 value 14.592292
## iter 80 value 14.592292
## final value 14.592292
## converged
## # weights: 411
## initial value 301.257159
## iter 10 value 48.410296
## iter 20 value 25.041698
## iter 30 value 13.157589
## iter 40 value 10.408976
## iter 50 value 9.661210
## iter 60 value 9.434577
## iter 70 value 9.269354
## iter 80 value 9.258845
## iter 90 value 9.216337
## iter 100 value 9.214935
## final value 9.214935
## stopped after 100 iterations
## # weights: 83
## initial value 329.936083
## iter 10 value 38.035236
## iter 20 value 29.569921
## iter 30 value 29.554229
## iter 40 value 29.550593
## iter 50 value 29.548561
## iter 60 value 29.544628
## iter 70 value 22.892755
## iter 80 value 22.832907
## iter 90 value 22.831293
## iter 100 value 22.830199
## final value 22.830199
## stopped after 100 iterations
## # weights: 247
## initial value 379.062874
## iter 10 value 39.162589
## iter 20 value 26.606671
## iter 30 value 26.527781
## iter 40 value 26.443090
## iter 50 value 26.351086
## iter 60 value 26.300281
## iter 70 value 22.962106
## iter 80 value 22.813156
## iter 90 value 22.782400
## iter 100 value 19.354953
## final value 19.354953
## stopped after 100 iterations
## # weights: 411
## initial value 358.276627
## iter 10 value 24.866177
## iter 20 value 20.469382
## iter 30 value 20.147295
## iter 40 value 19.837837
## iter 50 value 19.724894
## iter 60 value 15.856196
## iter 70 value 6.844589
## iter 80 value 3.170871
## iter 90 value 2.206285
## iter 100 value 2.124214
## final value 2.124214
## stopped after 100 iterations
## # weights: 83
## initial value 317.440169
## iter 10 value 54.923071
## iter 20 value 51.172372
## iter 30 value 51.091985
## final value 51.091979
## converged
## # weights: 247
## initial value 439.239795
## iter 10 value 46.652621
## iter 20 value 20.691344
## iter 30 value 11.781652
## iter 40 value 7.180477
## iter 50 value 6.207021
## iter 60 value 4.364374
## iter 70 value 4.210725
## iter 80 value 4.191674
## iter 90 value 4.189105
## iter 100 value 3.833204
## final value 3.833204
## stopped after 100 iterations
## # weights: 411
## initial value 377.678789
## iter 10 value 11.081353
## iter 20 value 3.150839
## iter 30 value 0.165932
## iter 40 value 0.007874
## iter 50 value 0.001463
## iter 60 value 0.000247
## iter 70 value 0.000130
## final value 0.000098
## converged
## # weights: 83
## initial value 365.641033
## iter 10 value 54.592180
## iter 20 value 34.661442
## iter 30 value 24.123223
## iter 40 value 22.201034
## iter 50 value 21.821299
## iter 60 value 21.782052
## iter 70 value 21.779687
## iter 80 value 21.779588
## final value 21.779585
## converged
## # weights: 247
## initial value 350.780477
## iter 10 value 58.820904
## iter 20 value 34.178461
## iter 30 value 17.584910
## iter 40 value 12.569362
## iter 50 value 12.052357
## iter 60 value 11.783290
## iter 70 value 11.751100
## iter 80 value 11.750788
## iter 90 value 11.750450
## iter 100 value 11.677639
## final value 11.677639
## stopped after 100 iterations
## # weights: 411
## initial value 359.433557
## iter 10 value 50.985670
## iter 20 value 21.654904
## iter 30 value 13.173778
## iter 40 value 10.345448
## iter 50 value 9.947984
## iter 60 value 9.894558
## iter 70 value 9.877974
## iter 80 value 9.829511
## iter 90 value 9.594694
## iter 100 value 9.583042
## final value 9.583042
## stopped after 100 iterations
## # weights: 83
## initial value 353.694281
## iter 10 value 49.536295
## iter 20 value 42.838397
## iter 30 value 42.577492
## iter 40 value 42.571522
## iter 50 value 42.562278
## iter 60 value 42.555152
## iter 70 value 36.331011
## iter 80 value 29.762819
## iter 90 value 29.640346
## iter 100 value 29.637627
## final value 29.637627
## stopped after 100 iterations
## # weights: 247
## initial value 349.495677
## iter 10 value 27.229579
## iter 20 value 12.230997
## iter 30 value 6.135160
## iter 40 value 5.699552
## iter 50 value 5.688158
## iter 60 value 5.660438
## iter 70 value 4.865054
## iter 80 value 4.273040
## iter 90 value 3.961903
## iter 100 value 2.664277
## final value 2.664277
## stopped after 100 iterations
## # weights: 411
## initial value 325.244422
## iter 10 value 13.994065
## iter 20 value 5.371401
## iter 30 value 1.946264
## iter 40 value 1.621766
## iter 50 value 0.340361
## iter 60 value 0.250310
## iter 70 value 0.227572
## iter 80 value 0.215527
## iter 90 value 0.168118
## iter 100 value 0.152238
## final value 0.152238
## stopped after 100 iterations
## # weights: 83
## initial value 318.790750
## iter 10 value 52.858689
## iter 20 value 38.330165
## iter 30 value 32.994238
## iter 40 value 32.989829
## iter 50 value 32.989373
## iter 60 value 32.988995
## iter 70 value 32.988890
## final value 32.988876
## converged
## # weights: 247
## initial value 378.740142
## iter 10 value 31.265542
## iter 20 value 14.143921
## iter 30 value 4.457114
## iter 40 value 2.402665
## iter 50 value 1.976904
## iter 60 value 1.942636
## iter 70 value 1.929772
## iter 80 value 1.922414
## iter 90 value 1.915049
## iter 100 value 1.912571
## final value 1.912571
## stopped after 100 iterations
## # weights: 411
## initial value 339.631589
## iter 10 value 9.798732
## iter 20 value 2.502565
## iter 30 value 1.950346
## iter 40 value 1.924779
## iter 50 value 1.919301
## iter 60 value 1.916556
## iter 70 value 1.914399
## iter 80 value 1.912137
## iter 90 value 1.910643
## iter 100 value 1.910323
## final value 1.910323
## stopped after 100 iterations
## # weights: 83
## initial value 375.793406
## iter 10 value 86.144534
## iter 20 value 51.300483
## iter 30 value 38.700038
## iter 40 value 30.193609
## iter 50 value 26.470177
## iter 60 value 22.800404
## iter 70 value 21.794936
## iter 80 value 21.767107
## iter 90 value 21.766941
## final value 21.766940
## converged
## # weights: 247
## initial value 324.225056
## iter 10 value 35.990308
## iter 20 value 20.838116
## iter 30 value 16.763917
## iter 40 value 16.174224
## iter 50 value 16.075592
## iter 60 value 16.058033
## iter 70 value 16.057466
## final value 16.057452
## converged
## # weights: 411
## initial value 330.800904
## iter 10 value 26.244831
## iter 20 value 15.196122
## iter 30 value 10.803513
## iter 40 value 9.972055
## iter 50 value 9.829904
## iter 60 value 9.779015
## iter 70 value 9.718205
## iter 80 value 9.701157
## iter 90 value 9.700747
## iter 100 value 9.700669
## final value 9.700669
## stopped after 100 iterations
## # weights: 83
## initial value 328.406826
## iter 10 value 65.376300
## iter 20 value 48.068151
## iter 30 value 47.901025
## iter 40 value 47.887847
## iter 50 value 47.832617
## iter 60 value 44.835700
## iter 70 value 44.831758
## iter 80 value 41.766685
## iter 90 value 41.664104
## iter 100 value 41.659349
## final value 41.659349
## stopped after 100 iterations
## # weights: 247
## initial value 447.269008
## iter 10 value 29.244654
## iter 20 value 10.517168
## iter 30 value 3.692586
## iter 40 value 2.807922
## iter 50 value 2.794028
## iter 60 value 2.789609
## iter 70 value 2.773421
## iter 80 value 2.578589
## iter 90 value 2.575291
## iter 100 value 2.572542
## final value 2.572542
## stopped after 100 iterations
## # weights: 411
## initial value 336.546343
## iter 10 value 42.561447
## iter 20 value 23.083490
## iter 30 value 21.011181
## iter 40 value 20.951251
## iter 50 value 19.839178
## iter 60 value 15.075206
## iter 70 value 14.759495
## iter 80 value 14.247192
## iter 90 value 11.879146
## iter 100 value 7.796720
## final value 7.796720
## stopped after 100 iterations
## # weights: 247
## initial value 377.554459
## iter 10 value 36.236384
## iter 20 value 20.791838
## iter 30 value 20.221999
## iter 40 value 17.801853
## iter 50 value 14.888808
## iter 60 value 10.276462
## iter 70 value 7.372925
## iter 80 value 7.338279
## iter 90 value 7.201956
## iter 100 value 7.124445
## final value 7.124445
## stopped after 100 iterations
# Predicción en datos de entrenamiento y prueba
resultado_entrenamiento5 <- predict(model5, entrenamiento)
resultado_prueba5 <- predict(model5, prueba)
# Matriz de Confusión
mcre5 <- confusionMatrix(resultado_entrenamiento5, entrenamiento$Class) # matriz de confusion del resultado del entrenamiento
mcre5
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 354 1
## 1 2 191
##
## Accuracy : 0.9945
## 95% CI : (0.9841, 0.9989)
## No Information Rate : 0.6496
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.988
##
## Mcnemar's Test P-Value : 1
##
## Sensitivity : 0.9944
## Specificity : 0.9948
## Pos Pred Value : 0.9972
## Neg Pred Value : 0.9896
## Prevalence : 0.6496
## Detection Rate : 0.6460
## Detection Prevalence : 0.6478
## Balanced Accuracy : 0.9946
##
## 'Positive' Class : 0
##
mcrp5 <- confusionMatrix(resultado_prueba5, prueba$Class) # matriz de confusion del resultado de la prueba
mcrp5
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 86 4
## 1 2 43
##
## Accuracy : 0.9556
## 95% CI : (0.9058, 0.9835)
## No Information Rate : 0.6519
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9011
##
## Mcnemar's Test P-Value : 0.6831
##
## Sensitivity : 0.9773
## Specificity : 0.9149
## Pos Pred Value : 0.9556
## Neg Pred Value : 0.9556
## Prevalence : 0.6519
## Detection Rate : 0.6370
## Detection Prevalence : 0.6667
## Balanced Accuracy : 0.9461
##
## 'Positive' Class : 0
##
# Entrenamiento del modelo
model6 <- train(Class ~ .,
data = entrenamiento,
method = "rf",
preProcess = c("scale", "center"),
trControl = trainControl(method = "cv", number = 10),
tuneGrid = expand.grid(mtry=c(2,4,6))
)
# Predicción en datos de entrenamiento y prueba
resultado_entrenamiento6 <- predict(model6, entrenamiento)
resultado_prueba6 <- predict(model6, prueba)
# Matriz de Confusión
mcre6 <- confusionMatrix(resultado_entrenamiento6, entrenamiento$Class) # matriz de confusion del resultado del entrenamiento
mcre6
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 356 1
## 1 0 191
##
## Accuracy : 0.9982
## 95% CI : (0.9899, 1)
## No Information Rate : 0.6496
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.996
##
## Mcnemar's Test P-Value : 1
##
## Sensitivity : 1.0000
## Specificity : 0.9948
## Pos Pred Value : 0.9972
## Neg Pred Value : 1.0000
## Prevalence : 0.6496
## Detection Rate : 0.6496
## Detection Prevalence : 0.6515
## Balanced Accuracy : 0.9974
##
## 'Positive' Class : 0
##
mcrp6 <- confusionMatrix(resultado_prueba6, prueba$Class) # matriz de confusion del resultado de la prueba
mcrp6
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 86 3
## 1 2 44
##
## Accuracy : 0.963
## 95% CI : (0.9157, 0.9879)
## No Information Rate : 0.6519
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.918
##
## Mcnemar's Test P-Value : 1
##
## Sensitivity : 0.9773
## Specificity : 0.9362
## Pos Pred Value : 0.9663
## Neg Pred Value : 0.9565
## Prevalence : 0.6519
## Detection Rate : 0.6370
## Detection Prevalence : 0.6593
## Balanced Accuracy : 0.9567
##
## 'Positive' Class : 0
##
resultados <- data.frame(
"svmLinear" = c(mcre$overall["Accuracy"], mcrp$overall["Accuracy"]),
"svmRadial" = c(mcre2$overall["Accuracy"], mcrp2$overall["Accuracy"]),
"svmPoly" = c(mcre3$overall["Accuracy"], mcrp3$overall["Accuracy"]),
"rpart" = c(mcre4$overall["Accuracy"], mcrp4$overall["Accuracy"]),
"nnet" = c(mcre5$overall["Accuracy"], mcrp5$overall["Accuracy"]),
"rf" = c(mcre6$overall["Accuracy"], mcrp6$overall["Accuracy"])
)
rownames(resultados) <- c("Precisión de entrenamiento", "Precisión de prueba")
resultados
## svmLinear svmRadial svmPoly rpart nnet
## Precisión de entrenamiento 1.0000000 1.0000000 1.0000000 0.9507299 0.9945255
## Precisión de prueba 0.9111111 0.6962963 0.9111111 0.9407407 0.9555556
## rf
## Precisión de entrenamiento 0.9981752
## Precisión de prueba 0.9629630
El modelo con el método de bosques aleatorios presenta sobreajuste, ya que tiene una alta precisión en entrenamiento, pero bajo en prueba.
Acorde al resumen de resultados, el mejor modelo es el de Arboles de Decisiones